Citation: Yuehan Cao, Rui Guo, Minzhi Ma, Zeai Huang, Ying Zhou. Effects of Electron Density Variation of Active Sites in CO2 Activation and Photoreduction: A Review[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230302. doi: 10.3866/PKU.WHXB202303029 shu

Effects of Electron Density Variation of Active Sites in CO2 Activation and Photoreduction: A Review

  • Corresponding author: Ying Zhou, yzhou@swpu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 14 March 2023
    Revised Date: 13 April 2023
    Accepted Date: 14 April 2023
    Available Online: 20 April 2023

    Fund Project: the National Natural Science Foundation of China 22209135Special Project for the Central Government to Guide the Development of Local Science and Technology in Sichuan Province 22ZYZYTS0231China Postdoctoral Science Foundation 2022M722635Natural Science Foundation of Sichuan Province 2022NSFSC1264Sichuan Science and Technology Program 2021ZYD0035Sichuan Science and Technology Program 2022YFH0084Sichuan Science and Technology Program 2021YFH0055Sichuan Science and Technology Program 2022YFSY0050

  • Photocatalytic reduction of CO2 into value-added chemicals is a feasible approach to harvest solar light energy and storing energy in the form of chemical fuels as well as to mitigate the effects of global climate change and help achieve an artificial carbon cycle. However, the efficiency of CO2 photoreduction is low for commercial purposes. This is mainly due to the difficult adsorption and activation process of CO2 molecules, the unsatisfactory selectivity of target products, and the uncontrolled-subsequent reaction process of the generated carbon products. CO2 photoreduction requires substantial electrons for participation. Hence, these issues are due to the electron density modulation of the active sites of catalysts. Unfortunately, the CO2 photoreduction process involves multi-fundamental steps, which leads to different requirements in electron density modulation. The performance might not be effectively improved by directly enhancing or weakening the total electron density of active sites. In this paper, we summarize recent advances in the influence of electron density variation of the active sites in strengthening the adsorption and activation of CO2 molecules, enhancing the selectivity of target carbon products and modulating the subsequent reaction process of the generated carbon products. This review begins with the effect of different types of active sites in strengthening the adsorption and activation of the CO2 molecules and the related methods for modulating the electron density of active sites. Active sites with high electron densities can significantly enhance the adsorption and activation of CO2. Introducing metal and fabricating the defects on catalyst surfaces are effective strategies for fabricating the electron-rich active sites. After that, we discuss the influence of electron density variation in enhancing the selectivity of target carbon products in detail. In this part, the related effects in the multielectron donation from the catalyst surface, the reactive intermediates, and the competition hydrogen evolution reaction are summarized. Enhancing the electron density of active sites strengthens the former two processes. For multielectron donation, introducing cocatalysts or fabricating heterostructures are the most effective methods for enhancing the electron density of active sites. The adsorption and conversion process of intermediates are mainly affected by the accumulation sites of electrons. The active sites with low coordination are more favorable to achieving the generation of multi-electronic carbon products. In contrast, the hydrogen evolution reaction is significantly inhibited by reducing the electron density of active sites. Moreover, elemental doping is considered one of the most effective strategies. Finally, we describe the method for weakening the electron density of active sites to promote product desorption and inhibit the photooxidation of reactive products.
  • 加载中
    1. [1]

      Vu, N. N.; Kaliaguine, S.; Do, T. O. Adv. Funct. Mater. 2019, 29, 1901825. doi: 10.1002/adfm.201901825  doi: 10.1002/adfm.201901825

    2. [2]

      Goldemberg, J. Science 2007, 315, 808. doi: 10.1126/science.1137013  doi: 10.1126/science.1137013

    3. [3]

      Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434. doi: 10.1021/acs.chemrev.7b00435  doi: 10.1021/acs.chemrev.7b00435

    4. [4]

      Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. doi: 10.1021/cr4002758  doi: 10.1021/cr4002758

    5. [5]

      Yi, Q.; Li, W.; Feng, J.; Xie, K. Chem. Soc. Rev. 2015, 44, 5409. doi: 10.1039/C4CS00453A  doi: 10.1039/C4CS00453A

    6. [6]

      Kang, X.; Fu, G.; Fu, X. Z.; Luo, J. L. Chin. Chem. Lett. 2022, 34, 107757. doi: 10.1016/j.cclet.2022.107757  doi: 10.1016/j.cclet.2022.107757

    7. [7]

