Citation: Kezhen Lai, Fengyan Li, Ning Li, Yangqin Gao, Lei Ge. Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230401. doi: 10.3866/PKU.WHXB202304018 shu

Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution

  • Corresponding author: Lei Ge, gelei@cup.edu.cn
  • Received Date: 6 April 2023
    Revised Date: 20 May 2023
    Accepted Date: 22 May 2023
    Available Online: 31 May 2023

    Fund Project: the National Key R & D Program of China 2021YFA1501300the National Key R & D Program of China 2019YFC1907602National Natural Science Foundation of China 51572295National Natural Science Foundation of China 21273285National Natural Science Foundation of China 21003157

  • Hydrogen is an important zero-pollution green energy source with potential for alleviating environmental contamination and energy shortages. Hydrogen evolution via solar-energy-induced semiconducting water splitting is among the most environmentally friendly methods available to date. In this study, a metal–organic-framework-derived, Ni-decorated carbon nanotube (Ni-CNT) is used as a non-noble co-catalyst. This Ni-CNT is grown in situ on ZnIn2S4 nanosheets using a simple one-step oil bath strategy, wherein Ni nanoparticles are wrapped around the top and cross sections of the nanotubes, preventing their agglomeration. Notably, Ni-CNT/ZnIn2S4 heterostructures feature intimate contact interfaces that promote charge transfer, facilitating their use as efficient photocatalysts for hydrogen evolution. The 38Ni-CNT/ZnIn2S4 sample exhibits a high H2 production rate (12267 μmol·h−1·g−1), with an apparent quantum efficiency (AQE) of 11.3% under 420 nm monochromatic light irradiation, which is nearly 6.4 times that of pure ZnIn2S4. The results of X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) corroborate the observations on Ni-CNT/ZnIn2S4 heterostructures. Electrochemical measurements reveal that the combination of the Ni-CNT and ZnIn2S4 facilitates the transfer of photogenerated electrons and effectively prevents rapid recombination of photocarriers, thus improving the hydrogen evolution performance of ZnIn2S4. Electron spin resonance (ESR) results further prove that co-catalyst Ni-CNTs are beneficial for prolonging the lifetimes of ZnIn2S4 photogenerated electrons, thereby achieving effective charge separation. A charge transfer pathway in the heterojunction interfaces is further explored and confirmed by density functional theory (DFT) calculations. The difference in the Fermi level energy (Ef) contributes to both charge migration and the generation of a built-in electronic field (BEF), indicating that the energy band of ZnIn2S4 bends downward, which is favorable for photogenerated electron flow from ZnIn2S4 to the Ni-CNT electron acceptor. The results of planar-averaged electron density difference analysis confirm that the hot electrons are transferred from Ni nanoparticles to the CNT and then to the ZnIn2S4 nanosheets, indicating the formation of a photogenerated electron transfer pathway of ZnIn2S4 → CNT → Ni. Furthermore, Gibbs free energy of H* adsorption (ΔGH*) and crystal orbital Hamilton population (COHP) analysis indicate that Ni nanoparticles can serve as active sites, promoting H2 evolution. Thus, the present study formulates a new strategy for developing low-cost, high-efficiency, non-noble-metal co-catalysts for photocatalytic hydrogen production.
  • 加载中
    1. [1]

      Turner, J. A. Science 2004, 305, 972. doi: 10.1126/science.1103197  doi: 10.1126/science.1103197

    2. [2]

      Li, Y.; Zhang, H.; Xu, T.; Lu, Z.; Wu, X.; Wan, P.; Sun, X.; Jiang, L. Adv. Funct. Mater. 2015, 25, 1737. doi: 10.1002/adfm.201404250  doi: 10.1002/adfm.201404250

    3. [3]

      Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Int. J. Hydrog. Energy 2019, 44, 15072. doi: 10.1016/j.ijhydene.2019.04.068  doi: 10.1016/j.ijhydene.2019.04.068

    4. [4]

      Armaroli, N.; Balzani, V. ChemSusChem 2011, 4, 21. doi: 10.1002/cssc.201000182  doi: 10.1002/cssc.201000182

