Citation: Xiaojing Tian,  Zhichun Huang,  Qingsong Zhang,  Xu Wang,  Ning Yang,  Nanping Deng. PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230403. doi: 10.3866/PKU.WHXB202304037 shu

PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking

  • Corresponding author: Qingsong Zhang, zqs8011@163.com
  • Received Date: 20 April 2023
    Revised Date: 19 June 2023
    Accepted Date: 23 June 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52173060), Science and Technology Guidance Projects of China National Textile and Apparel Council (2018034), Natural Science Foundation of Shandong Province (ZR2022ME095), Fiber Research Foundation of Tiangong University (TGF-21-B5), and Research Plan of Combining Medicine with Engineering of Tiangong University (2021YGJHLX03).

  • Since 2004, poly(N-isopropylacrylamide) (PNIPAm) cross-linked thermo-responsive nanofibers mats have emerged as a responsive material with a phase transition temperature that can be easily controlled. These mats overcome the limitations, such as a high production cost and slow response rate, of huge traditional PNIPAm hydrogels. They also overcome the poor water resistance of PNIPAm non-cross-linked thermo-responsive nanofibers and, thus, have been widely studied. In 2017, continuous PNIPAm thermo-responsive nanofibers in pure aqueous solvents without beads were fabricated, which began the ecological and water-based era of uniform PNIPAm nanofiber production. In this review, we comprehensively analyzed the effects of physical and chemical cross-linking reaction types, cross-linking degree, cross-linking time, and cross-linking molecular weight on the morphological stability and response behavior of PNIPAm thermo-responsive nanofibers mats, providing theoretical support for their future cross-linking treatment. Because of their high specific surface area and porosity, PNIPAm thermo-responsive nanofibers mats are vulnerable to solvent erosion before cross-linking, which damage their morphology and reduce response rates and usage times. Increased water resistance and can be utilized repeatedly, by introducing cross-linking groups to these mats, such as in drug release, cell culture, drivers, and smart switches. Chemical cross-linking are more stable than physical cross-linking and can be divided into crosslinkers, chemical reactive cross-linking, and other cross-linking. The cross-linking networks produced by a cross-linking agent are more robust; however, the resulting nanofibers mats are not applicable to the human body owing to the small, non-degradable harmful molecules, such as formaldehyde and glutaraldehyde (GA). Random 3D networks generated by physical cross-linking are easier to break but relatively safe and pollution-free. The morphological stability and response behavior of PNIPAm thermo-responsive nanofibers mats are affected by the cross-linking. The cross-linking agent content and the cross-linking time are positively correlated with the morphological stability of PNIPAm thermo-responsive nanofibers mats. This is conducive to multiple recycling but has little effect on the response rate. Greener and more reliable cross-linking methods should be investigated to realize and expand the practical applications of PNIPAm thermo-responsive nanofibers mats, with increasing focus on the effect of cross-linking on the mechanical properties of the mats. We hope this review will result in ideas for improving the development and application of PNIPAm thermo-responsive nanofibers mats.
  • 加载中
    1. [1]

      (1) Wang, C.; Flynn, N. T.; Langer, R. Adv. Mater. 2004, 16, 1074. doi: 10.1002/adma.200306516

    2. [2]

      (2) Drury, J. L.; Mooney, D. J. Biomaterials 2003, 24, 4337. doi: 10.1016/s0142-9612(03)00340-5

    3. [3]

      (3) Li, Y.; Zhu, J. D.; Cheng, H.; Li, G. Q.; Cho, H. J.; Jiang, M. J.; Gao, Q.; Zhang, X. W. Adv. Mater. Technol. 2021, 6, 2100410. doi: 10.1002/admt.202100410

    4. [4]

      (4) Jiang, S. H.; Chen, Y. M.; Duan, G. G.; Mei, C. T.; Greiner, A.; Agarwal, S. Polym. Chem. 2018, 9, 2685. doi: 10.1039/C8PY00378E

    5. [5]