      Zhao, Y.; Waterhouse, G. I. N.; Chen, G.; Xiong, X.; Wu, L.; Tung, Z.; Zhang, C. H. T. Chem. Soc. Rev. 2019, 48, 1972. doi: 10.1039/C8CS00607E  doi: 10.1039/C8CS00607E

    8. [8]

      Gong, E.; Ali, S. C.; Hiragond, B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S. I. Energy Environ. Sci. 2022, 15, 880. doi: 10.1039/D1EE02714J  doi: 10.1039/D1EE02714J

    9. [9]

      Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Energy Environ. Sci. 2009, 2, 745. doi: 10.1039/B822176F  doi: 10.1039/B822176F

    10. [10]

      Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E  doi: 10.1039/C3EE41272E

    11. [11]

      Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Norskov, J. K. Energy Environ. Sci. 2010, 3, 1311. doi: 10.1039/C0EE00071J  doi: 10.1039/C0EE00071J

    12. [12]

      Kuang, S.; Li, M.; Chen, X.; Chi, H.; Lin, J.; Hu, Z.; Hu, S.; Zhang, S.; Ma, X. Chin. Chem. Lett. 2022, 23, 108013. doi: 10.1016/j.cclet.2022.108013  doi: 10.1016/j.cclet.2022.108013

    13. [13]

      Li, H.; Zhao, J.; Luo, L.; Du, J.; Zeng, J. Acc. Chem. Res. 2021, 54, 1454. doi: 10.1021/acs.accounts.0c00715  doi: 10.1021/acs.accounts.0c00715

    14. [14]

      Wagner, A.; Sahm, C. D.; Reisner, E. Nat. Catal. 2020, 3, 775. doi: 10.1038/s41929-020-00512-x  doi: 10.1038/s41929-020-00512-x

    15. [15]

      Kong, T.; Jiang, Y.; Xiong, Y. Chem. Soc. Rev. 2020, 49, 6579. doi: 10.1039/C9CS00920E  doi: 10.1039/C9CS00920E

    16. [16]

      Liu, G.; Wang, L.; Wang, B.; Zhu, X.; Yang, J.; Liu, P.; Zhu, W.; Chen, Z.; Xia, J. Chin. Chem. Lett. 2022, 34, 107962. doi: 10.1016/j.cclet.2022.107962  doi: 10.1016/j.cclet.2022.107962

    17. [17]

      Han, B. Acta Phys. -Chim. Sin. 2022, 38, 2012011.  doi: 10.3866/PKU.WHXB202012011

    18. [18]

      Li, H.; Wang, L.; Dai, Y.; Pu, Z.; Lao, Z.; Chen, Y.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.; et al. Nat. Nanotechnol. 2018, 13, 411. doi: 10.1038/s41565-018-0089-z  doi: 10.1038/s41565-018-0089-z

    19. [19]

      Wang, L.; Zhang, W.; Zheng, X.; Chen, Y.; Wu, W.; Qiu, J.; Zhao, X.; Zhao, X.; Dai, Y.; Zeng, J. Nat. Energy 2017, 2, 869. doi: 10.1038/s41560-017-0015-x  doi: 10.1038/s41560-017-0015-x

    20. [20]

      Chen, Y.; Li, H.; Zhao, W.; Zhang, W.; Li, J.; Li, W.; Zheng, X.; Yan, W.; Zhang, W.; Zhu, J.; et al. Nat. Commun. 2019, 10, 1885. doi: 10.1038/s41467-019-09918-z  doi: 10.1038/s41467-019-09918-z

    21. [21]

      Peng, Y.; Wang, L.; Luo, Q.; Cao, Y.; Dai, Y.; Li, Z.; Li, H.; Zheng, X.; Yan, W.; Yang, J.; et al. Chem 2018, 4, 613. doi: 10.1016/j.chempr.2018.01.019  doi: 10.1016/j.chempr.2018.01.019

    22. [22]

      Xue, Z. H.; Luan, D.; Zhang, H.; Lou, X. W. Joule 2022, 6, 92. doi: 10.1016/j.joule.2021.12.011  doi: 10.1016/j.joule.2021.12.011

    23. [23]

      Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024  doi: 10.1016/j.jcat.2009.06.024

    24. [24]

      Song, H.; Meng, X.; Wang, S.; Zhou, W.; Wang, X.; Kako, T.; Ye, J. J. Am. Chem. Soc. 2019, 141, 20507. doi: 10.1021/jacs.9b11440  doi: 10.1021/jacs.9b11440

    25. [25]

