Citation: Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230304. doi: 10.3866/PKU.WHXB202303040 shu

Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study

  • Corresponding author: Xuedan Song, song@dlut.edu.cn Jieshan Qiu, jqiu@dlut.edu.cn
  • Received Date: 20 March 2023
    Revised Date: 2 May 2023
    Accepted Date: 8 May 2023
    Available Online: 15 May 2023

    Fund Project: the National Natural Science Foundation of China 22078052the Fundamental Research Funds for the Central Universities, China DUT22ZD207

  • CO2 molecules can be converted into various fuels and industrial chemicals through electrochemical reduction, effectively addressing the problems of global warming, desertification, ocean acidification, and other adverse environmental changes and energy supply issues such as excessive utilization of nonrenewable fossil fuels. Generally, the pathway of the CO2 reduction reaction (CO2RR) involves multiple proton–electron pairs transferred to the reactants, resulting in the production of multiple reduction products. Here, protons are derived from water molecules under aqueous solvent conditions. Therefore, exploring the effect of water molecules on the proton–electron pair transfer process in CO2RRs is essential. In this study, we developed a water-mediated hydrogen shuttle model (H-shuttling) as a hydrogenation model to investigate the effect of water molecules on the proton–electron pair transfer process in CO2RRs and compared it with the widely used water-free direct hydrogenation model (H-transfer), wherein the hydrogen atom is used as a proton. Because copper is a metal electrode material capable of producing hydrocarbons from CO2 electroreduction with a high faraday efficiency, and nitrogen-doped graphene (C2N) exhibits excellent catalytic CO2 activation, we selected a single copper atom-embedded C2N (Cu@C2N) as the catalyst. Furthermore, to study the effect of graphene on the CO2RR activity of Cu@C2N/G, we selected a graphene-loaded Cu@C2N composite (Cu@C2N/G) as the catalyst because graphene was utilized as a substrate to boost the conductivity of the catalyst. In the two hydrogenation models, we investigated the mechanisms of CO2RRs on Cu@C2N and Cu@C2N/G catalysts through density functional theory calculations. Notably, in the H-shuttling model, the H atom combines with the water molecule to form H3O, which transfers one of its own H atoms to a reactant on the catalyst surface, yielding a reaction intermediate. The H-shuttling model enhances the interaction between the catalyst and intermediate. Graphene, as a substrate, transfers electrons to the Cu@C2N surface of the Cu@C2N/G catalyst, which is demonstrated by calculations of the Bader charge transferred between the reaction intermediate and catalyst, as well as the Gibbs free energy of the CO2 reduction elementary reaction. This effectively lowers the Gibbs free energy of the potential-determining step and enhances the CO2RR catalytic activity of Cu@C2N/G. Moreover the limiting potentials of the CO2RR and hydrogen evolution reaction are determined to obtain the activity and selectivity of the Cu@C2N and Cu@C2N/G catalysts. The results indicate that CO2 molecules on the Cu@C2N and Cu@C2N/G catalysts generate HCOOH at low applied potentials, and are able to produce CO, CH3OH, CH4, and H2 as the applied potentials increases.
  • 加载中
    1. [1]

      Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414, 332. doi: 10.1038/35104599  doi: 10.1038/35104599

    2. [2]

      Chu, S.; Majumdar, A. Nature 2012, 488 (7411), 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    3. [3]

      Canadell, J. G.; Le Quéré, C.; Raupach, M. R.; Field, C. B.; Buitenhuis, E. T.; Ciais, P.; Conway, T. J.; Gillett, N. P.; Houghton, R. A.; Marland, G. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18866. doi: 10.1073/pnas.0702737104  doi: 10.1073/pnas.0702737104

    4. [4]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43 (2), 631. doi: 10.1039/c3cs60323g  doi: 10.1039/c3cs60323g

    5. [5]

      Jones, J. P.; Prakash, G. K. S.; Olah, G. A. Isr. J. Chem. 2014, 54 (10), 1451. doi: 10.1002/ijch.201400081  doi: 10.1002/ijch.201400081

    6. [6]

      Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1 (24), 3451. doi: 10.1021/jz1012627  doi: 10.1021/jz1012627

    7. [7]

      Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 14 (11), 1695. doi: 10.1246/cl.1985.1695  doi: 10.1246/cl.1985.1695

    8. [8]

      Hinogami, R.; Yotsuhashi, S.; Deguchi, M.; Zenitani, Y.; Hashiba, H.; Yamada, Y. ECS Electrochem. Lett. 2012, 1 (4), H17. doi: 10.1149/2.001204eel  doi: 10.1149/2.001204eel

    9. [9]

      Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134 (17), 7231. doi: 10.1021/ja3010978  doi: 10.1021/ja3010978

    10. [10]

      Phillips, K. R.; Katayama, Y.; Hwang, J.; Shao-Horn, Y. J. Phys. Chem. Lett. 2018, 9 (15), 4407. doi: 10.1021/acs.jpclett.8b01601  doi: 10.1021/acs.jpclett.8b01601

    11. [11]

      Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. J. Am. Chem. Soc. 2019, 141 (32), 12717. doi: 10.1021/jacs.9b04907  doi: 10.1021/jacs.9b04907

    12. [12]

      Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y.; Qian, L. P.; Xu, X.; et al. ACS Energy Lett. 2020, 5 (4), 1044. doi: 10.1021/acsenergylett.0c00018  doi: 10.1021/acsenergylett.0c00018

    13. [13]

