Citation: Yameen Ahmed,  Xiangxiang Feng,  Yuanji Gao,  Yang Ding,  Caoyu Long,  Mustafa Haider,  Hengyue Li,  Zhuan Li,  Shicheng Huang,  Makhsud I. Saidaminov,  Junliang Yang. 离子液体界面修饰的高效稳定FAPbI3钙钛矿太阳能电池[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230305. doi: 10.3866/PKU.WHXB202303057 shu

离子液体界面修饰的高效稳定FAPbI3钙钛矿太阳能电池

  • Corresponding author: Hengyue Li,  Junliang Yang, 
  • Received Date: 31 March 2023
    Revised Date: 23 May 2023
    Accepted Date: 24 May 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2022YFB3803300), the National Natural Science Foundation of China (51673214, 52203250), the High Performance Computing Center of Central South University, and the State Key Laboratory of Powder Metallurgy, Central South University, China.

  • 碘铅甲眯(FAPbI3)钙钛矿太阳能电池因其优异的光伏性能而受到广泛关注,但器件的长期稳定性仍然是FAPbI3太阳能电池的关键问题。FAPbI3黑色钙钛矿相在室温下会相变为黄色非钙钛矿相,且水分会加速这一相变。界面工程是提高钙钛矿太阳能电池稳定性的常用方法之一。作为绿色溶剂,离子液体被认为是有毒界面修饰剂的潜在替代品,这也提高了它们的商业可行性,并加速了它们在可再生能源市场的应用。本研究利用具有低挥发性、低毒性、高导电性和高热稳定性的离子液体1-乙基-3-甲基咪唑四氟硼酸盐(EMIM[BF4])来修饰钙钛矿太阳能电池的电子传输层和钙钛矿层之间的界面。离子液体的引入不仅减少了界面缺陷,而且提高了钙钛矿薄膜的质量。密度泛函理论计算表明,离子液体与钙钛矿表面之间存在较强的界面相互作用,有利于降低钙钛矿表面缺陷态密度,稳定钙钛矿晶格。除钙钛矿薄膜缺陷外,溶液处理的SnO2也存在表面缺陷。在SnO2表面的缺陷产生缺陷态,也会导致能带对准问题和稳定性问题。密度泛函理论计算表明,有离子液体的表面间隙态比没有离子液体的表面间隙态小,这种减弱的表面间隙态表明表面区域载流子复合减少,有利于提高器件性能。因此,我们实现了功率转换效率大于22%的离子液体修饰的FAPbI3钙钛矿太阳能电池(对照21%)。在相对湿度~20%的干箱中存放1800 h以上后,冠军器件保留了初始状态的~90%,而控制器件降解为非钙钛矿黄色六方相(δ-FAPbI3)。
  • 加载中
    1. [1]

      (1) Wang, K.; Wu, C.; Hou, Y.; Yang, D.; Ye, T.; Yoon, J.; Sanghadasa, M.; Priya, S. Energy Environ. Sci. 2020, 13, 3412. doi:10.1039/D0EE01967D

    2. [2]

      (2) Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Nat. Rev. Mater. 2016, 1, 15007. doi:10.1038/natrevmats.2015.7

    3. [3]

      (3) Yang, D.; Zhang, X.; Hou, Y.; Wang, K.; Ye, T.; Yoon, J.; Wu, C.; Sanghadasa, M.; Liu, S. F.; Priya, S. Nano Energy 2021, 84, 105934. doi:10.1016/j.nanoen.2021.105934

    4. [4]

      (4) Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M. Nat. Commun. 2016, 7, 11755. doi:10.1038/ncomms11755

    5. [5]

      (5) Gao, Y.; Huang, K.; Long, C.; Ding, Y.; Chang, J.; Zhang, D.; Etgar, L.; Liu, M.; Zhang, J.; Yang, J. ACS Energy Lett. 2022, 7, 1412. doi:10.1021/acsenergylett.1c02768

    6. [6]