      Xie, J.; Jin, R.; Li, A.; Bi, Y.; Ruan, Q.; Deng, Y.; Zhang, Y.; Yao, S.; Sankar, G.; Ma, D.; et al. Nat. Catal. 2018, 1, 889. doi: 10.1038/s41929-018-0170-x  doi: 10.1038/s41929-018-0170-x

    26. [26]

      Rao, Z.; Cao, Y.; Huang, Z.; Yin, Z.; Wan, W.; Ma, M.; Wu, Y.; Wang, J.; Yang, G.; Cui, Y.; et al. ACS Catal. 2021, 11, 4730. doi: 10.1021/acscatal.0c04826  doi: 10.1021/acscatal.0c04826

    27. [27]

      Cao, Y.; Zhang, R.; Zheng, Q.; Cui, W.; Liu, Y.; Zheng, K.; Dong, F.; Zhou, Y. ACS Appl. Mater. Interfaces 2020, 12, 34432. doi: 10.1021/acsami.0c09216  doi: 10.1021/acsami.0c09216

    28. [28]

      Zhao, Z.; Cao, Y.; Dong, F.; Wu, F.; Li, B.; Zhang, Q.; Zhou, Y. Nanoscale 2019, 11, 6360. doi: 10.1039/C8NR10356A  doi: 10.1039/C8NR10356A

    29. [29]

      Cao, Y.; Zheng, Q.; Rao, Z.; Zhang, R.; Xie, Z.; Yu, S.; Zhou, Y. Chin. Chem. Lett. 2020, 31, 2689. doi: 10.1016/j.cclet.2020.07.032  doi: 10.1016/j.cclet.2020.07.032

    30. [30]

      Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372. doi: 10.1002/anie.201207199  doi: 10.1002/anie.201207199

    31. [31]

      Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 28, 2975. doi: 10.1039/B700658F  doi: 10.1039/B700658F

    32. [32]

      Maginn, E. J. J. Phys. Chem. Lett. 2010, 1, 3478. doi: 10.1021/jz101582c  doi: 10.1021/jz101582c

    33. [33]

      Centi, G.; Perathoner, S. ChemSusChem 2010, 3, 195. doi: 10.1002/cssc.200900289  doi: 10.1002/cssc.200900289

    34. [34]

      Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. USA 2006, 103, 15729. doi: 10.1073/pnas.0603395103  doi: 10.1073/pnas.0603395103

    35. [35]

      Pasten, C.; Santamarina, J. C. Energy Policy 2012, 49, 468. doi: 10.1016/j.enpol.2012.06.051  doi: 10.1016/j.enpol.2012.06.051

    36. [36]

      Fontecave, M. Angew. Chem. Int. Ed. 2011, 50, 6704. doi: 10.1002/anie.201102819  doi: 10.1002/anie.201102819

    37. [37]

      Li, Y.; Hao, J.; Song, H.; Zhang, F.; Bai, X.; Meng, X.; Zhang, H.; Wang, S.; Hu, Y.; Ye, J. Nat. Commun. 2019, 10, 2359. doi: 10.1038/s41467-019-10304-y  doi: 10.1038/s41467-019-10304-y

    38. [38]

      Freund, H. J.; Roberts, M. W. Surf. Sci. Rep. 1996, 25, 225. doi: 10.1016/S0167-5729(96)00007-6  doi: 10.1016/S0167-5729(96)00007-6

    39. [39]

      Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p  doi: 10.1021/nl803258p

    40. [40]

      Kim, W.; Seok, T.; Choi, W. Energy Environ. Sci. 2012, 5, 6066. doi: 10.1039/C2EE03338K  doi: 10.1039/C2EE03338K

    41. [41]

      Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper. M. T. M. Nat. Energy 2019, 4, 732. doi: 10.1038/s41560-019-0450-y  doi: 10.1038/s41560-019-0450-y

    42. [42]

      Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S. I. Energy Environ. Sci. 2022, 15, 880. doi: 10.1039/D1EE02714J  doi: 10.1039/D1EE02714J

    43. [43]

      Yang, H.; Zhang, J. F.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/S1872-2067(20)63784-6  doi: 10.1016/S1872-2067(20)63784-6

    44. [44]

      Wang, Y.; Chen, E.; Tang, J. ACS Catal. 2022, 12, 7300. doi: 10.1021/acscatal.2c01012  doi: 10.1021/acscatal.2c01012

    45. [45]

      Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J. G. Chem. Rev. 2020, 120, 7984. doi: 10.1021/acs.chemrev.9b00723  doi: 10.1021/acs.chemrev.9b00723

    46. [46]