      He, W.; Liberman, I.; Rozenberg, I.; Ifraemov, R.; Hod, I. Angew. Chem. Int. Ed. 2020, 59 (21), 8262. doi: 10.1002/anie.202000545  doi: 10.1002/anie.202000545

    14. [14]

      Xu, C. C.; Zhi, X.; Vasileff, A.; Wang, D.; Jin, B.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Small Struct. 2020, 2 (1), 2000058. doi: 10.1002/sstr.202000058  doi: 10.1002/sstr.202000058

    15. [15]

      Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Chem. Soc. Rev. 2021, 50 (8), 4993. doi: 10.1039/d0cs00071j  doi: 10.1039/d0cs00071j

    16. [16]

      Tan, L.; Nie, C.; Ao, Z.; Sun, H.; An, T.; Wang, S. J. Mater. Chem. A 2021, 9 (1), 17. doi: 10.1039/d0ta07437c  doi: 10.1039/d0ta07437c

    17. [17]

      Du, Y. D.; Meng, X. T.; Wang, Z.; Zhao, X.; Qiu, J. S. Acta Phys. -Chim. Sin. 2022, 38 (2), 2101009.  doi: 10.3866/PKU.WHXB202101009

    18. [18]

      Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Jeon, I. Y.; Jung, S. M.; Choi, H. J.; Seo, J. M.; Bae, S. Y.; Sohn, S. D.; et al. Nat. Commun. 2015, 6, 6486. doi: 10.1038/ncomms7486  doi: 10.1038/ncomms7486

    19. [19]

      Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, R. B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8 (1), 944. doi: 10.1038/s41467-017-01035-z  doi: 10.1038/s41467-017-01035-z

    20. [20]

      Mahmood, J.; Li, F.; Kim, C.; Choi, H. J.; Gwon, O.; Jung, S. M.; Seo, J. M.; Cho, S. J.; Ju, Y. W.; Jeong, H. Y.; et al. Nano Energy 2018, 44, 304. doi: 10.1016/j.nanoen.2017.11.057  doi: 10.1016/j.nanoen.2017.11.057

    21. [21]

      Sahoo, S. K.; Heske, J.; Antonietti, M.; Qin, Q.; Oschatz, M.; Kuhne, T. D. ACS Appl. Energy Mater. 2020, 3 (10), 10061. doi: 10.1021/acsaem.0c01740  doi: 10.1021/acsaem.0c01740

    22. [22]

      Cui, X.; An, W.; Liu, X.; Wang, H.; Men, Y.; Wang, J. Nanoscale 2018, 10 (32), 15262. doi: 10.1039/c8nr04961k  doi: 10.1039/c8nr04961k

    23. [23]

      Ma, J.; Gong, H.; Zhang, T.; Yu, H.; Zhang, R.; Liu, Z.; Yang, G.; Sun, H.; Tang, S.; Qiu, Y. Appl. Surf. Sci. 2019, 488, 1. doi: 10.1016/j.apsusc.2019.03.187  doi: 10.1016/j.apsusc.2019.03.187

    24. [24]

      Yuan, H.; Li, Z.; Zeng, X. C.; Yang, J. J. Phys. Chem. Lett. 2020, 11 (9), 3481. doi: 10.1021/acs.jpclett.0c00676  doi: 10.1021/acs.jpclett.0c00676

    25. [25]

      Daté, M.; Haruta, M. J. Catal. 2001, 201 (2), 221. doi: 10.1006/jcat.2001.3254  doi: 10.1006/jcat.2001.3254

    26. [26]

      Zhao, Y. F.; Yang, Y.; Mims, C.; Peden, C. H. F.; Li, J.; Mei, D. J. Catal. 2011, 281 (2), 199. doi: 10.1016/j.jcat.2011.04.012  doi: 10.1016/j.jcat.2011.04.012

    27. [27]

      Nie, X.; Luo, W.; Janik, M. J.; Asthagiri, A. J. Catal. 2014, 312, 108. doi: 10.1016/j.jcat.2014.01.013  doi: 10.1016/j.jcat.2014.01.013

    28. [28]

      Liu, S. P.; Zhao, M.; Zhu, Y. F.; Gao, W.; Jiang, Q. Appl. Catal. A- Gen. 2017, 547, 214. doi: 10.1016/j.apcata.2017.09.002  doi: 10.1016/j.apcata.2017.09.002

    29. [29]

      Kresse, G.; Hafner, J. J. Non-Cryst. Solids 1993, 156158, 956. doi: 10.1016/0022-3093(93)90104-6  doi: 10.1016/0022-3093(93)90104-6

    30. [30]

      Kresse, G.; Hafner, J. Phys. Rev. B-Condens. Matter 1994, 49 (20), 14251. doi: 10.1103/physrevb.49.14251  doi: 10.1103/physrevb.49.14251

    31. [31]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    32. [32]

      Methfessel, M.; Paxton, A. T. Phys. Rev. B-Condens. Matter 1989, 40 (6), 3616. doi: 10.1103/physrevb.40.3616  doi: 10.1103/physrevb.40.3616

    33. [33]

      Henkelman, G.; Uberuaga, B. P.; Jonsson, H. J. Chem. Phys. 2000, 113, 9901. doi: 10.1063/1.1329672  doi: 10.1063/1.1329672

  • 加载中
    1. [1]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    4. [4]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    5. [5]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    6. [6]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    7. [7]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    8. [8]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    9. [9]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    10. [10]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    11. [11]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    12. [12]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    13. [13]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    14. [14]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    15. [15]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    16. [16]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    17. [17]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    18. [18]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    19. [19]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(15)
  • Abstract views(707)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return