Citation: Chen Pu,  Daijie Deng,  Henan Li,  Li Xu. Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230402. doi: 10.3866/PKU.WHXB202304021 shu

Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability

  • Corresponding author: Henan Li,  Li Xu, 
  • Received Date: 10 April 2023
    Revised Date: 22 May 2023
    Accepted Date: 23 May 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22178148, 22278193).

  • Rechargeable zinc-air batteries (ZABs) have been extensively investigated owing to their high power density and environmental friendliness. However, the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes limit their practical application. Currently, IrO2 and RuO2 are considered the optimal OER electrocatalysts, and Pt/C is the most effective ORR electrocatalyst. However, the practical application of Pt, Ir, and Ru in ZABs is severely limited owing to their low natural abundance and high cost. Therefore, the fabrication of inexpensive and high-performance bifunctional catalysts is essential for the development of rechargeable ZABs. Transition-metal alloys have a high electrical conductivity and low energy barrier for the reaction of oxygen, and thus they are considered promising ORR electrocatalysts. Transition-metal nitride-transition-metal alloy core-shell nanostructures can be fabricated to improve the bifunctional electrocatalytic activity. In this study, a bifunctional electrocatalyst with Fe0.64Ni0.36@Fe3NiN core-shell structures encapsulated in N-doped carbon nanotubes (Fe0.64Ni0.36@Fe3NiN/NCNT) was designed for highly efficient rechargeable ZABs. Fe0.64Ni0.36@Fe3NiN/NCNT was synthesized by pyrolyzing the nickel-iron-layered double hydroxide (NiFe-LDH) precursor, followed by ammonia etching of the Fe0.64Ni0.36 alloy. The core-shell structure produced more ORR/OER active sites. The Fe0.64Ni0.36 core exhibited high electrical conductivity, which facilitates charge transfer. The Fe3NiN shell enhanced the OER performance and improved the bifunctional performance. Moreover, the NCNT structures not only efficiently enhanced the mass transfer efficiency and intrinsic electrical conductivity, but also provided a large electrochemical active surface area. The high anticorrosion property of the Fe3NiN shell effectively protected the Fe0.64Ni0.36 core, which consequently enhanced electrocatalyst stability during the electrochemical processes. The protective carbon layer and the superior chemical stability of the Fe3NiN shell resulted in the ultrahigh stability of Fe0.64Ni0.36@Fe3NiN/NCNT. The catalyst exhibited an excellent bifunctional oxygen electrocatalytic performance, with a half-wave potential of 0.88 V for the ORR and low OER overpotential of 380 mV at 10 mA∙cm-2. Moreover, the catalyst exhibited electrochemical stability (92.8% current retention after 8 h). In addition, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB exhibited a higher peak power density (214 mW·cm-2) than the ZABs based on Pt/C+IrO2 (155 mW·cm-2) and Fe0.64Ni0.36/NCNT (89 mW·cm-2). Moreover, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB delivered a high capacity of 781 mAh·g-1, while the ZABs based on Fe0.64Ni0.36/NCNT and Pt/C+IrO2 reached capacities of 688 and 739 mAh·g-1, respectively. Furthermore, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB exhibited ultralong cycling stability (cycle life > 1100 h), which exceeded those of Pt/C (50 h) and Fe0.64Ni0.36/NCNT (450 h). We propose that this study will facilitate the design of novel catalysts for highly stable and efficient ZABs.
  • 加载中
    1. [1]

      (1) Kundu, A.; Mallick, S.; Ghora, S.; Raj, C. R. ACS Appl. Mater. Interfaces 2021, 13, 40172. doi: 10.1021/acsami.1c08462

    2. [2]

      (2) Wu, M.; Zhang, G.; Wu, M.; Prakash, J.; Sun, S. Energy Storage Mater. 2019, 21, 253. doi: 10.1016/j.ensm.2019.05.018

    3. [3]