      (5) Luo, C. J.; Stoyanov, S. D.; Stride, E.; Pelan, E.; Edirisinghe, M. Chem. Soc. Rev. 2012, 41, 4708. doi: 10.1039/c2cs35083a

    6. [6]

      (6) He, C. L.; Kim, S. W.; Lee, D. S. J. Control. Release 2008, 127, 189. doi: 10.1016/j.jconrel.2008.01.005

    7. [7]

      (7) López-Rubio, A.; Lagaron, J. M. Innov. Food Sci. Emerg. Technol. 2012, 13, 200. doi: 10.1016/j.ifset.2011.10.012

    8. [8]

      (8) Muthiah, P.; Hoppe, S. M.; Boyle, T. G.; Sidmund, W. Macromol. Rapid Commun. 2011, 32, 1716. doi: 10.1002/marc.201100373

    9. [9]

      (9) Ashraf, S.; Park, H. K.; Park, H.; Lee, S. H. Macromol. Res. 2016, 24, 297. doi: 10.1007/s13233-016-4052-2

    10. [10]

      (10) Deka, S. R.; Quarta, A.; Di, C. R.; Riedinger, A.; Cingolani, R.; Pellegrino, T. Nanoscale 2011, 3, 619. doi: 10.1039/c0nr00570c

    11. [11]

      (11) Chen, H.; Hsieh, Y. L. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 6331. doi: 10.1002/pola.20461

    12. [12]

      (12) Wang, N.; Zhao, Y.; Jiang, L. Macromol. Rapid Commun. 2008, 29, 485. doi: 10.1002/marc.200700785

    13. [13]

      (13) Rockwood, D. N.; Chase, D. B.; Akins, R, E.; Rabolt, J. F. Polymer 2008, 49, 4025. doi: 10.1016/j.polymer.2008.06.018

    14. [14]

      (14) Okuzaki, H.; Kobayashi, K.; Yan, H. Macromolecules 2009, 42, 5916. doi: 10.1021/ma9014356

    15. [15]

      (15) Okuzaki, H.; Kobayashi, K.; Yan, H. Synth. Met. 2009, 159, 2273. doi: 10.1016/j.synthmet.2009.07.046

    16. [16]

      (16) Wang, J.; Sutti, A.; Wang, X.; Lin, T. Soft Matter 2011, 7, 4364. doi: 10.1039/c1sm00010a

    17. [17]

      (17) Schoolaert, E.; Ryckx, P.; Geltmeyer, J.; Maji, S.; Steenberge, P. H. M. V.; D’hooge, D. R.; Hoogenboom, R.; Clerck, K. D. ACS Appl. Mater. Interfaces 2017, 9, 24100. doi: 10.1021/acsami.7b05074

    18. [18]

      (18) Chen, T. T.; Bakhshi, H.; Liu, L.; Ji, J.; Agarwal, S. Adv. Funct. Mater. 2018, 28, 1800514. doi: 10.1002/adfm.201800514

    19. [19]

      (19) Young, R. E.; Graf, J.; Miserocchi, L.; Van Horn, R. M.; Gordon, M. B.; Anderson, C. R.; Sefcik, L. S.; Fujita, S. Plos One 2019, 17, 0219254. doi: 10.1371/journal.pone.0219254

    20. [20]

      (20) Sun, F.; Ren, H. T.; Li, T. T.; Huang, S-Y.; Zhang, Y.; Lou, C-W.; Lin, J-H. Environ. Res. 2020, 186, 109494. doi: 10.1016/j.envres.2020.109494

    21. [21]

      (21) Li, J.; Wang, B-X.; Cheng, D-H.; Liu, Z-M.; Lv, L-H.; Guo J.; Lu, Y-H. Coatings 2021, 11, 632. doi: 10.3390/coatings11060632

    22. [22]

      (22) Pascoalino, L. A.; Silva, B. A. T. T.; Souza, R. L. D.; Curti, P. S. Materia 2022, 27, 13181. doi: 10.1590/s1517-707620220002.1381

