Citation: Junjian Wang,  Qingquan Yu,  Shunyao Liu,  Yuke Chen,  Xiaoyu Liu,  Guodong Li,  Xiaoyan Liu,  Hong Liu,  Weijia Zhou. Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230402. doi: 10.3866/PKU.WHXB202304024 shu

Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing

  • Corresponding author: Xiaoyan Liu,  Weijia Zhou, 
  • Received Date: 13 April 2023
    Revised Date: 6 June 2023
    Accepted Date: 8 June 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52022037, 52102171), the Taishan Scholar Project of Shandong Province (tsqn201812083), the Natural Science Foundation of Shandong Province (2021CXGC010603, ZR2021JQ15, ZR2020QE071, ZR2020LLZ006, ZR2021MB035), and the Innovative Team Project of Jinan (2021GXRC019).

  • Traditional ink printing is convenient, but the excessive use of ink in this process has harmed both human health and the environment. Inkless printing technologies are mainly thermal and photosensitive in nature; however, they are susceptible to environmental impact, resulting in unstable printing and easy fading. In recent years, laser ablation printing technology has received considerable attention. However, the energy of the laser acting on the paper surface is affected by the surface roughness and tightness of the paper, which makes it difficult to obtain a uniform printing effect. Therefore, a complex and expensive paper-laser monitoring feedback system is required for modulating the laser parameters in real time to obtain uniform printing; however, such a system is not conducive to the popularization of laser ablation printing technology. To address this issue, a laser-induced inkless printing method, combined with micro-zone processing, is proposed. The associated high-energy characteristics and the thermal effect of laser are examined in this study. A multifunctional paper with an “organic-inorganic-organic” sandwich structure is constructed by vacuum filtration combined with thermocompression, using hydroxyapatite as the thermal insulating layer and wood fiber as the carbonized layer. The obtained functional papers display high flexibility, high tensile strength, and excellent flame resistance. Laser-induced inkless printing is realized via laser under-focusing or laser focusing onto hydroxyapatite sandwich paper. When the laser is irradiated on the surface of the functional paper, the surface-located cellulose fibers are carbonized due to the photothermal radiation effect of the laser, leaving graphitized carbon on the surface of hydroxyapatite layer. Notably, the hydroxyapatite in the interlayer of the functional paper is an outstanding thermal insulation material, which can effectively prevent further transfer of laser energy. Thus, owing to the sandwich structure of the multifunctional paper, laser inkless printing of both words and patterns is realized. This innovative approach offers a sustainable solution to traditional ink printing, while also providing a new avenue for micro-zone processing. The printed text or patterns can be preserved in harsh environments for long periods to be used for the storage of archival data. Meanwhile, the laser inkless printing method provides a new kind of touch reading material for acquired blindness, which avoids long-term contact with toxic printing ink. This study demonstrates that the hydroxyapatite sandwich paper is critical to realizing laser inkless printing without using expensive monitoring feedback systems, thus significantly reducing printing costs and effectively mitigating environmental pollution, marking it as an ideal technology for widespread adoption.
  • 加载中
    1. [1]

      (1) Geng, J.; Xu, L.; Yan, W.; Shi, L.; Qiu, M. Nat. Commun. 2023, 14, 565. doi: 10.1038/s41467-023-36275-9

    2. [2]

      (2) Arı, A. Atmos. Pollut. Res. 2020, 11, 269. doi: 10.1016/j.apr.2019.10.013

    3. [3]

      (3) Zou, C.; Jiang, M.; Huang, H.; Chen, H.; Sheng, L.; Li, J.; Yu, C. Air Qual. Atmos. Health 2022, 15, 1427. doi: 10.1007/s11869-022-01174-3

    4. [4]

      (4) Wang, Y.; Zhao, Q.; Du, X. Mater. Horizons 2020, 7, 1341. doi: 10.1039/D0MH00150C

    5. [5]

      (5) Garai, B.; Mallick, A.; Banerjee, R. Chem. Sci. 2016, 7, 2195. doi: 10.1039/c5sc04450b