    5. [5]

      Ball, M.; Wietschel, M. Int. J. Hydrog. Energy 2009, 34, 615. doi: 10.1016/j.ijhydene.2008.11.014  doi: 10.1016/j.ijhydene.2008.11.014

    6. [6]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    7. [7]

      Hashimoto, K.; Irie, H.; Fujishima, A. Jpn. J. Appl. Phys. 2005, 44, 8269. doi: 10.1143/JJAP.44.8269  doi: 10.1143/JJAP.44.8269

    8. [8]

      Li, X. L.; Yang, G. Q.; Li, S. S.; Xiao, N.; Li, N.; Gao, Y. Q.; Lv, D.; Ge, L. Chem. Eng. J. 2020, 379, 122350. doi: 10.1016/j.cej.2019.122350  doi: 10.1016/j.cej.2019.122350

    9. [9]

      Li, X. L.; He, R. B.; Dai, Y. J.; Li, S. S.; Xiao, N.; Wang, A. X.; Gao, Y. Q.; Li, N.; Gao, J. F.; Zhang, L. H.; et al. Chem. Eng. J. 2020, 400, 125474. doi: 10.1016/j.cej.2020.125474  doi: 10.1016/j.cej.2020.125474

    10. [10]

      Zhang, Y.; Yun, S.; Sun, M.; Wang, X.; Zhang, L.; Dang, J.; Yang, C.; Yang, J.; Dang, C.; Yuan, S. J. Colloid Interface Sci. 2021, 604, 441. doi: 10.1016/j.jcis.2021.06.152  doi: 10.1016/j.jcis.2021.06.152

    11. [11]

      Cao, S.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Mousavi, M.; Ghasemi, J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174. doi: 10.1039/D2TA05181H  doi: 10.1039/D2TA05181H

    12. [12]

      Wang, L.; Yang, T.; Peng, L.; Zhang, Q.; She, X.; Tang, H.; Liu, Q. Chin. J. Catal. 2022, 43, 2720. doi: 10.1016/S1872-2067(22)64133-0  doi: 10.1016/S1872-2067(22)64133-0

    13. [13]

      Gou, X.; Cheng, F.; Shi, Y.; Zhang, L.; Peng, S.; Chen, J.; Shen, P. J. Am. Chem. Soc. 2006, 128, 7222. doi: 10.1021/ja0580845  doi: 10.1021/ja0580845

    14. [14]

      Bai, J.; Chen, W.; Shen, R.; Jiang, Z.; Zhang, P.; Liu, W.; Li, X. J. Mater. Sci. Technol. 2022, 112, 85. doi: 10.1016/j.jmst.2021.11.003  doi: 10.1016/j.jmst.2021.11.003

    15. [15]

      Gao, B.; Chen, W.; Liu, J.; An, J.; Wang, L.; Zhu, Y.; Sillanpää, M. J. Photochem. Photobiol. A 2018, 364, 732. doi: 10.1016/j.jphotochem.2018.07.008  doi: 10.1016/j.jphotochem.2018.07.008

    16. [16]

      Song, Y.; Zhang, J.; Dong, X.; Li, H. Energy Technol. 2021, 9 (5), 2100033. doi: 10.1002/ente.202100033  doi: 10.1002/ente.202100033

    17. [17]

      Peng, S.; Wu, Y.; Zhu, P.; Thavasi, V.; Ramakrishna, S.; Mhaisalkar, S. G. J. Mater. Chem. 2011, 21, 15718. doi: 10.1039/C1JM12432C  doi: 10.1039/C1JM12432C

    18. [18]

      Sun, L.; Qi, Y.; Jia, C. J.; Jin, Z.; Fan, W. Nanoscale 2014, 6, 2649. doi: 10.1039/C3NR06104C  doi: 10.1039/C3NR06104C

    19. [19]

      Zhou, P.; Zhang, Q.; Xu, Z.; Shang, Q.; Wang, L.; Chao, Y.; Li, Y.; Chen, H.; Lv, F.; Zhang, Q.; et al. Adv. Mater. 2020, 32 (7), 1904249. doi: 10.1002/adma.201904249  doi: 10.1002/adma.201904249

