Citation: Kezhen Lai, Fengyan Li, Ning Li, Yangqin Gao, Lei Ge. Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230401. doi: 10.3866/PKU.WHXB202304018 shu

Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution

  • Corresponding author: Lei Ge, gelei@cup.edu.cn
  • Received Date: 6 April 2023
    Revised Date: 20 May 2023
    Accepted Date: 22 May 2023
    Available Online: 31 May 2023

    Fund Project: the National Key R & D Program of China 2021YFA1501300the National Key R & D Program of China 2019YFC1907602National Natural Science Foundation of China 51572295National Natural Science Foundation of China 21273285National Natural Science Foundation of China 21003157

  • Hydrogen is an important zero-pollution green energy source with potential for alleviating environmental contamination and energy shortages. Hydrogen evolution via solar-energy-induced semiconducting water splitting is among the most environmentally friendly methods available to date. In this study, a metal–organic-framework-derived, Ni-decorated carbon nanotube (Ni-CNT) is used as a non-noble co-catalyst. This Ni-CNT is grown in situ on ZnIn2S4 nanosheets using a simple one-step oil bath strategy, wherein Ni nanoparticles are wrapped around the top and cross sections of the nanotubes, preventing their agglomeration. Notably, Ni-CNT/ZnIn2S4 heterostructures feature intimate contact interfaces that promote charge transfer, facilitating their use as efficient photocatalysts for hydrogen evolution. The 38Ni-CNT/ZnIn2S4 sample exhibits a high H2 production rate (12267 μmol·h−1·g−1), with an apparent quantum efficiency (AQE) of 11.3% under 420 nm monochromatic light irradiation, which is nearly 6.4 times that of pure ZnIn2S4. The results of X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) corroborate the observations on Ni-CNT/ZnIn2S4 heterostructures. Electrochemical measurements reveal that the combination of the Ni-CNT and ZnIn2S4 facilitates the transfer of photogenerated electrons and effectively prevents rapid recombination of photocarriers, thus improving the hydrogen evolution performance of ZnIn2S4. Electron spin resonance (ESR) results further prove that co-catalyst Ni-CNTs are beneficial for prolonging the lifetimes of ZnIn2S4 photogenerated electrons, thereby achieving effective charge separation. A charge transfer pathway in the heterojunction interfaces is further explored and confirmed by density functional theory (DFT) calculations. The difference in the Fermi level energy (Ef) contributes to both charge migration and the generation of a built-in electronic field (BEF), indicating that the energy band of ZnIn2S4 bends downward, which is favorable for photogenerated electron flow from ZnIn2S4 to the Ni-CNT electron acceptor. The results of planar-averaged electron density difference analysis confirm that the hot electrons are transferred from Ni nanoparticles to the CNT and then to the ZnIn2S4 nanosheets, indicating the formation of a photogenerated electron transfer pathway of ZnIn2S4 → CNT → Ni. Furthermore, Gibbs free energy of H* adsorption (ΔGH*) and crystal orbital Hamilton population (COHP) analysis indicate that Ni nanoparticles can serve as active sites, promoting H2 evolution. Thus, the present study formulates a new strategy for developing low-cost, high-efficiency, non-noble-metal co-catalysts for photocatalytic hydrogen production.
  • 加载中
    1. [1]

      Turner, J. A. Science 2004, 305, 972. doi: 10.1126/science.1103197  doi: 10.1126/science.1103197

    2. [2]

      Li, Y.; Zhang, H.; Xu, T.; Lu, Z.; Wu, X.; Wan, P.; Sun, X.; Jiang, L. Adv. Funct. Mater. 2015, 25, 1737. doi: 10.1002/adfm.201404250  doi: 10.1002/adfm.201404250

    3. [3]

      Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Int. J. Hydrog. Energy 2019, 44, 15072. doi: 10.1016/j.ijhydene.2019.04.068  doi: 10.1016/j.ijhydene.2019.04.068

    4. [4]

      Armaroli, N.; Balzani, V. ChemSusChem 2011, 4, 21. doi: 10.1002/cssc.201000182  doi: 10.1002/cssc.201000182

    5. [5]

      Ball, M.; Wietschel, M. Int. J. Hydrog. Energy 2009, 34, 615. doi: 10.1016/j.ijhydene.2008.11.014  doi: 10.1016/j.ijhydene.2008.11.014

    6. [6]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    7. [7]

