Citation: Zhaoyu Wen,  Na Han,  Yanguang Li. Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230400. doi: 10.3866/PKU.WHXB202304001 shu

Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction

  • Corresponding author: Na Han,  Yanguang Li, 
  • Received Date: 3 April 2023
    Revised Date: 16 May 2023
    Accepted Date: 17 May 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (U2002213, 52161160331, 2227090515).

  • Hydrogen peroxide (H2O2) is an important chemical and has been extensively used in various industrial and manufacturing applications, such as wastewater treatment, sterilization, energy storage, and oxidation of small molecules. With increasing demand in various fields, the global hydrogen peroxide market is expected to grow to $8.9 billion by 2031. Currently, over 90% of H2O2 is industrially synthesized by the anthraquinone process, which requires complex infrastructure and expensive catalysts. Additionally, the anthraquinone process is energy intensive and leads to increased levels of environmental pollution. Although the direct synthetic process, which involves mixing hydrogen and oxygen, can achieve high atomic utilization, its development is limited due to explosion risk and high cost. Thus, there is a pressing need for a safe, cost-effective, and efficient industrial method for the production of H2O2. The electrochemical synthesis of H2O2 via a two-electron oxygen reduction reaction (2e- ORR) has emerged as an attractive method for the decentralized production of H2O2, which could effectively address the issues associated with the indirect anthraquinone and direct synthetic processes. However, sluggish reaction kinetics and poor selectivity decrease the energy efficiency of electrochemical H2O2 synthesis. In this regard, developing electrocatalysts with high 2e- ORR selectivity is vital for the efficient production of H2O2. In the past decades, extensive efforts have been devoted to developing effective 2e- ORR electrocatalysts such as noble metals/alloys, carbon-based materials, single-atom catalysts, and molecular complexes. However, the reported catalysts still have unsatisfactory catalytic performances. Therefore, there is still a long way to realize the large-scale production of H2O2 via electrochemical 2e- ORR pathway. In this perspective, we systematically summarize recent developments regarding the direct production of H2O2 through electrochemical two-electron oxygen reaction. First, the fundamental aspects of electrochemical 2e- ORR are discussed, including their reaction mechanisms, possible reaction pathways, testing techniques and performance figures of merit. This introduction is followed by detailed discussions on the different types of 2e- ORR electrocatalysts, with an emphasis on the underlying material design principles used to promote reaction activity, selectivity, and stability. Subsequently, the applications of electrosynthetic hydrogen peroxide in various fields are briefly described, including pollutant degradation, water sterilization, energy storage, and small-molecule synthesis. Finally, potential future directions and prospects in 2e- ORR catalysts for electrochemically producing H2O2 are examined.
  • 加载中
    1. [1]

      (1) Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Science 2019, 366, 226. doi: 10.1126/science.aay1844

    2. [2]

      (2) Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. ChemSusChem 2016, 9, 3374. doi: 10.1002/cssc.201600895

    3. [3]

      (3) Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Nat. Rev. Chem. 2019, 3, 442. doi: 10.1038/s41570-019-0110-6

    4. [4]

      (4) He, Q.; Viengkeo, B.; Zhao, X.; Qin, Z.; Zhang, J.; Yu, X.; Hu, Y.; Huang, W.; Li, Y. Nano Res. 2021, doi: 10.1007/s12274-021-3882-1

    5. [5]

      (5) Yu, X.; Viengkeo, B.; He, Q.; Zhao, X.; Huang, Q.; Li, P.; Huang, W.; Li, Y. Adv. Sustain. Syst. 2021, 5, 2100184. doi: 10.1002/adsu.202100184

    6. [6]

      (6) Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Angew. Chem. Int. Ed. 2006, 45, 6962. doi: 10.1002/anie.200503779

    7. [7]

      (7) Samanta, C. Appl. Catal. A-Gen 2008, 350, 133. doi: 10.1016/j.apcata.2008.07.043

    8. [8]

      (8) Wang, N.; Ma, S.; Zuo, P.; Duan, J.; Hou, B. Adv. Sci. 2021, 8, 2100076. doi: 10.1002/advs.202100076

    9. [9]

      (9) Berl, E. Trans. Electrochem. Soc. 1939, 76, 359. doi: 10.1149/1.3500291

    10. [10]

      (10) Foller, P.; Bombard, R. J. Appl. Electrochem. 1995, 25, 613. doi: 10.1007/BF00241923

    11. [11]

      (11) Brillas, E.; Sirés, I.; Oturan, M. A. Chem. Rev. 2009, 109, 6570. doi: 10.1021/cr900136g

    12. [12]

      (12) Jiang, K.; Zhao, J.; Wang, H. Adv. Funct. Mater. 2020, 30, 2003321. doi: 10.1002/adfm.202003321

    13. [13]