    20. [20]

      Xiao, N.; Li, S.; Li, X.; Ge, L.; Gao, Y.; Li, N. Chin. J. Catal. 2020, 41, 642. doi: 10.1016/S1872-2067(19)63469-8  doi: 10.1016/S1872-2067(19)63469-8

    21. [21]

      Ha, Y.; Shi, L.; Yan, X.; Chen, Z.; Li, Y.; Xu, W.; Wu, R. ACS Appl. Mater. Interfaces 2019, 11, 45546. doi: 10.1021/acsami.9b13580  doi: 10.1021/acsami.9b13580

    22. [22]

      Luo, S.; Li, X.; Zhang, B.; Luo, Z.; Luo, M. ACS Appl. Mater. Interfaces 2019, 11, 26891. doi: 10.1021/acsami.9b07100  doi: 10.1021/acsami.9b07100

    23. [23]

      Jiang, J.; Liu, Q.; Zeng, C.; Ai, L. J. Mater. Chem. A 2017, 5, 16929. doi: 10.1039/C7TA04893  doi: 10.1039/C7TA04893

    24. [24]

      Zhao, H.; Yuan, Z. -Y. Catal. Sci. Technol. 2017, 7, 330. doi: 10.1039/C6CY01719C  doi: 10.1039/C6CY01719C

    25. [25]

      Li, X.; Gao, Y.; Li, N.; Ge, L. Int. J. Hydrog. Energy 2022, 47, 27961. doi: 10.1016/j.ijhydene.2022.06.119  doi: 10.1016/j.ijhydene.2022.06.119

    26. [26]

      Guo, Y.; Tang, J.; Wang, Z.; Kang, Y. -M.; Bando, Y.; Yamauchi, Y. Nano Energy 2018, 47, 494. doi: 10.1016/j.nanoen.2018.03.012  doi: 10.1016/j.nanoen.2018.03.012

    27. [27]

      Zeng, Z.; Su, Y.; Quan, X.; Choi, W.; Zhang, G.; Liu, N.; Kim, B.; Chen, S.; Yu, H.; Zhang, S. Nano Energy 2020, 69, 104409. doi: 10.1016/j.nanoen.2019.104409  doi: 10.1016/j.nanoen.2019.104409

    28. [28]

      Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11, 893. doi: 10.1039/C7EE03245E  doi: 10.1039/C7EE03245E

    29. [29]

      Gao, J.; Zhang, F.; Xue, H.; Zhang, L.; Peng, Y.; Li, X.; Gao, Y.; Li, N.; Lei, G. Appl. Catal. B 2021, 281, 119509. doi: 10.1016/j.apcatb.2020.119509  doi: 10.1016/j.apcatb.2020.119509

    30. [30]

      Sun, Z.; Wang, Y.; Zhang, L.; Wu, H.; Jin, Y.; Li, Y.; Shi, Y.; Zhu, T.; Mao, H.; Liu, J.; et al. Adv. Funct. Mater. 2020, 30 (15), 1910482. doi: 10.1002/adfm.201910482  doi: 10.1002/adfm.201910482

    31. [31]

      Yu, H.; Fisher, A.; Cheng, D.; Cao, D. ACS Appl. Mater. Interfaces 2016, 8, 21431. doi: 10.1021/acsami.6b04189  doi: 10.1021/acsami.6b04189

    32. [32]

      Chen, Z.; Wu, R.; Liu, Y.; Ha, Y.; Guo, Y.; Sun, D.; Liu, M.; Fang, F. Adv. Mater. 2018, 30 (30), 1802011. doi: 10.1002/adma.201802011  doi: 10.1002/adma.201802011

    33. [33]

      Joya, K. S.; Sinatra, L.; AbdulHalim, L. G.; Joshi, C. P.; Hedhili, M. N.; Bakr, O. M.; Hussain, I. Nanoscale 2016, 8, 9695. doi: 10.1039/C6NR00709K  doi: 10.1039/C6NR00709K