      (3) Tian, H.; Song, A. L.; Zhang, P.; Sun, K. A.; Wang, J.; Sun, B.; Fan, Q. H.; Shao, G. J.; Chen, C.; Liu, H.; et al. Adv. Mater. 2023, 35, 2210714. doi: 10.1002/adma.202210714

    4. [4]

      (4) Anand, P.; Wong, M. S.; Fu, Y. P. Energy Storage Mater. 2023, 58, 362. doi: 10.1016/j.ensm.2023.03.033

    5. [5]

      (5) Deng, D. J.; Ma, H. X.; Wu, S. Q.; Wang, H.; Qian, J. C.; Wu, J. C.; Li, H. M.; Yan, C.; Li, H. N.; Xu, L. Renewables 2023, Accepted. doi: 10.31635/renewables.023.202200020

    6. [6]

      (6) Wu, S. Q.; Deng, D. J.; Zhang, E. J.; Li, H. N.; Xu, L. Carbon 2022, 196, 347. doi: 10.1016/j.carbon.2022.04.043

    7. [7]

      (7) Lee, C.; Shin, K.; Park, Y.; Yun, Y. H.; Doo, G.; Jung, G. H.; Kim, M.; Cho, W.; Kim, C.; Lee, H. M.; et al. Adv. Funct. Mater. 2023, 32, 2301557. doi: 10.1002/adfm.202301557

    8. [8]

      (8) Hong, S.; Ham, K.; Hwang, J.; Kang, S.; Seo, M. H.; Choi, Y.; Han, B.; Lee, J.; Cho, K. Adv. Funct. Mater. 2023, 33, 2209543. doi: 10.1002/adfm.202209543

    9. [9]

      (9) Zhao, S. Y.; Liu, T.; Dai, Y. W.; Wang, J.; Wang, Y.; Guo, Z. J.; Yu, J.; Bello, I. T.; Ni, M. Appl. Catal. B 2023, 320, 121992. doi: 10.1016/j.apcatb.2022.121992

    10. [10]

      (10) Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Adv. Mater. 2019, 31, 1802234. doi: 10.1002/adma.201802234

    11. [11]

      (11) Lai, C.; Gong, M.; Zhou, Y.; Fang, J.; Huang, L.; Deng, Z.; Liu, X.;

    12. [12]

      Zhao, T.; Lin, R.; Wang, K.; et al. Appl. Catal. B 2020, 274, 119086. doi: 10.1016/j.apcatb.2020.119086

    13. [13]

      (12) Liu, W.; Zhang, J.; Bai, Z.; Jiang, G.; Li, M.; Feng, K.; Yang, L.; Ding, Y.; Yu, T.; Chen, Z.; et al. Adv. Funct. Mater. 2018, 28, 1706675. doi: 10.1002/adfm.201706675

    14. [14]

      (13) Wu, M.; Zhang, G.; Chen, N.; Hu, Y.; Regier, T.; Rawach, D.; Sun, S. ACS Energy Lett. 2021, 6, 1153. doi: 10.1021/acsenergylett.1c00037

    15. [15]

      (14) Wang, H.; Li, J.; Li, K.; Lin, Y.; Chen, J.; Gao, L.; Nicolosi, V.; Xiao, X.; Lee, J. M. Chem. Soc. Rev. 2021, 50, 1354. doi: 10.1039/D0CS00415D

    16. [16]

      (15) Xiong, Q.; Zheng, J.; Liu, B.; Liu, Y.; Li, H.; Yang, M. Appl. Catal. B 2023, 321, 122067. doi: 10.1016/j.apcatb.2022.122067

    17. [17]

      (16) Ma, Y.; Chen, W.; Jiang, Z.; Tian, X.; Wang, X.; Chen, G.; Jiang, Z.-J. J. Mater. Chem. A 2022, 10, 12616. doi: 10.1039/D2TA03110H

    18. [18]

      (17) Kim, K.; Min, K.; Go, Y.; Lee, Y.; Shim, S. E.; Lim, D.; Baeck, S. H. Appl. Catal. B 2022, 315, 121501. doi: 10.1016/j.apcatb.2022.121501

    19. [19]