      Hashimoto, K.; Irie, H.; Fujishima, A. Jpn. J. Appl. Phys. 2005, 44, 8269. doi: 10.1143/JJAP.44.8269  doi: 10.1143/JJAP.44.8269

    8. [8]

      Li, X. L.; Yang, G. Q.; Li, S. S.; Xiao, N.; Li, N.; Gao, Y. Q.; Lv, D.; Ge, L. Chem. Eng. J. 2020, 379, 122350. doi: 10.1016/j.cej.2019.122350  doi: 10.1016/j.cej.2019.122350

    9. [9]

      Li, X. L.; He, R. B.; Dai, Y. J.; Li, S. S.; Xiao, N.; Wang, A. X.; Gao, Y. Q.; Li, N.; Gao, J. F.; Zhang, L. H.; et al. Chem. Eng. J. 2020, 400, 125474. doi: 10.1016/j.cej.2020.125474  doi: 10.1016/j.cej.2020.125474

    10. [10]

      Zhang, Y.; Yun, S.; Sun, M.; Wang, X.; Zhang, L.; Dang, J.; Yang, C.; Yang, J.; Dang, C.; Yuan, S. J. Colloid Interface Sci. 2021, 604, 441. doi: 10.1016/j.jcis.2021.06.152  doi: 10.1016/j.jcis.2021.06.152

    11. [11]

      Cao, S.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Mousavi, M.; Ghasemi, J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174. doi: 10.1039/D2TA05181H  doi: 10.1039/D2TA05181H

    12. [12]

      Wang, L.; Yang, T.; Peng, L.; Zhang, Q.; She, X.; Tang, H.; Liu, Q. Chin. J. Catal. 2022, 43, 2720. doi: 10.1016/S1872-2067(22)64133-0  doi: 10.1016/S1872-2067(22)64133-0

    13. [13]

      Gou, X.; Cheng, F.; Shi, Y.; Zhang, L.; Peng, S.; Chen, J.; Shen, P. J. Am. Chem. Soc. 2006, 128, 7222. doi: 10.1021/ja0580845  doi: 10.1021/ja0580845

    14. [14]

      Bai, J.; Chen, W.; Shen, R.; Jiang, Z.; Zhang, P.; Liu, W.; Li, X. J. Mater. Sci. Technol. 2022, 112, 85. doi: 10.1016/j.jmst.2021.11.003  doi: 10.1016/j.jmst.2021.11.003

    15. [15]

      Gao, B.; Chen, W.; Liu, J.; An, J.; Wang, L.; Zhu, Y.; Sillanpää, M. J. Photochem. Photobiol. A 2018, 364, 732. doi: 10.1016/j.jphotochem.2018.07.008  doi: 10.1016/j.jphotochem.2018.07.008

    16. [16]

      Song, Y.; Zhang, J.; Dong, X.; Li, H. Energy Technol. 2021, 9 (5), 2100033. doi: 10.1002/ente.202100033  doi: 10.1002/ente.202100033

    17. [17]

      Peng, S.; Wu, Y.; Zhu, P.; Thavasi, V.; Ramakrishna, S.; Mhaisalkar, S. G. J. Mater. Chem. 2011, 21, 15718. doi: 10.1039/C1JM12432C  doi: 10.1039/C1JM12432C

    18. [18]

      Sun, L.; Qi, Y.; Jia, C. J.; Jin, Z.; Fan, W. Nanoscale 2014, 6, 2649. doi: 10.1039/C3NR06104C  doi: 10.1039/C3NR06104C

    19. [19]

      Zhou, P.; Zhang, Q.; Xu, Z.; Shang, Q.; Wang, L.; Chao, Y.; Li, Y.; Chen, H.; Lv, F.; Zhang, Q.; et al. Adv. Mater. 2020, 32 (7), 1904249. doi: 10.1002/adma.201904249  doi: 10.1002/adma.201904249

    20. [20]

      Xiao, N.; Li, S.; Li, X.; Ge, L.; Gao, Y.; Li, N. Chin. J. Catal. 2020, 41, 642. doi: 10.1016/S1872-2067(19)63469-8  doi: 10.1016/S1872-2067(19)63469-8

    21. [21]

      Ha, Y.; Shi, L.; Yan, X.; Chen, Z.; Li, Y.; Xu, W.; Wu, R. ACS Appl. Mater. Interfaces 2019, 11, 45546. doi: 10.1021/acsami.9b13580  doi: 10.1021/acsami.9b13580

    22. [22]