    34. [34]

      Yang, L.; Shi, L.; Wang, D.; Lv, Y.; Cao, D. Nano Energy 2018, 50, 691. doi: 10.1016/j.nanoen.2018.06.023  doi: 10.1016/j.nanoen.2018.06.023

    35. [35]

      Zou, H.; Li, G.; Duan, L.; Kou, Z.; Wang, J. Appl. Catal. B 2019, 259, 118100. doi: 10.1016/j.apcatb.2019.118100  doi: 10.1016/j.apcatb.2019.118100

    36. [36]

      Shen, R. C.; Hao, L.; Chen, Q.; Zheng, Q. Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38 (7), 2110014.  doi: 10.3866/PKU.WHXB202110014

    37. [37]

      Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Energy Environ. Sci. 2021, 14, 1897. doi: 10.1039/D0EE03697H  doi: 10.1039/D0EE03697H

    38. [38]

      Lu, Z.; Wang, J.; Huang, S.; Hou, Y.; Li, Y.; Zhao, Y.; Mu, S.; Zhang, J.; Zhao, Y. Nano Energy 2017, 42, 334. doi: 10.1016/j.nanoen.2017.11.004  doi: 10.1016/j.nanoen.2017.11.004

    39. [39]

      Sun, M.; Li, Z.; Liu, Y.; Guo, D.; Xie, Z.; Huang, Q. Int. J. Hydrog. Energy 2020, 45, 31892. doi: 10.1016/j.ijhydene.2020.08.213  doi: 10.1016/j.ijhydene.2020.08.213

    40. [40]

      Di, T.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 170. doi: 10.1016/j.jmst.2020.03.032  doi: 10.1016/j.jmst.2020.03.032

    41. [41]

      Xie, Y.; Feng, C.; Guo, Y.; Li, S.; Guo, C.; Zhang, Y.; Wang, J. Appl. Surf. Sci. 2021, 536, 147786. doi: 10.1016/j.apsusc.2020.147786  doi: 10.1016/j.apsusc.2020.147786

    42. [42]

      Wu, K.; Wu, C.; Bai, W.; Li, N.; Gao, Y.; Ge, L. Colloids Surf. A 2023, 663, 131089. doi: 10.1016/j.colsurfa.2023.131089  doi: 10.1016/j.colsurfa.2023.131089

    43. [43]

      Li, X.; Song, S.; Gao, Y.; Ge, L.; Song, W.; Ma, T.; Liu, J. Small 2021, 17 (31), 2101315. doi: 10.1002/smll.202101315  doi: 10.1002/smll.202101315

    44. [44]

      Lu, P.; Yang, Y.; Yao, J.; Wang, M.; Dipazir, S.; Yuan, M.; Zhang, J.; Wang, X.; Xie, Z.; Zhang, G. Appl. Catal. B 2019, 241, 113. doi: 10.1016/j.apcatb.2018.09.025  doi: 10.1016/j.apcatb.2018.09.025

    45. [45]

      Liu, H.; Zhang, J.; Ao, D. Appl. Catal. B 2018, 221, 433. doi: 10.1016/j.apcatb.2017.09.043  doi: 10.1016/j.apcatb.2017.09.043

    46. [46]

      Zhu, Y.; Chen, J.; Shao, L.; Xia, X.; Liu, Y.; Wang, L. Appl. Catal. B 2020, 268, 118744. doi: 10.1016/j.apcatb.2020.118744  doi: 10.1016/j.apcatb.2020.118744

    47. [47]

      Zhang, Y. N.; Gao, M.; Chen, S. T.; Wang, H. Q.; Huo, P. W. Acta Phys. -Chim. Sin. 2023, 39 (6), 2211051.  doi: 10.3866/PKU.WHXB202211051

    48. [48]

      Wang, S.; Wang, Y.; Zhang, S. L.; Zang, S. Q.; Lou, X. W. Adv. Mater. 2019, 31 (41), 1903404. doi: 10.1002/adma.201903404  doi: 10.1002/adma.201903404