      (18) Wu, Z.; Lu, X. F.; Zang, S.; Lou, X. W. Adv. Funct. Mater. 2020, 30, 1910274. doi: 10.1002/adfm.201910274

    20. [20]

      (19) Huang, Z. F.; Wang, J.; Peng, Y.; Jung, C. Y.; Fisher, A.; Wang, X. Adv. Energy Mater. 2017, 7, 1700544. doi: 10.1002/aenm.201700544

    21. [21]

      (20) Li, G.; Tang, Y.; Fu, T.; Xiang, Y.; Xiong, Z.; Si, Y.; Guo, C.; Jiang, Z. S. Chem. Eng. J. 2022, 429, 132174. doi: 10.1016/j.cej.2021.132174

    22. [22]

      (21) Chen, K.; Kim, S.; Rajendiran, R.; Prabakar, K.; Li, G.; Shi, Z.; Jeong, C.; Kang, J.; Li, O. L. J. Colloid Interface Sci 2021, 582, 977. doi: 10.1016/j.jcis.2020.08.101

    23. [23]

      (22) Sheng, K.; Yi, Q.; Chen, A. L.; Wang, Y.; Yan, Y.; Nie, H.; Zhou, X. ACS Appl. Mater. Interfaces 2021, 13, 45394. doi: 10.1021/acsami.1c10671

    24. [24]

      (23) Xu, X.; Xie, J.; Liu, B.; Wang, R.; Liu, M.; Zhang, J.; Liu, J.; Cai, Z.; Zou, J. Appl. Catal. B 2022, 316, 121687. doi: 10.1016/j.apcatb.2022.121687

    25. [25]

      (24) He, X.; Tian, Y.; Huang, Z.; Xu, L.; Wu, J.; Qian, J.; Zhang, J.; Li, H. J. Mater. Chem. A 2021, 9, 2301. doi: 10.1039/D0TA10370E

    26. [26]

      (25) Liu, Z.; Liu, D.; Zhao, L.; Tian, J.; Yang, J.; Feng, L. J. Mater. Chem. A 2021, 9, 7750. doi: 10.1039/D1TA01014J

    27. [27]

      (26) Ban, J.; Xu, H.; Cao, G.; Fan, Y.; Pang, W. K.; Shao, G.; Hu, J. Adv. Funct. Mater. 2023, 33, 2300623. doi: 10.1002/adfm.202300623

    28. [28]

      (27) Jiang, R.; Tung, S. O.; Tang, Z.; Li, L.; Ding, L.; Xi, X.; Liu, Y.; Zhang, L.; Zhang, J. Energy Storage Mater. 2018, 12, 260. doi: 10.1016/j.ensm.2017.11.005

    29. [29]

      (28) Guo, Y.; Yuan, P.; Zhang, J.; Xia, H.; Cheng, F.; Zhou, M.; Li, J.; Qiao, Y.; Mu, S.; Xu, Q. Adv. Funct. Mater. 2018, 28, 1805641. doi: 10.1002/adfm.201805641

    30. [30]

      (29) Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075

    31. [31]

      (30) Kang, J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Tan, X. Y.; Liu, S. M.; Wang, S.B. Chem. Eng. J. 2019, 362, 251. doi: 10.1016/j.cej.2019.01.035.

    32. [32]

      (31) Yang, L.; Zhang, X.; Yu, L.; Hou, J.; Zhou, Z.; Lv, R. Adv. Mater. 2022, 34, 2105410. doi: 10.1002/adma.202105410

    33. [33]

      (32) Zhao, B.; Wu, Y.; Han, L.; Xia, Z.; Wang, Q.; Chang, S.; Liu, B.; Wang, G.; Shang, Y.; Cao, A. Energy Storage Mater. 2022, 50, 344. doi: 10.1016/j.ensm.2022.05.029

    34. [34]

      (33) Chen, Z.; Qin, Y.; Ren, Y.; Lu, W.; Orendorff, C.; Roth, E. P.; Amine, K. Energy Environ. Sci. 2011, 4, 4023. doi: 10.1039/c1ee01786a