      (13) Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. Nat. Mater. 2013, 12, 1137. doi: 10.1038/nmat3795

    14. [14]

      (14) Zhang, J.; Zhang, H.; Cheng, M. J.; Lu, Q. Small 2020, 16, 1902845. doi: 10.1002/smll.201902845

    15. [15]

      (15) Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Chem. Rev. 2018, 118, 2302. doi: 10.1021/acs.chemrev.7b00488

    16. [16]

      (16) Tang, J.; Zhao, T.; Solanki, D.; Miao, X.; Zhou, W.; Hu, S. Joule 2021, 5, 1432. doi: 10.1016/j.joule.2021.04.012

    17. [17]

      (17) Clavilier, J.; Armand, D.; Sun, S.; Petit, M. J. Electroanal. Chem. Interfacial Electrochem. 1986, 205, 267. doi: 10.1016/0022-0728(86)90237-8

    18. [18]

      (18) Zhao, X.; Liu, Y. J. Am. Chem. Soc. 2021, 143, 9423. doi: 10.1021/jacs.1c02186

    19. [19]

      (19) Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. ACS Catal. 2018, 8, 4064. doi: 10.1021/acscatal.8b00217

    20. [20]

      (20) Chang, Q.; Zhang, P.; Mostaghimi, A. H. B.; Zhao, X.; Denny, S. R.; Lee, J. H.; Gao, H.; Zhang, Y.; Xin, H. L.; Siahrostami, S. Nat. Commun. 2020, 11, 1. doi: 10.1038/s41467-020-15843-3

    21. [21]

      (21) Choi, C. H.; Kwon, H. C.; Yook, S.; Shin, H.; Kim, H.; Choi, M. J. Phys. Chem. C 2014, 118, 30063. doi: 10.1021/jp5113894

    22. [22]

      (22) Chen, G.; Liu, J.; Li, Q.; Guan, P.; Yu, X.; Xing, L.; Zhang, J.; Che, R. Nano Res. 2019, 12, 2614. doi: 10.1007/s12274-019-2496-3

    23. [23]

      (23) Lim, J. S.; Kim, J. H.; Woo, J.; Baek, D. S.; Ihm, K.; Shin, T. J.; Sa, Y. J.; Joo, S. H. Chem 2021, 7, 3114. doi: 10.1016/j.chempr.2021.08.007

    24. [24]

      (24) Chen, S.; Luo, T.; Chen, K.; Lin, Y.; Fu, J.; Liu, K.; Cai, C.; Wang, Q.; Li, H.; Li, X. Angew. Chem. Int. Ed. 2021, 133, 16743. doi: 10.1002/anie.202104480

    25. [25]

      (25) Chen, S.; Luo, T.; Li, X.; Chen, K.; Fu, J.; Liu, K.; Cai, C.; Wang, Q.; Li, H.; Chen, Y.; et al. J. Am. Chem. Soc. 2022, 144, 14505. doi: 10.1021/jacs.2c01194

    26. [26]

      (26) Xiao, C.; Cheng, L.; Zhu, Y.; Wang, G.; Chen, L.; Wang, Y.; Chen, R.; Li, Y.; Li, C. Angew. Chem. Int. Ed. 2022, 61, e202206544. doi: 10.1002/anie.202206544

    27. [27]

      (27) Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y.; Liang, W.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-11992-2

    28. [28]

      (28) Adžić, R. R.; Tripković, A. V.; Marković, N. M. J. Electroanal. Chem. 1983, 150, 79. doi: 10.1016/S0022-0728(83)80192-2

    29. [29]

      (29) Wang, Y. L.; Gurses, S.; Felvey, N.; Boubnov, A.; Mao, S. S.; Kronawitter, C. X. ACS Catal. 2019, 9, 8453. doi: 10.1021/acscatal.9b01758

    30. [30]

      (30) Jirkovský, J. S.; Halasa, M.; Schiffrin, D. J. Phys. Chem. Chem. Phys. 2010, 12, 8042. doi: 10.1039/C002416C

    31. [31]

      (31) Fortunato, G. V.; Pizzutilo, E.; Mingers, A. M.; Kasian, O.; Cherevko, S.; Cardoso, E. S.; Mayrhofer, K. J.; Maia, G.; Ledendecker, M. J. Phys. Chem. C 2018, 122, 15878. doi: 10.1021/acs.jpcc.8b04262

    32. [32]

      (32) Zhao, X.; Yang, H.; Xu, J.; Cheng, T.; Li, Y. ACS Mater. Lett. 2021, 3, 996. doi: 10.1021/acsmaterialslett.1c00263

    33. [33]