    49. [49]

      Li, Z.; He, H.; Cao, H.; Sun, S.; Diao, W.; Gao, D.; Lu, P.; Zhang, S.; Guo, Z.; Li, M.; et al. Appl. Catal. B 2019, 240, 112. doi: 10.1016/j.apcatb.2018.08.074  doi: 10.1016/j.apcatb.2018.08.074

    50. [50]

      Li, T.; Luo, G.; Liu, K.; Li, X.; Sun, D.; Xu, L.; Li, Y.; Tang, Y. Adv. Funct. Mater. 2018, 28 (51), 1805828. doi: 10.1002/adfm.201805828  doi: 10.1002/adfm.201805828

    51. [51]

      Liu, C.; Yang, Z.; Li, Y. RSC Adv. 2016, 6, 32983. doi: 10.1039/C6RA00984K  doi: 10.1039/C6RA00984K

    52. [52]

      Tang, J. Y.; Yang, D.; Zhou, W. G.; Guo, R. T.; Pan, W. G.; Huang, C. Y. J. Catal. 2019, 370, 79. doi: 10.1016/j.jcat.2018.12.009  doi: 10.1016/j.jcat.2018.12.009

  • 加载中
    1. [1]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    2. [2]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    3. [3]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    5. [5]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    6. [6]

      Qiang Yu Shuhan Sun Xianming Jin Ruiqiang Yan Bingjing He Nikolay Sirotkin Alexander Agafonov Xianqiang Xiong Kangle Lv . Type-I heterojunction photocatalysis: Enhanced activity via ZnIn2S4/MnCo2O4.5 interfacial electric fields. Chinese Journal of Structural Chemistry, 2025, 44(7): 100620-100620. doi: 10.1016/j.cjsc.2025.100620

    7. [7]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    8. [8]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    9. [9]

      Na Lu Tingting Pang Xuedong Jing Yongan Zhu Linqun Yu Sining Ben Yuchan Song Shiwen Du Wei Lu Zhenyi Zhang . Optimizing the Schottky Barrier in AuAg Alloy Decorated TiO2 Nanofibers to Enhance Hot-Electron-Induced CO2 Reduction. Chinese Journal of Structural Chemistry, 2025, 44(8): 100633-100633. doi: 10.1016/j.cjsc.2025.100633

    10. [10]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    11. [11]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    12. [12]

      Huarui Han Yangrui Xu Yu Cheng Liguang Tang Jie Jin Xinlin Liu Changchang Ma Ziyang Lu . Frustrated Lewis pairs in CO2 photoreduction: A review on synergistic activation and charge separation. Chinese Journal of Structural Chemistry, 2025, 44(10): 100728-100728. doi: 10.1016/j.cjsc.2025.100728

    13. [13]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    14. [14]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    15. [15]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    16. [16]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    17. [17]

      Xinxin LiangYongqian CuiQingyun TianTingting JiaQibing DongXiming LiTing GaoChao MaChuanyi Wang . Photoreforming polylactic acid plastics into pyruvate over CdS/Bi4Ti3O12 S-scheme heterojunction: Successive removal of hydrogen from α-C. Chinese Chemical Letters, 2026, 37(2): 111097-. doi: 10.1016/j.cclet.2025.111097

    18. [18]

      Cui Luo Peng-Hui Li Wei-Ming Liao Qia-Chun Lin Xiao-Xiang Zhou Jun He . Strategic metal substitution for enhanced visible-light-driven oxygen evolution in heterometallic MOFs. Chinese Journal of Structural Chemistry, 2025, 44(7): 100621-100621. doi: 10.1016/j.cjsc.2025.100621

    19. [19]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    20. [20]

      Zhouze ChenYujie YanJun LuoPengnian ShanChangyu LuFeng GuoWeilong Shi . Piezoelectric effect synergistically boosted NIR-driven photothermal-assisted photocatalytic hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 111302-. doi: 10.1016/j.cclet.2025.111302

Metrics
  • PDF Downloads(7)
  • Abstract views(2318)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return