    23. [23]

      (23) Kim, S.; Choi, H. ACS Sustain. Chem. Eng. 2019, 7, 19870. doi: 10.1021/acssuschemeng.9b05273

    24. [24]

      (24) Xu, Y. H.; Ajji, A.; Heuzey, M-C. Sens. Actuator A-Phys. 2023, 349, 114016. doi: 10.1016/j.sna.2022.114016

    25. [25]

      (25) Yu, Z. Q.; Tang, D. Y.; Lv, H. T.; Feng, Q.; Zhang, Q. N.; Jiang, E. Y.; Wang, Q. D. Colloid Surf. A-Phys. Chem. Eng. Asp. 2015, 471, 117. doi: 10.1016/j.colsurfa.2015.02.023

    26. [26]

      (26) Song, F.; Wang, X. L.;Wang, Y. Z. Colloid Surf. B-Biointerfaces 2011, 88, 749. doi: 10.1016/j.colsurfb.2011.08.015

    27. [27]

      (27) Chuang, W.; Chiu, W.; Tai, H. J. J. Mater. Chem. 2012, 22, 20311. doi: 10.1039/C2JM33601D

    28. [28]

      (28) Bhattarai, N.; Zhang, M. Q. Nanotechnology 2007, 18, 455601. doi: 10.1088/0957-4484/18/45/455601

    29. [29]

      (29) Leitner, A.; Joachimiak, L. A.; Unverdorben, P.; Walzthoeni, T.; Frydman, J.; Forster, F. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 9455. doi: 10.1073/pnas.1320298111

    30. [30]

      (30) Wang, Y.; Luo, C.; Yang, G.; Wei, X. Macromol. Biosci. 2016, 16, 1598. doi: 10.1002/mabi.201600123

    31. [31]

      (31) Kumbaraci, V.; Talinli, N.; Yagci, Y. Macromol. Rapid Commun. 2010, 28, 72. doi: 10.1002/marc.200600653

    32. [32]

      (32) Hennink, W. E.; Van Nostrum, C. F. Adv. Drug Deliv. Rev. 2012, 64, 223. doi: 10.1016/j.addr.2012.09.009

    33. [33]

      (33) Morandim-Giannetti, A. D.; Wecchi, P. D.; Silvério, P. D. J. Therm. Anal. Calorim. 2019, 138, 3635. doi: 10.1007/s10973-019-08571-4

    34. [34]

      (34) Osada, Y.; Matsuda, A. Nature 1995, 376, 219. doi: 10.1038/376219a0

    35. [35]

      (35) Chen, L. N.; Kuo, C. C.; Chiu, Y. C.; Chen, W. C. RSC Adv. 2014, 4, 45345. doi: 10.1039/C4RA07422J

    36. [36]

      (36) Li, J.; Zhu, J. X.; Jia, L.; Ma, Y. L.; Wu, H. J. RSC Adv. 2020, 10, 323. doi: 10.1039/C9RA08832F

    37. [37]

      (37) Liu, Y. H.; Meng, F. L.; Zheng, S. X. Macromol. Rapid Commun. 2005, 26, 920. doi: 10.1002/marc.200500062

    38. [38]

      (38) Slemming-Adamsen, P.; Song, J.; Dong, M.; Besenbacher, F.; Chen, M. L. Macromol. Mater. Eng. 2015, 300, 1226. doi: 10.1002/mame.201500160

    39. [39]

      (39) Yin, T. H.; Lavoie, S. R.; Qu, S, X.; Suo, Z. G. Cell Rep. Phys. Sci. 2021, 6, 100463. doi: 10.1016/j.xcrp.2021.100463

    40. [40]

      (40) Kotsuchibashi, Y.; Ebara, M.; Idota, N.; Narain, R.; Aoyagi, T. Polym. Chem. 2012, 3, 1150. doi: 10.1039/C2PY20333B

    41. [41]

