Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting
- Corresponding author: Luhua Jiang, luhuajiang@qust.edu.cn
 
	            Citation:
	            
		            Huasen Lu, Shixu Song, Qisen Jia, Guangbo Liu, Luhua Jiang. Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica,
							;2024, 40(2): 230403.
						
							doi:
								10.3866/PKU.WHXB202304035
						
					
				
					
				
	        
	                
				Grossmann, W. D.; Grossmann, I.; Steininger, K. W. Renew. Sust. Energ. Rev.  2014,  32, 983. doi: 10.1016/j.rser.2014.01.003
												 doi: 10.1016/j.rser.2014.01.003
											
										
				Fujishima, A.; Honda, K. Nature 1972,  238 (5358), 37. doi: 10.1038/238037a0
												 doi: 10.1038/238037a0
											
										
				Khaselev, O.; Turner, J. A. Science 1998,  280 (5362), 425. doi: 10.1126/science.280.5362.425
												 doi: 10.1126/science.280.5362.425
											
										
				Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett.  2011,  11 (7), 3026. doi: 10.1021/nl201766h
												 doi: 10.1021/nl201766h
											
										
				Hisatomi, T.; Domen, K. Faraday Discuss.  2017,  198 (0), 11. doi: 10.1039/C6FD00221H
												 doi: 10.1039/C6FD00221H
											
										
				Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; et al. Energy Environ. Sci.  2013,  6 (7), 1983. doi: 10.1039/C3EE40831K
												 doi: 10.1039/C3EE40831K
											
										
				Huang, Q.; Ye, Z.; Xiao, X. J. Mater. Chem. A 2015,  3 (31), 15824. doi: 10.1039/C5TA03594E
												 doi: 10.1039/C5TA03594E
											
										
				Bagal, I. V.; Chodankar, N. R.; Hassan, M. A.; Waseem, A.; Johar, M. A.; Kim, D. -H.; Ryu, S. -W. Int. J. Hydrog. Energy 2019,  44 (39), 21351. doi: 10.1016/j.ijhydene.2019.06.184
												 doi: 10.1016/j.ijhydene.2019.06.184
											
										
				de Jongh, P. E.; Vanmaekelbergh, D.; Kelly, J. J. J. Electrochem. Soc.  2000,  147 (2), 486. doi: 10.1149/1.1393221
												 doi: 10.1149/1.1393221
											
										
				Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; et al. J. Mater. Res.  2010,  25 (1), 3. doi: 10.1557/JMR.2010.0020
												 doi: 10.1557/JMR.2010.0020
											
										
				Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Nat. Mater.  2011,  10 (6), 456. doi: 10.1038/nmat3017
												 doi: 10.1038/nmat3017
											
										
				Toe, C. Y.; Scott, J.; Amal, R.; Ng, Y. H. J. Photochem. Photobiol. C 2019,  40, 191. doi: 10.1016/j.jphotochemrev.2018.10.001
												 doi: 10.1016/j.jphotochemrev.2018.10.001
											
										
				Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem.  2004,  32 (1), 33. doi: 10.1016/j.progsolidstchem.2004.08.001
												 doi: 10.1016/j.progsolidstchem.2004.08.001
											
										
				Tench, D.; Warren, L. F. J. Electrochem. Soc.  1983,  130 (4), 869. doi: 10.1149/1.2119838
												 doi: 10.1149/1.2119838
											
										
				Zhang, W.; Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Adv. Mater.  2003,  15 (10), 822. doi: 10.1002/adma.200304840
												 doi: 10.1002/adma.200304840
											
										
				Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Phys. Rev. B 2007,  75 (12), 125420. doi: 10.1103/PhysRevB.75.125420
												 doi: 10.1103/PhysRevB.75.125420
											
										
				Aveline, A.; Bonilla, I. R. Sol. Energy Mater.  1981,  5 (2), 211. doi: 10.1016/0165-1633(81)90033-2
												 doi: 10.1016/0165-1633(81)90033-2
											
										
				Ishibashi, S.; Higuchi, Y.; Ota, Y.; Nakamura, K. J. Vac. Sci. Technol. A 1990,  8 (3), 1403. doi: 10.1116/1.576890
												 doi: 10.1116/1.576890
											