      (33) Fortunato, G. V.; Bezerra, L. S.; Cardoso, E. S. F.; Kronka, M. S.; Santos, A. J.; Greco, A. S.; Júnior, J. L. R.; Lanza, M. R. V.; Maia, G. ACS Appl. Mater. Interfaces 2022, 14, 6777. doi: 10.1021/acsami.1c22362

    34. [34]

      (34) Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J.; Yang, P.; McCloskey, B. D. Nat. Catal. 2018, 1, 282. doi: 10.1038/s41929-018-0044-2

    35. [35]

      (35) Bu, Y.; Wang, Y.; Han, G.; Zhao, Y.; Ge, X.; Li, F.; Zhang, Z.; Zhong, Q.; Baek, J. Adv. Mater. 2021, 33, 2103266. doi: 10.1002/adma.202103266

    36. [36]

      (36) Chen, S.; Chen, Z.; Siahrostami, S.; Kim, T. R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J. W.; Higgins, D.; Sinclair, R. ACS Sustainable Chem. Eng. 2018, 6, 311. doi: 10.1021/acssuschemeng.7b02517

    37. [37]

      (37) Sun, Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D.; et al. ACS Catal. 2018, 8, 2844. doi: 10.1021/acscatal.7b03464

    38. [38]

      (38) Xia, Y.; Zhao, X.; Xia, C.; Wu, Z.-Y.; Zhu, P.; Kim, J. Y. T.; Bai, X.; Gao, G.; Hu, Y.; Zhong, J. Nat. Commun. 2021, 12, 1. doi: 10.1038/s41467-021-24329-9

    39. [39]

      (39) Wu, K.-H.; Wang, D.; Lu, X.; Zhang, X.; Xie, Z.; Liu, Y.; Su, B.-J.; Chen, J.-M.; Su, D.-S.; Qi, W. Chem 2020, 6, 1443. doi: 10.1016/j.chempr.2020.04.002

    40. [40]

      (40) Han, L.; Sun, Y.; Li, S.; Cheng, C.; Halbig, C. E.; Feicht, P.; Hübner, J. L.; Strasser, P.; Eigler, S. ACS Catal. 2019, 9, 1283. doi: 10.1021/acscatal.8b03734

    41. [41]

      (41) Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; et al. Nat. Catal. 2018, 1, 156. doi: 10.1038/s41929-017-0017-x

    42. [42]

      (42) Gao, J.; Liu, B. ACS Mater. Lett. 2020, 2, 1008. doi: 10.1021/acsmaterialslett.0c00189

    43. [43]

      (43) Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Angew. Chem. Int. Ed. 2016, 55, 2058. doi: 10.1002/anie.201509241

    44. [44]

      (44) Shen, R.; Chen, W.; Peng, Q.; Lu, S.; Zheng, L.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J.; Zhuang, Z.; et al. Chem 2019, 5, 2099. doi: 10.1016/j.chempr.2019.04.024

    45. [45]

      (45) Sun, Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X.; et al. J. Am. Chem. Soc. 2019, 141, 12372. doi: 10.1021/jacs.9b05576

    46. [46]

      (46) Lee, B.-H.; Shin, H.; Rasouli, A. S.; Choubisa, H.; Ou, P.; Dorakhan, R.; Grigioni, I.; Lee, G.; Shirzadi, E.; Miao, R. K.; et al. Nat. Catal. 2023, 6, 234. doi: 10.1038/s41929-023-00924-5

    47. [47]

      (47) Zhao, X.; Yin, Q.; Mao, X.; Cheng, C.; Zhang, L.; Wang, L.; Liu, T.-F.; Li, Y.; Li, Y. Nat. Commun. 2022, 13, 2721. doi: 10.1038/s41467-022-30523-0

    48. [48]

      (48) Smith, P. T.; Kim, Y.; Benke, B. P.; Kim, K.; Chang, C. J. Angew. Chem. Int. Ed. 2020, 132, 4932. doi: 10.1002/anie.201916131

    49. [49]

      (49) Wang, Y.-L.; Li, S.-S.; Yang, X.-H.; Xu, G.-Y.; Zhu, Z.-C.; Chen, P.; Li, S.-Q. J. Mater. Chem. A 2019, 7, 21329. doi: 10.1039/C9TA04788C

    50. [50]

      (50) Wang, W.; Hu, Y.; Liu, Y.; Zheng, Z.; Chen, S. ACS Appl. Mater. Interfaces 2018, 10, 31855. doi: 10.1021/acsami.8b11703

    51. [51]

      (51) Ko, M.; Kim, Y.; Woo, J.; Lee, B.; Mehrotra, R.; Sharma, P.; Kim, J.; Hwang, S. W.; Jeong, H. Y.; Lim, H. Nat. Catal. 2022, 5, 37. doi: 10.1038/s41929-021-00724-9

    52. [52]

  • 加载中
    1. [1]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(1)
  • Abstract views(107)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return