      (41) Kuijpers, A. J.; Engbers, G. H.; Krijgsveld, J.; Zaat, S. A.; Dankert, J.; Feijen, J. J. Biomater. Sci. Polym. Ed. 2000, 11, 225. doi: 10.1163/156856200743670

    42. [42]

      (42) Christensen, S. K.; Chiappelli, M. C.; Hayward, R. C. Macromolecules 2012, 45, 5237. doi: 10.1021/ma300784d

    43. [43]

      (43) Carbone, N. D.; Ene, M.; Lancaster, J. R.; Koberstein, J. T. Macromolecules 2013, 46, 5434. doi: 10.1021/ma4007347

    44. [44]

    45. [45]

      (45) Gauthier, M. A.; Gibson, M. I.; Klok, H.-A. Angew. Chem. Int. Ed. 2009, 48, 48. doi: 10.1002/anie.200801951

    46. [46]

    47. [47]

      (47) Zhu, X. F.; Lu, P.; Chen, W.; Dong, J. A. Polymer 2010, 51, 3054. doi: 10.1016/j.polymer.2010.05.006

    48. [48]

      (48) Wang, C.; Venditti, R. A. ACS Sustainable Chem. Eng. 2015, 3, 1839. doi: 10.1021/acssuschemeng.5b00416

    49. [49]

      (49) Higuchi, H.; Yamashita, T.; Horie, K.; Mita, I. Chem. Mater. 1991, 3, 188. doi: 10.1021/cm00013a038

    50. [50]

    51. [51]

      (51) Parvate, S.; Mahanwar, P. J. Dispersion Sci. Technol. 2019, 40, 519. doi: 10.1080/01932691.2018.1472012

    52. [52]

      (52) Graisuwan, W.; Puthong, S.; Zhao, H.; Kiatkamjornwong, S.; Theato, P.; Hoven, V. P. Biomacromolecules 2017, 18, 3714. doi: 10.1021/acs.biomac.7b00382

    53. [53]

      (53) Krishnan, S.; Klein, A.; El-Aasser, M. S.; Sudol, E. D. Macromolecules 2003, 36, 3511. doi: 10.1081/PRE-120024419

    54. [54]

      (54) Eberhardt, M.; Theato, P. Macromol. Rapid Commun. 2005, 26, 1488. doi: 10.1002/marc.200500390

    55. [55]

      (55) Theato, P. J. Polym. Sci. Part A: Polym. Chem. 2008, 4, 6677. doi: 10.1002/pola.22994

    56. [56]

      (56) Pawar, M. D.; Rathna, G. V. N.; Agrawal, S. Mater. Sci. Eng. C 2015, 48, 126. doi: 10.1016/j.msec.2014.11.037

    57. [57]

      (57) Rathna, G. V. N.; Li, J.; Gunasekaran, S. Polym. Int. 2004, 53, 1994. doi: 10.1002/pi.1611

    58. [58]

      (58) Chang, J. W.; Wang, C. Y.; Huang, T. D.; Guo, T. F.; Wen, T. C. Adv. Mater. 2011, 23, 4077. doi: 10.1002/adma.201102124

    59. [59]

      (59) Liu, S.J.; Kau, Y. C.; Chou, C. Y.; Chen, J. K.; Wu, R. C.; Yeh, W. L. J. Membr. Sci. 2010, 355, 53. doi: 10.1016/j.memsci.2010.03.012

    60. [60]

      (60) Huang, Z. M.; Zhang,Y. Z.; Kotaki, M.; Ramakrishna, S. Compos. Sci. Technol. 2003, 63, 2223. doi: 10.1016/S0266-3538(03)00178-7

    61. [61]

      (61) Yoo, H. S.; Kim, T. G.; Park, T. G. Adv. Drug Deliv. Rev. 2009, 61, 1033. doi: 10.1016/j.addr.2009.07.007

    62. [62]

      (62) Suzuki, K.; Tanaka, H.; Ebara, M.; Uto, K.; Matsuoka, H.; Nishimoto, S. Acta Biomater 2017, 53, 250. doi: 10.1016/j.actbio.2017.02.004