										
				Qin, C.; Chen, X.; Liang, R.; Jiang, N.; Zheng, Z.; Ye, Z.; Zhu, L. ACS Appl. Energy Mater.  2022,  5 (11), 14410. doi: 10.1021/acsaem.2c02974
												 doi: 10.1021/acsaem.2c02974
											
										
				Eisermann, S.; Kronenberger, A.; Laufer, A.; Bieber, J.; Haas, G.; Lautenschläger, S.; Homm, G.; Klar, P. J.; Meyer, B. K. Phys. Status Solidi A-Appl. Mat.  2012,  209 (3), 531. doi: 10.1002/pssa.201127493
												 doi: 10.1002/pssa.201127493
											
										
				Jeong, S.; Aydil, E. S. J. Vac. Sci. Technol. A 2010,  28 (6), 1338. doi: 10.1116/1.3491036
												 doi: 10.1116/1.3491036
											
										
				Das, C.; Ananthoju, B.; Dhara, A. K.; Aslam, M.; Sarkar, S. K.; Balasubramaniam, K. R. Adv. Mater. Interfaces 2017,  4 (17), 1700271. doi: 10.1002/admi.201700271
												 doi: 10.1002/admi.201700271
											
										
				Liu, H.; Nguyen, V. H.; Roussel, H.; Gélard, I.; Rapenne, L.; Deschanvres, J. -L.; Jiménez, C.; Muñoz-Rojas, D. Adv. Mater. Interfaces 2019,  6 (3), 1801364. doi: 10.1002/admi.201801364
												 doi: 10.1002/admi.201801364
											
										
				Güneri, E.; Aker, D.; Henry, J.; Billur, C. A.; Saatçi, B. Phase Transitions 2022,  95 (10), 679. doi: 10.1080/01411594.2022.2104161
												 doi: 10.1080/01411594.2022.2104161
											
										
				Aref, A. A.; Xiong, L.; Yan, N.; Abdulkarem, A. M.; Yu, Y. Mater. Chem. Phys.  2011,  127 (3), 433. doi: 10.1016/j.matchemphys.2011.02.029
												 doi: 10.1016/j.matchemphys.2011.02.029
											
										
				Liu, M.; Xue, D. J. Phys. Chem. C 2008,  112 (16), 6346. doi: 10.1021/jp800803s
												 doi: 10.1021/jp800803s
											
										
				Luo, C.; Xue, D. Langmuir 2006,  22 (24), 9914. doi: 10.1021/la062193v
												 doi: 10.1021/la062193v
											
										
				Xiong, L.; Yu, H.; Yang, G.; Qiu, M.; Chen, J.; Yu, Y. Thin Solid Films 2010,  518 (23), 6738. doi: 10.1016/j.tsf.2010.05.117
												 doi: 10.1016/j.tsf.2010.05.117
											
										
				Luo, J.; Steier, L.; Son, M. -K.; Schreier, M.; Mayer, M. T.; Grätzel, M. Nano Lett.  2016,  16 (3), 1848. doi: 10.1021/acs.nanolett.5b04929
												 doi: 10.1021/acs.nanolett.5b04929
											
										
				Jiang, D.; Zhang, Y.; Li, X. Chin. J. Catal.  2019,  40 (1), 105. doi: 10.1016/S1872-2067(18)63164-X
												 doi: 10.1016/S1872-2067(18)63164-X
											
										
				Zhang, Z.; Song, R.; Cao, T.; Huang, W. J. Energy Chem.  2016,  25 (6), 1086. doi: 10.1016/j.jechem.2016.09.012
												 doi: 10.1016/j.jechem.2016.09.012
											
										
				Wang, Y.; Miska, P.; Pilloud, D.; Horwat, D.; Mücklich, F.; Pierson, J. F. J. Appl. Phys.  2014,  115 (7), 073505. doi: 10.1063/1.4865957
												 doi: 10.1063/1.4865957
											