    35. [35]

      (34) Wang, J.; Shu, R.; Chai, J.; Rao, S. G.; Le Febvrier, A.; Wu, H.; Zhu, Y.; Yao, C.; Luo, L.; Li, W.; et al. Mater. Des. 2022, 219, 110749. doi: 10.1016/j.matdes.2022.110749

    36. [36]

      (35) Liu, Z.; Tan, H.; Liu, D.; Liu, X.; Xin, J.; Xie, J.; Zhao, M.; Song, L.; Dai, L.; Liu, H. Adv. Sci 2019, 6, 1801829. doi: 10.1002/advs.201801829

    37. [37]

      (36) Kuttiyiel, K. A.; Sasaki, K.; Chen, W. F.; Su, D.; Adzic, R. R. J. Mater. Chem. A 2014, 2, 591. doi: 10.1039/C3TA14301E

    38. [38]

      (37) Deng, D.; Qian, J.; Liu, X.; Li, H.; Su, D.; Li, H.; Li, H.; Xu, L. Adv. Funct. Materials 2022, 32, 2203471. doi: 10.1002/adfm.202203471

    39. [39]

      (38) Deng, D.; Wu, S.; Li, H.; Li, H.; Xu, L. Small 2023, 19, 2205469. doi: 10.1002/smll.202205469

    40. [40]

      (39) López-Callejas, R.; Valencia-Alvarado, R.; Muñoz-Castro, A. E.; Godoy-Cabrera, O. G.; Barocio, S. R.; Chávez-Alarcón, E. Vacuum 2004, 76, 287. doi: 10.1016/j.vacuum.2004.07.060

    41. [41]

      (40) Zhang, C.; Li, J.; Shi, C.; He, C.; Liu, E.; Zhao, N. J. Energy Chem. 2014, 23, 324. doi: 10.1016/S2095-4956(14)60154-6

    42. [42]

      (41) Chen, M.; Lu, S.; Fu, X.; Luo, J. Adv. Sci. 2020, 7, 1903777. doi: 10.1002/advs.201903777

    43. [43]

      (42) Wu, M.; Zhang, G.; Qiao, J.; Chen, N.; Chen, W.; Sun, S. Nano Energy 2019, 61, 86. doi: 10.1016/j.nanoen.2019.04.031

    44. [44]

      (43) Park, J.; Yoon, K. Y.; Kwak, M. J.; Lee, J. E.; Kang, J.; Jang, J. H. ACS Appl. Mater. Interfaces 2021, 13, 54906. doi: 10.1021/acsami.1c13872

    45. [45]

      (44) Xu, L.; Wu, S.; He, X.; Wang, H.; Deng, D.; Wu, J.; Li, H. Chem. Eng. J. 2022, 437, 135291. doi: 10.1016/j.cej.2022.135291

    46. [46]

      (45) Lou, Y.; Liu, J.; Liu, M.; Wang, F. ACS Catal. 2020, 10, 2443. doi: 10.1021/acscatal.9b03716

    47. [47]

      (46) Xia, D.; Yang, X.; Xie, L.; Wei, Y.; Jiang, W.; Dou, M.; Li, X.; Li, J.; Gan, L.; Kang, F. Adv. Funct. Mater. 2019, 29, 1970332. doi: 10.1002/adfm.201970332

    48. [48]

      (47) Zhang, J.; Sun, Y.; Zhu, J.; Kou, Z.; Hu, P.; Liu, L.; Li, S.; Mu, S.; Huang, Y. Nano Energy 2018, 52, 307. doi: 10.1016/j.nanoen.2018.08.003

    49. [49]

      (48) Tang, H.; Yang, D.; Lu, M.; Kong, S.; Hou, Y.; Liu, D.; Liu, D.; Yan, S.; Chen, Z.; Yu, T.; et al. J. Mater. Chem. A 2021, 9, 25435. doi: 10.1039/D1TA07561F

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    15. [15]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(0)
  • Abstract views(101)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return