    6. [6]

      (6) Li, L.; Tu, Z.; Hua, Y.; Li, X.; Wang, H.; Zhang, H. Inorg. Chem. Front. 2019, 6, 3077. doi: 10.1039/c9qi01037h

    7. [7]

      (7) Yu, C.; Wang, P.; Liu, Q.; Cai, L.; Guo, G. C. Cryst. Growth Des. 2021, 21, 1323. doi: 10.1021/acs.cgd.0c01597

    8. [8]

      (8) Kan, W.-Q.; Wen, S.; He, Y.; Xu, C. Inorg. Chem. 2017, 56, 14926. doi: 10.1021/acs.inorgchem.7b02206

    9. [9]

      (9) Wang, P.; Yu, C.; Wang, M.; Guo, G. Dyes Pigm. 2021, 185, 108888. doi: 10.1016/j.dyepig.2020.108888

    10. [10]

      (10) Yang, F.; Dong, Z.; Kang, R.; Liu, C.; Wu, D.; Ma, G. Optik 2023, 273, 170509. doi: 10.1016/j.ijleo.2023.170509

    11. [11]

      (11) Lin, G.; Ji, P.; Wang, M.; Meng, Y. Int. Commun. Heat Mass Transf. 2023, 142, 106649. doi: 10.1016/j.icheatmasstransfer.2023.106649

    12. [12]

    13. [13]

      (13) Peter, Z. Carbohydr. Polym. 2021, 254, 117417. doi: 10.1016/j.carbpol.2020.117417

    14. [14]

    15. [15]

      (15) Uskoković, V.; Ignjatović, N.; Škapin, S.; Uskoković, D. P. Ceram. Int. 2022, 48, 27693. doi: 10.1016/j.ceramint.2022.06.068

    16. [16]

      (16) Zhou, Y.; Qiu, S.; Ding, L.; Chu, F.; Liu, W.; Yang, W.; Hu, W.; Hu, Y. Chem. Eng. J. 2022, 437, 135489. doi: 10.1016/j.cej.2022.135489

    17. [17]

      (17) Kang, N..; Lee, J.; Kim, D. J. Control. Release 2022, 342, 111. doi: 10.1016/j.jconrel.2021.12.039

    18. [18]

      (18) Chen, F. F.; Zhu, Y. J.; Xiong, Z. C.; Sun, T. W.; Shen, Y. Q. ACS Appl. Mater. Interfaces 2016, 8, 34715. doi: 10.1021/acsami.6b12838

    19. [19]

      (19) Zheng, Y.; Ma, W.; Yang, Z.; Zhang, H.; Ma, J.; Li, T.; Niu, H.; Zhou, Y.; Yao, Q.; Chang, J.; et al. Chem. Eng. J. 2022, 430, 132912. doi: 10.1016/j.cej.2021.132912

    20. [20]

      (20) Wang, X.; Xue, J.; Ma, B.; Wu, J.; Chang, J.; Gelinsky, M.; Wu, C. Adv. Mater. 2020, 32, 2005140. doi: 10.1002/adma.202005140

    21. [21]

      (21) Gao, J.; Hao, L.; Ning, B.; Zhu, Y.; Guan, J.; Ren, H.; Yu, H.; Zhu, Y.; Duan, J. Coatings 2022, 12, 479. doi: 10.3390/coatings12040479

    22. [22]

      (22) Wang, Z.; Zhu, Y.; Chen, Y.; Yu, H.; Xiong, Z. Chem. Eng. J. 2022, 444, 136470. doi: 10.1016/j.cej.2022.136470

    23. [23]

      (23) Boukha, Z.; Bermejo-López, A.; Pereda-Ayo, B.; González-Marcos, J. A.; González-Velasco, J. R. Appl. Catal. B 2022, 314, 121500. doi: 10.1016/j.apcatb.2022.121500

    24. [24]

      (24) Miao, Y.; Tian, W.; Han, J.; Li, N.; Chen, D.; Xu, Q.; Lu, J. Nano Energy 2022, 100, 107473. doi: 10.1016/j.nanoen.2022.107473