										
				Musa, A. O.; Akomolafe, T.; Carter, M. J. Sol. Energy Mater. Sol. Cells 1998,  51 (3), 305. doi: 10.1016/S0927-0248(97)00233-X
												 doi: 10.1016/S0927-0248(97)00233-X
											
										
				Visibile, A.; Wang, R. B.; Vertova, A.; Rondinini, S.; Minguzzi, A.; Ahlberg, E.; Busch, M. Chem. Mater.  2019,  31 (13), 4787. doi: 10.1021/acs.chemmater.9b01122
												 doi: 10.1021/acs.chemmater.9b01122
											
										
				Nolan, M.; Elliott, S. D. Chem. Mater.  2008,  20 (17), 5522. doi: 10.1021/cm703395k
												 doi: 10.1021/cm703395k
											
										
				Tseng, C. C.; Hsieh, J. H.; Liu, S. J.; Wu, W. Thin Solid Films 2009,  518 (5), 1407. doi: 10.1016/j.tsf.2009.09.116
												 doi: 10.1016/j.tsf.2009.09.116
											
										
				Chen, D.; Liu, Z.; Guo, Z.; Yan, W.; Xin, Y. J. Mater. Chem. A 2018,  6 (41), 20393. doi: 10.1039/C8TA07503D
												 doi: 10.1039/C8TA07503D
											
										
				Li, X.; Liu, B.; Chen, Y.; Fan, X.; Li, Y.; Zhang, F.; Zhang, G.; Peng, W. Nanotechnology 2018,  29 (50), 505603. doi: 10.1088/1361-6528/aae569
												 doi: 10.1088/1361-6528/aae569
											
										
				Shinde, P. S.; Fontenot, P. R.; Donahue, J. P.; Waters, J. L.; Kung, P.; McNamara, L. E.; Hammer, N. I.; Gupta, A.; Pan, S. J. Mater. Chem. A 2018,  6 (20), 9569. doi: 10.1039/C8TA01771A
												 doi: 10.1039/C8TA01771A
											
										
				Würfel, U.; Cuevas, A.; Würfel, P. IEEE J. Photovoltaics 2015,  5 (1), 461. doi: 10.1109/JPHOTOV.2014.2363550
												 doi: 10.1109/JPHOTOV.2014.2363550
											
										
				Yang, W. -Y.; Rhee, S. -W. Appl. Phys. Lett.  2007,  91 (23), 232907. doi: 10.1063/1.2822403
												 doi: 10.1063/1.2822403
											
										
				Zhou, M.; Guo, Z.; Liu, Z. Appl. Catal. B 2020,  260, 118213. doi: 10.1016/j.apcatb.2019.118213
												 doi: 10.1016/j.apcatb.2019.118213
											
										
				Wei, Y.; Chang, X.; Wang, T.; Li, C.; Gong, J. Small 2017,  13 (39), 1702007. doi: 10.1002/smll.201702007
												 doi: 10.1002/smll.201702007
											
										
				Pan, L.; Liu, Y.; Yao, L.; Dan, R.; Sivula, K.; Grätzel, M.; Hagfeldt, A. Nat. Commun.  2020,  11 (1), 318. doi: 10.1038/s41467-019-13987-5
												 doi: 10.1038/s41467-019-13987-5
											
										
				Liu, G.; Lu, H.; Xu, Y.; Quan, Q.; Lv, H.; Cui, X.; Chen, J.; Jiang, L.; Behm, R. J.  Chem. Eng. J.  2023,  455, 140875. doi: 10.1016/j.cej.2022.140875
												 doi: 10.1016/j.cej.2022.140875
											
										
				Gou, L.; Murphy, C. J. Nano Lett.  2003,  3 (2), 231. doi: 10.1021/nl0258776
												 doi: 10.1021/nl0258776
											
										
				Cao, M.; Hu, C.; Wang, Y.; Guo, Y.; Guo, C.; Wang, E. Chem. Commun.  2003,  No. 15, 1884. doi: 10.1039/B304505F
												 doi: 10.1039/B304505F
											
										
				Kim, M. H.; Lim, B.; Lee, E. P.; Xia, Y. J. Mater. Chem.  2008,  18 (34), 4069. doi: 10.1039/B805913F
												 doi: 10.1039/B805913F
											