      (6) Huang, K.; Feng, X.; Li, H.; Long, C.; Liu, B.; Shi, J.; Meng, Q.; Weber, K.; Duong, T.; Yang, J. Adv. Sci. 2022, 9, 2204163. doi:10.1002/advs.202204163

    7. [7]

      (7) Ni, Z.; Bao, C.; Liu, Y.; Jiang, Q.; Wu, W.-Q.; Chen, S.; Dai, X.; Chen, B.; Hartweg, B.; Yu, Z. Science 2020, 367, 1352. doi:10.1126/science.aba0893

    8. [8]

      (8) Sha, Y.; Bi, E.; Zhang, Y.; Ru, P.; Kong, W.; Zhang, P.; Yang, X.; Chen, H.; Han, L. Adv. Energy Mater. 2021, 11, 2003301. doi:10.1002/aenm.202003301

    9. [9]

      (9) Yu, X.; Li, Z.; Sun, X.; Zhong, C.; Zhu, Z.; Jen, A. K.-Y. Nano Energy 2021, 82, 105701. doi:10.1016/j.nanoen.2020.105701

    10. [10]

      (10) Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J.-P. Nature 2021, 590, 587. doi:10.1038/s41586-021-03285-w

    11. [11]

      (11) Huang, K.; Peng, Y.; Gao, Y.; Shi, J.; Li, H.; Mo, X.; Huang, H.; Gao, Y.; Ding, L.; Yang, J. Adv. Energy Mater. 2019, 9, 1901419. doi:10.1002/aenm.201901419

    12. [12]

      (12) Grätzel, M. Nat. Mater. 2014, 13, 838. doi:10.1038/nmat4065

    13. [13]

      (13) Yang, S.; Wang, Y.; Liu, P.; Cheng, Y.-B.; Zhao, H. J.; Yang, H. G. Nat. Energy 2016, 1, 15016. doi:10.1038/NENERGY.2015.16

    14. [14]

      (14) Feng, X.; Liu, B.; Peng, Y.; Gu, C.; Bai, X.; Long, M.; Cai, M.; Tong, C.; Han, L.; Yang, J. Small 2022, 18, 2201831. doi:10.1002/smll.202201831

    15. [15]

      (15) Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982. doi:10.1039/c3ee43822h

    16. [16]

      (16) Han, Q.; Bae, S. H.; Sun, P.; Hsieh, Y. T.; Yang, Y.; Rim, Y. S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G. Adv. Mater. 2016, 28, 2253. doi:10.1002/adma.201505002

    17. [17]

      (17) Park, J.; Kim, J.; Yun, H.-S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Nature 2023, 616, 724. doi:10.1038/s41586-023-05825-y

    18. [18]

      (18) Zhang, Y.; Kong, T.; Xie, H.; Song, J.; Li, Y.; Ai, Y.; Han, Y.; Bi, D. ACS Energy Lett. 2022, 7, 929. doi:10.1021/acsenergylett.1c02545

    19. [19]

      (19) Li, Y.; Liu, F. Z.; Waqas, M.; Leung, T. L.; Tam, H. W.; Lan, X. Q.; Tu, B.; Chen, W.; Djurišić, A. B.; He, Z. B. Small Methods 2018, 2, 1700387. doi:10.1002/smtd.201700387

    20. [20]

      (20) Liu, Z.; Liu, F.; Duan, C.; Yuan, L.; Zhu, H.; Li, J.; Wen, Q.; Waterhouse, G. I.; Yang, X.; Yan, K. Chem. Eng. J. 2021, 419, 129482. doi:10.1016/j.cej.2021.129482

    21. [21]

      (21) Gao, Y.; Feng, X.; Chang, J.; Long, C.; Ding, Y.; Li, H.; Huang, K.; Liu, B.; Yang, J. Appl. Phys. Lett. 2022, 121, 073902. doi:10.1063/5.0097939

    22. [22]

      (22) Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S. F. Nat. Commun. 2018, 9, 3239. doi:10.1038/s41467-018-05760-x