    25. [25]

      (25) Li, H.; Wu, D.; Wu, J.; Dong, L.-Y.; Zhu, Y.-J.; Hu, X. Adv. Mater. 2017, 29, 1703548. doi: 10.1002/adma.201703548

    26. [26]

      (26) Chen, F.; Zhu, Y.; Chen, F.; Dong, L.; Yang, R.; Xiong, Z. ACS Nano 2018, 12, 3159. doi: 10.1021/acsnano.8b00047

    27. [27]

      (27) Rehman, I.; Bonfield, W. J. Mater. Sci. Mater. Med. 1997, 8, 1. doi: 10.1023/A:1018570213546

    28. [28]

      (28) Zhang, Q. Q.; Zhu, Y.; Wu, J.; Dong, L. ACS Sustain. Chem. Eng. 2019, 7,17198. doi: 10.1021/acssuschemeng.9b03793

    29. [29]

    30. [30]

      (30) Morán, J. I.; Alvarez, V. A.; Cyras, V. P.; Vázquez, A. Cellulose 2008, 15, 149. doi: 10.1007/s10570-007-9145-9

    31. [31]

      (31) Scapini, T.; dos Santos, M. S. N.; Bonatto, C.; Wancura, J. H. C.; Mulinari, J.; Camargo, A. F.; Klanovicz, N.; Zabot, G. L.; Tres, M. V.; Fongaro, G.; et al. Bioresour. Technol. 2021, 342, 126033. doi: 10.1016/j.biortech.2021.126033

    32. [32]

      (32) Xu, K.; Xiao, Y.; Cao, Y.; Peng, S.; Fan, M.; Wang, K. Carbohydr. Polym. 2019, 209, 382. doi: 10.1016/j.carbpol.2018.12.040

    33. [33]

      (33) Zhao, L.; Liu, Z.; Chen, D.; Liu, F.; Yang, Z.; Li, X.; Yu, H.; Liu, H.; Zhou, W. Micro Nano Lett. 2021, 13, 49. doi: 10.1007/s40820-020-00577-0

    34. [34]

      (34) Li, J.; Bai, X.; Fang, Y.; Chen, Y.; Wang, X.; Chen, H.; Yang, H. Combust Flame 2020, 215, 1. doi: 10.1016/j.combustflame.2020.01.016

    35. [35]

      (35) Volpe, M.; Messineo, A.; Mäkelä, M.; Barr, M. R.; Volpe, R.; Corrado, C.; Fiori, L. Fuel Process. Technol. 2020, 206, 106456. doi: 10.1016/j.fuproc.2020.106456

    36. [36]

      (36) Chen, J.; Wang, Y.; Xie, J.; Meng, C.; Wu, G.; Zu, Q. Carbohydr. Polym. 2012, 89, 849. doi: 10.1016/j.carbpol.2012.04.020

    37. [37]

      (37) Gieroba, B.; Kalisz, G.; Krysa, M.; Khalavka, M.; Przekora, A. Int. J. Mol. Sci. 2023, 24, 2630. doi: 10.3390/ijms24032630

    38. [38]

      (38) Bengtsson, A.; Hecht, P.; Sommertune, J.; Ek, M.; Sedin, M.; Sjöholm, E. ACS Sustain. Chem. Eng. 2020, 8, 6826. doi: 10.1021/acssuschemeng.0c01734

    39. [39]

      (39) Chen, Y.; Wang, Y.; Yu, J.; Xiong, G.; Niu, H.; Li, Y.; Sun, D.; Zhang, X.; Liu, H.; Zhou, W. Adv. Sci. 2022, 9, 2105869. doi: 10.1002/advs.202105869

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    3. [3]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    4. [4]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    5. [5]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    6. [6]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    7. [7]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    8. [8]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    9. [9]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    10. [10]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    11. [11]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    12. [12]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    16. [16]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

Metrics
  • PDF Downloads(0)
  • Abstract views(373)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return