										
				Kuo, C. H.; Chen, C. H.; Huang, M. H. Adv. Funct. Mater.  2007,  17 (18), 3773. doi: 10.1002/adfm.200700356
												 doi: 10.1002/adfm.200700356
											
										
				Lin, C. -Y.; Lai, Y. -H.; Mersch, D.; Reisner, E. Chem. Sci.  2012,  3 (12), 3482. doi: 10.1039/C2SC20874A
												 doi: 10.1039/C2SC20874A
											
										
				Zhang, Z.; Dua, R.; Zhang, L.; Zhu, H.; Zhang, H.; Wang, P. ACS Nano 2013,  7 (2), 1709. doi: 10.1021/nn3057092
												 doi: 10.1021/nn3057092
											
										
				Lai, T. -H.; Tsao, C. -W.; Fang, M. -J.; Wu, J. -Y.; Chang, Y. -P.; Chiu, Y. -H.; Hsieh, P. -Y.; Kuo, M. -Y.; Chang, K. -D.; Hsu, Y. -J. ACS Appl. Mater. Interfaces 2022,  14 (36), 40771. doi: 10.1021/acsami.2c07145
												 doi: 10.1021/acsami.2c07145
											
										
				Pande, K. P.; Hsu, Y. S.; Borrego, J. M.; Ghandhi, S. K. Appl. Phys. Lett.  1978,  33 (8), 717. doi: 10.1063/1.90513
												 doi: 10.1063/1.90513
											
										
				George, S. M.; Ott, A. W.; Klaus, J. W. J. Phys. Chem.  1996,  100 (31), 13121. doi: 10.1021/jp9536763
												 doi: 10.1021/jp9536763
											
										
				Li, Y.; Zhong, X.; Luo, K.; Shao, Z. J. Mater. Chem. A 2019,  7 (26), 15593. doi: 10.1039/C9TA04822G
												 doi: 10.1039/C9TA04822G
											
										
				Li, J.; Li, W.; Deng, G.; Qin, Y.; Wang, H.; Wang, Y.; Xue, S. Ionics 2023,  29 (2), 685. doi: 10.1007/s11581-022-04827-6
												 doi: 10.1007/s11581-022-04827-6
											
										
				Yilmaz, M.; Handoko, A. D.; Parkin, I. P.; Sankar, G. J. Catal.  2020,  389, 483. doi: 10.1016/j.jcat.2020.06.021
												 doi: 10.1016/j.jcat.2020.06.021
											
										
				Chen, R.; Ren, Z.; Liang, Y.; Zhang, G.; Dittrich, T.; Liu, R.; Liu, Y.; Zhao, Y.; Pang, S.; An, H.; et al. Nature 2022,  610 (7931), 296. doi: 10.1038/s41586-022-05183-1
												 doi: 10.1038/s41586-022-05183-1
											
										
				Borgwardt, M.; Omelchenko, S. T.; Favaro, M.; Plate, P.; Höhn, C.; Abou-Ras, D.; Schwarzburg, K.; van de Krol, R.; Atwater, H. A.; Lewis, N. S.; et al. Nat. Commun.  2019,  10 (1), 2106. doi: 10.1038/s41467-019-10143-x
												 doi: 10.1038/s41467-019-10143-x
											
										
						
						
						
	                Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010
Ruyan Liu , Zhenrui Ni , Olim Ruzimuradov , Khayit Turayev , Tao Liu , Luo Yu , Panyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Chengxiao Zhao , Zhaolin Li , Dongfang Wu , Xiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-. doi: 10.1016/j.actphy.2025.100149
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
Rohit Kumar , Anita Sudhaik , Aftab Asalam Pawaz Khan , Van Huy Neguyen , Archana Singh , Pardeep Singh , Sourbh Thakur , Pankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
Chunling Qin , Shuang Chen , Hassanien Gomaa , Mohamed A. Shenashen , Sherif A. El-Safty , Qian Liu , Cuihua An , Xijun Liu , Qibo Deng , Ning Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Shijie Ren , Mingze Gao , Rui-Ting Gao , Lei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040