    23. [23]

      (23) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science. 2014, 345, 542. doi:10.1126/science.1254050

    24. [24]

      (24) Jiang, Q.; Zhang, X.; You, J. Small. 2018, 14, 1801154. doi:10.1002/smll.201801154

    25. [25]

      (25) Chen, J.; Zhao, X.; Kim, S. G.; Park, N. G. Adv. Mater. 2019, 31, 1902902. doi:10.1002/adma.201902902

    26. [26]

      (26) Gao, Z. W.; Wang, Y.; Liu, H.; Sun, J.; Kim, J.; Li, Y.; Xu, B.; Choy, W. C. Adv. Funct. Mater. 2021, 31, 2101438. doi:10.1002/adfm.202101438

    27. [27]

      (27) Zhang, Z.; Fang, Z.; Guo, T.; Zhao, R.; Deng, Z.; Zhang, J.; Shang, M.; Liu, X.; Liu, J.; Huang, L. Chem. Eng. J. 2022, 432, 134311. doi:10.1016/j.cej.2021.134311

    28. [28]

      (28) Ai, Y.; Zhang, Y.; Song, J.; Kong, T.; Li, Y.; Xie, H.; Bi, D. J. Phys. Chem. Lett. 2021, 12, 10567. doi:10.1021/acs.jpclett.1c03002

    29. [29]

    30. [30]

    31. [31]

      (31) Zhu, M. F.; Xia, Y. R.; Qin, L. N.; Zhang, K. Q.; Liang, J. C.; Zhao, C.; Hong, D. C.; Jiang, M. H.; Song, X. M.; Wei, J.; et al. Nano Res. 2023, 16, 6849. doi:10.1007/s12274-023-5403-x

    32. [32]

      (32) Xia, Y. R.; Zhao, C.; Zhao, P. Y.; Mao, L. Y.; Ding, Y. C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. J. Power Sources 2021, 494, 229781. doi:10.1016/j.jpowsour.2021.229781

    33. [33]

      (33) Liang, J.; Wang, C. X.; Zhao, P. Y.; Lu, Z. P.; Ma, Y.; Xu, Z. R.; Wang, Y. R.; Zhu, H. F.; Hu, Y.; Zhu, G. Y.; et al. Nanoscale 2017, 9, 11841. doi:10.1039/c7nr03530f

    34. [34]

      (34) Xia, Y.; Zhu, M.; Qin, L.; Zhao, C.; Hong, D.; Tian, Y.; Yan, W.; Jin, Z. Energy Mater. 2023, 3, 300004. doi:10.20517/energymater.2022.55

    35. [35]

      (35) Wang, F.; Ge, C. Y.; Duan, D. W.; Lin, H. R.; Li, L.; Naumov, P.; Hu, H. L. Small Struct. 2022, 3, 2200048. doi:10.1002/sstr.202200048

    36. [36]

      (36) Yang, D.; Zhou, X.; Yang, R. X.; Yang, Z.; Yu, W.; Wang, X. L.; Li, C.; Liu, S. Z.; Chang, R. P. H. Energy Environ. Sci. 2016, 9, 3071. doi:10.1039/c6ee02139e

    37. [37]

      (37) Yang, D.; Yang, R. X.; Ren, X. D.; Zhu, X. J.; Yang, Z.; Li, C.; Liu, S. Z. Adv. Mater. 2016, 28, 5206. doi:10.1002/adma.201600446

    38. [38]

      (38) Wu, Q. L.; Zhou, W. R.; Liu, Q.; Zhou, P. C.; Chen, T.; Lu, Y. L.; Qiao, Q. Q.; Yang, S. F. ACS Appl. Mater. Interfaces 2016, 8, 34464. doi:10.1021/acsami.6b12683

    39. [39]

      (39) Ye, X.; Cai, H.; Xu, T.; Ni, J.; Zhang, J. J. Chem. Phys. 2023, 158, 134706. doi:10.1063/5.0139669

    40. [40]