      Luo, S.; Li, X.; Zhang, B.; Luo, Z.; Luo, M. ACS Appl. Mater. Interfaces 2019, 11, 26891. doi: 10.1021/acsami.9b07100  doi: 10.1021/acsami.9b07100

    23. [23]

      Jiang, J.; Liu, Q.; Zeng, C.; Ai, L. J. Mater. Chem. A 2017, 5, 16929. doi: 10.1039/C7TA04893  doi: 10.1039/C7TA04893

    24. [24]

      Zhao, H.; Yuan, Z. -Y. Catal. Sci. Technol. 2017, 7, 330. doi: 10.1039/C6CY01719C  doi: 10.1039/C6CY01719C

    25. [25]

      Li, X.; Gao, Y.; Li, N.; Ge, L. Int. J. Hydrog. Energy 2022, 47, 27961. doi: 10.1016/j.ijhydene.2022.06.119  doi: 10.1016/j.ijhydene.2022.06.119

    26. [26]

      Guo, Y.; Tang, J.; Wang, Z.; Kang, Y. -M.; Bando, Y.; Yamauchi, Y. Nano Energy 2018, 47, 494. doi: 10.1016/j.nanoen.2018.03.012  doi: 10.1016/j.nanoen.2018.03.012

    27. [27]

      Zeng, Z.; Su, Y.; Quan, X.; Choi, W.; Zhang, G.; Liu, N.; Kim, B.; Chen, S.; Yu, H.; Zhang, S. Nano Energy 2020, 69, 104409. doi: 10.1016/j.nanoen.2019.104409  doi: 10.1016/j.nanoen.2019.104409

    28. [28]

      Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11, 893. doi: 10.1039/C7EE03245E  doi: 10.1039/C7EE03245E

    29. [29]

      Gao, J.; Zhang, F.; Xue, H.; Zhang, L.; Peng, Y.; Li, X.; Gao, Y.; Li, N.; Lei, G. Appl. Catal. B 2021, 281, 119509. doi: 10.1016/j.apcatb.2020.119509  doi: 10.1016/j.apcatb.2020.119509

    30. [30]

      Sun, Z.; Wang, Y.; Zhang, L.; Wu, H.; Jin, Y.; Li, Y.; Shi, Y.; Zhu, T.; Mao, H.; Liu, J.; et al. Adv. Funct. Mater. 2020, 30 (15), 1910482. doi: 10.1002/adfm.201910482  doi: 10.1002/adfm.201910482

    31. [31]

      Yu, H.; Fisher, A.; Cheng, D.; Cao, D. ACS Appl. Mater. Interfaces 2016, 8, 21431. doi: 10.1021/acsami.6b04189  doi: 10.1021/acsami.6b04189

    32. [32]

      Chen, Z.; Wu, R.; Liu, Y.; Ha, Y.; Guo, Y.; Sun, D.; Liu, M.; Fang, F. Adv. Mater. 2018, 30 (30), 1802011. doi: 10.1002/adma.201802011  doi: 10.1002/adma.201802011

    33. [33]

      Joya, K. S.; Sinatra, L.; AbdulHalim, L. G.; Joshi, C. P.; Hedhili, M. N.; Bakr, O. M.; Hussain, I. Nanoscale 2016, 8, 9695. doi: 10.1039/C6NR00709K  doi: 10.1039/C6NR00709K

    34. [34]

      Yang, L.; Shi, L.; Wang, D.; Lv, Y.; Cao, D. Nano Energy 2018, 50, 691. doi: 10.1016/j.nanoen.2018.06.023  doi: 10.1016/j.nanoen.2018.06.023

    35. [35]

      Zou, H.; Li, G.; Duan, L.; Kou, Z.; Wang, J. Appl. Catal. B 2019, 259, 118100. doi: 10.1016/j.apcatb.2019.118100  doi: 10.1016/j.apcatb.2019.118100

    36. [36]

      Shen, R. C.; Hao, L.; Chen, Q.; Zheng, Q. Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38 (7), 2110014.  doi: 10.3866/PKU.WHXB202110014

    37. [37]

      Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Energy Environ. Sci. 2021, 14, 1897. doi: 10.1039/D0EE03697H  doi: 10.1039/D0EE03697H

    38. [38]

      Lu, Z.; Wang, J.; Huang, S.; Hou, Y.; Li, Y.; Zhao, Y.; Mu, S.; Zhang, J.; Zhao, Y. Nano Energy 2017, 42, 334. doi: 10.1016/j.nanoen.2017.11.004  doi: 10.1016/j.nanoen.2017.11.004