    63. [63]

      (63) Shi, Q.; Hou, J. W.; Xu, X. D.; Gao, J.; Li, C. M. Adv. Mater. Interfaces 2016, 3, 1500652. doi: 10.1002/admi.201500652

    64. [64]

      (64) Xu, Y.; Ajji, A.; Heuzey, M-C. Polymer 2019, 183, 121880. doi: 10.1016/j.polymer.2019.121880

    65. [65]

    66. [66]

      (66) Jia, S. Y.; Tang, D. Y.; Peng, J.; Sun, Z. J.; Yang, X. Carbohydr. Polym. 2019, 208, 486. doi: 10.1016/j.carbpol.2018.12.075

    67. [67]

      (67) Harada, A.; Takashima, Y.; Nakahata, M. Acc. Chem Res. 2014, 47, 2128. doi: 10.1021/ar500109h

    68. [68]

      (68) Jia, S. Y.; Tang, D. Y.; Sun, Z. J. Chem. Eng. J. 2020, 390, 142272. doi: 10.1016/j.cej.2020.124472

    69. [69]

      (69) Wu, J. X.; Zhang, J.; Kang, Y. L.; Wu, G. ACS Sustain. Chem. Eng. 2018, 6, 1753. doi: 10.1021/acssuschemeng.7b03102

    70. [70]

      (70) Arroub, K.; Gessner, L.; Fischer, T.; Mathur, S. Adv. Eng. Mater. 2021, 23, 2100221. doi: 10.1002/adem.202100221

    71. [71]

      (71) Li, J. M.; Wang, D.; Zhang, J. J.; Zhang, N.; Chen, Y.; Wang, Z. N. Desalination 2023, 555, 116544. doi: 10.1016/j.desal.2023.116544

    72. [72]

      (72) Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X. J.; Xie, R.; Chu, L. Y. Adv. Funct. Mater. 2015, 25, 2980. doi: 10.1002/adfm.201500420

    73. [73]

      (73) Zhang, C. L.; Cao, F. H.; Wang, J. L.; Yu, Z. L.; Ge, J.; Lu, Y.; Wang, Z. H.; Yu, S. H. ACS Appl. Mater. Interfaces 2017, 9, 24857. doi: 10.1021/acsami.7b05223

    74. [74]

      (74) Jiang, S. H.; Liu, F. Y.; Lerch, A.; Lonov, L. Adv. Mater. 2015, 27, 4865. doi: 10.1002/adma.201502133

    75. [75]

      (75) Mu, Q. F.; Zhang, Q. S.; Yu, W.; Su, M. L.; Cai, Z. Y.; Cui, K. P.; Ye, Y. N.; Liu X. Y.; Deng, L. L.; Chen, B. J.; et al. ACS Appl. Mater. Interfaces 2020, 12, 33152. doi: 10.1021/acsami.0c06164

    76. [76]

      (76) Kim, Y. I.; Ebara, M.; Aoyagi, T. Sci. Technol. Adv. Mater. 2012, 13, 064203. doi: 10.1088/1468-6996/13/6/064203

    77. [77]

      (77) Wei, Z. M.; Zhao, W.; Wang, Y. M.; Wang, X. J.; Long, S. R. Colloid Surf. B-Biointerfaces 2019, 182, 110347. doi: 10.1016/j.colsurfb.2019.110347

    78. [78]

      (78) Lin, T. C.; Lin, F. H.; Lin, J. C. Acta Biomater 2012, 8, 2704. doi: 10.1016/j.actbio.2012.03.045

    79. [79]

      (79) Hosseini-Alvand, E.; Khorasani, M-T. J. Mater. Chem. B 2023, 11, 890. doi: 10.1039/D2TB02179J

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    15. [15]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    18. [18]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    19. [19]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    20. [20]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

Metrics
  • PDF Downloads(2)
  • Abstract views(393)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return