      (40) Caprioglio, P.; Cruz, D. S.; Caicedo-Dávila, S.; Zu, F.; Sutanto, A. A.; Peña-Camargo, F.; Kegelmann, L.; Meggiolaro, D.; Gregori, L.; Wolff, C. M. Energy Environ. Sci. 2021, 14, 4508. doi:10.1039/D1EE00869B

    41. [41]

      (41) Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J. T.-W. Nature 2019, 571, 245. doi:10.1038/s41586-019-1357-2

    42. [42]

      (42) Deng, X.; Xie, L.; Wang, S.; Li, C.; Wang, A.; Yuan, Y.; Cao, Z.; Li, T.; Ding, L.; Hao, F. Chem. Eng. J. 2020, 398, 125594. doi:10.1016/j.cej.2020.125594

    43. [43]

      (43) Hafner, J. J. Comput. Chem. 2008, 29, 2044. doi:10.1002/jcc.21057

    44. [44]

      (44) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi:10.1103/PhysRevLett.77.3865

    45. [45]

      (45) Csonka, G. I.; Perdew, J. P.; Ruzsinszky, A.; Philipsen, P. H.; Lebègue, S.; Paier, J.; Vydrov, O. A.; Ángyán, J. G. Phys. Rev. B 2009, 79, 155107. doi:10.1103/PhysRevB.79.155107

    46. [46]

      (46) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi:10.1063/1.3382344

    47. [47]

      (47) Chen, X.; Xu, W.; Shi, Z.; Pan, G.; Zhu, J.; Hu, J.; Li, X.; Shan, C.; Song, H. Nano Energy 2021, 80, 105564. doi:10.1016/j.nanoen.2020.105564

    48. [48]

      (48) Södergren, S.; Siegbahn, H.; Rensmo, H.; Lindström, H.; Hagfeldt, A.; Lindquist, S.-E. J. Phys. Chem. B 1997, 101, 3087. doi:10.1021/jp9639399

    49. [49]

      (49) Song, S.; Kang, G.; Pyeon, L.; Lim, C.; Lee, G.Y.; Park, T.; Choi, J. ACS Energy Lett. 2017, 2, 2667. doi:10.1021/acsenergylett.7b00888

    50. [50]

      (50) Liu, D.; Li, S.; Zhang, P.; Wang, Y.; Zhang, R.; Sarvari, H.; Wang, F.; Wu, J.; Wang, Z.; Chen, Z. D. Nano Energy 2017, 31, 462. doi:10.1016/j.nanoen.2016.11.028

    51. [51]

      (51) Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. Nature 2021, 598, 444. doi:10.1038/s41586-021-03964-8

    52. [52]

      (52) Bu, T.; Li, J.; Zheng, F.; Chen, W.; Wen, X.; Ku, Z.; Peng, Y.; Zhong, J.; Cheng, Y.-B.; Huang, F. Nat. Commun. 2018, 9, 4609. doi:10.1038/s41467-018-07099-9

    53. [53]

      (53) Choi, K.; Lee, J.; Kim, H. I.; Park, C. W.; Kim, G.-W.; Choi, H.; Park, S.; Park, S. A.; Park, T. Energy Environ. Sci. 2018, 11, 3238. doi:10.1039/c8ee02242a

    54. [54]

      (54) Guarnera, S.; Abate, A.; Zhang, W.; Foster, J. M.; Richardson, G.; Petrozza, A.; Snaith, H. J. J. Phys. Chem. Lett. 2015, 6, 432. doi:10.1021/jz502703p

    55. [55]

      (55) Xiong, Z.; Lan, L.; Wang, Y.; Lu, C.; Qin, S.; Chen, S.; Zhou, L.; Zhu, C.; Li, S.; Meng, L. ACS Energy Lett. 2021, 6, 3824. doi:10.1021/acsenergylett.1c01763

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    6. [6]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    7. [7]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    8. [8]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    9. [9]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    12. [12]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    16. [16]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(4)
  • Abstract views(409)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return