    39. [39]

      Sun, M.; Li, Z.; Liu, Y.; Guo, D.; Xie, Z.; Huang, Q. Int. J. Hydrog. Energy 2020, 45, 31892. doi: 10.1016/j.ijhydene.2020.08.213  doi: 10.1016/j.ijhydene.2020.08.213

    40. [40]

      Di, T.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 170. doi: 10.1016/j.jmst.2020.03.032  doi: 10.1016/j.jmst.2020.03.032

    41. [41]

      Xie, Y.; Feng, C.; Guo, Y.; Li, S.; Guo, C.; Zhang, Y.; Wang, J. Appl. Surf. Sci. 2021, 536, 147786. doi: 10.1016/j.apsusc.2020.147786  doi: 10.1016/j.apsusc.2020.147786

    42. [42]

      Wu, K.; Wu, C.; Bai, W.; Li, N.; Gao, Y.; Ge, L. Colloids Surf. A 2023, 663, 131089. doi: 10.1016/j.colsurfa.2023.131089  doi: 10.1016/j.colsurfa.2023.131089

    43. [43]

      Li, X.; Song, S.; Gao, Y.; Ge, L.; Song, W.; Ma, T.; Liu, J. Small 2021, 17 (31), 2101315. doi: 10.1002/smll.202101315  doi: 10.1002/smll.202101315

    44. [44]

      Lu, P.; Yang, Y.; Yao, J.; Wang, M.; Dipazir, S.; Yuan, M.; Zhang, J.; Wang, X.; Xie, Z.; Zhang, G. Appl. Catal. B 2019, 241, 113. doi: 10.1016/j.apcatb.2018.09.025  doi: 10.1016/j.apcatb.2018.09.025

    45. [45]

      Liu, H.; Zhang, J.; Ao, D. Appl. Catal. B 2018, 221, 433. doi: 10.1016/j.apcatb.2017.09.043  doi: 10.1016/j.apcatb.2017.09.043

    46. [46]

      Zhu, Y.; Chen, J.; Shao, L.; Xia, X.; Liu, Y.; Wang, L. Appl. Catal. B 2020, 268, 118744. doi: 10.1016/j.apcatb.2020.118744  doi: 10.1016/j.apcatb.2020.118744

    47. [47]

      Zhang, Y. N.; Gao, M.; Chen, S. T.; Wang, H. Q.; Huo, P. W. Acta Phys. -Chim. Sin. 2023, 39 (6), 2211051.  doi: 10.3866/PKU.WHXB202211051

    48. [48]

      Wang, S.; Wang, Y.; Zhang, S. L.; Zang, S. Q.; Lou, X. W. Adv. Mater. 2019, 31 (41), 1903404. doi: 10.1002/adma.201903404  doi: 10.1002/adma.201903404

    49. [49]

      Li, Z.; He, H.; Cao, H.; Sun, S.; Diao, W.; Gao, D.; Lu, P.; Zhang, S.; Guo, Z.; Li, M.; et al. Appl. Catal. B 2019, 240, 112. doi: 10.1016/j.apcatb.2018.08.074  doi: 10.1016/j.apcatb.2018.08.074

    50. [50]

      Li, T.; Luo, G.; Liu, K.; Li, X.; Sun, D.; Xu, L.; Li, Y.; Tang, Y. Adv. Funct. Mater. 2018, 28 (51), 1805828. doi: 10.1002/adfm.201805828  doi: 10.1002/adfm.201805828

    51. [51]

      Liu, C.; Yang, Z.; Li, Y. RSC Adv. 2016, 6, 32983. doi: 10.1039/C6RA00984K  doi: 10.1039/C6RA00984K

    52. [52]

      Tang, J. Y.; Yang, D.; Zhou, W. G.; Guo, R. T.; Pan, W. G.; Huang, C. Y. J. Catal. 2019, 370, 79. doi: 10.1016/j.jcat.2018.12.009  doi: 10.1016/j.jcat.2018.12.009

  • 加载中
    1. [1]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    2. [2]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    3. [3]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    5. [5]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    6. [6]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    7. [7]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    8. [8]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    9. [9]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    10. [10]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    11. [11]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    12. [12]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    13. [13]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    14. [14]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    15. [15]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    16. [16]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    17. [17]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    18. [18]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    20. [20]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

Metrics
  • PDF Downloads(7)
  • Abstract views(713)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return