      Adekoya, D.; Tahir, M.; Amin, N. A. S. Renew. Sustain. Energy Rev. 2019, 116, 109389. doi: 10.1016/j.rser.2019.109389  doi: 10.1016/j.rser.2019.109389

    47. [47]

      Hu, T.; Dai, K.; Zhang, J.; Chen, S. Appl. Catal. B 2020, 269, 118844. doi: 10.1016/j.apcatb.2020.118844  doi: 10.1016/j.apcatb.2020.118844

    48. [48]

      Das, R.; Chakraborty, S.; Peter, S. C. ACS Energy Lett. 2021, 6, 3270. doi: 10.1021/acsenergylett.1c01522  doi: 10.1021/acsenergylett.1c01522

    49. [49]

      Si, S.; Shou, H.; Mao, Y.; Bao, X.; Zhai, G.; Song, K.; Wang, Z.; Wang, P.; Liu, Y.; Zheng, Z.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209446. doi: 10.1002/anie.202209446  doi: 10.1002/anie.202209446

    50. [50]

      Pan, Q.; Abdellah, M.; Cao, Y.; Lin, W.; Liu, Y.; Meng, J.; Zhou, Q.; Zhao, Q.; Yan, X.; Li, Z.; et al. Nat. Commun. 2022, 13, 845. doi: 10.1038/s41467-022-28409-2  doi: 10.1038/s41467-022-28409-2

    51. [51]

      Fan, Y.; Zhou, W.; Qiu, X.; Li, H.; Jiang, Y.; Sun, Z.; Han, D.; Niu, L.; Tang, Z. Nat. Sustain. 2021, 4, 509. doi: 10.1038/s41893-021-00682-x  doi: 10.1038/s41893-021-00682-x

    52. [52]

      Luo, L.; Luo, J.; Li, H.; Ren, F.; Zhang, Y.; Liu, A.; Li, W. X.; Zeng, J. Nat. Commun. 2021, 12, 1218. doi: 10.1038/s41467-021-21482-z  doi: 10.1038/s41467-021-21482-z

    53. [53]

      Luo, L.; Gong, Z.; Xu, Y.; Ma, J.; Liu, H.; Xing, J.; Tang, J. J. Am. Chem. Soc. 2022, 144, 740. doi: 10.1021/jacs.1c09141  doi: 10.1021/jacs.1c09141

    54. [54]

      Feng, N.; Lin, H.; Song, H.; Yang, L.; Tang, D.; Deng, F.; Ye, J. Nat. Commun. 2021, 12, 4652. doi: 10.1038/s41467-021-24912-0  doi: 10.1038/s41467-021-24912-0

    55. [55]

      Zheng, K.; Wu, Y.; Zhu, J.; Wu, M.; Jiao, X.; Li, L.; Wang, S.; Fan, M.; Hu, J.; Yan, W.; et al. J. Am. Chem. Soc. 2022, 144, 12357. doi: 10.1021/jacs.2c03866  doi: 10.1021/jacs.2c03866

    56. [56]

      Sun, X.; Chen, X.; Fu, C.; Yu, Q.; Zheng, X. S.; Fang, F.; Liu, Y.; Zhu, J.; Zhang, W.; Huang, W. Nat. Commun. 2022, 13, 6677. doi: 10.1038/s41467-022-34563-4  doi: 10.1038/s41467-022-34563-4

    57. [57]

      Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694  doi: 10.1002/adma.201601694

    58. [58]

      Ran, J.; Jaroniec, M.; Qiao, S. Z. Adv. Mater. 2018, 30, 1704649. doi: 10.1002/adma.201704649  doi: 10.1002/adma.201704649

    59. [59]

      Cao, Y.; Guo, L.; Dan, M.; Doronkin, D. E.; Han, C.; Rao, Z.; Liu, Y.; Meng, J.; Huang, Z.; Zheng, K.; et al. Nat. Commun. 2021, 12, 1675. doi: 10.1038/s41467-021-21925-7  doi: 10.1038/s41467-021-21925-7

    60. [60]

      Zhang, Y.; Zhi, X.; Harmer, J. R.; Xu, H.; Davey, K.; Ran, J.; Qiao, S. Z. Angew. Chem. Int. Ed. 2022, 61, e202212355. doi: 10.1002/anie.202212355  doi: 10.1002/anie.202212355

    61. [61]

      Yao, S.; Sun, B. Q.; Zhang, P.; Tian, Z. Y.; Yin, H. Q.; Zhang, Z. M. Appl. Catal. B 2022, 317, 121702. doi: j.apcatb.2022.121702

    62. [62]

      Wang, Z.; Zhu, J.; Zu, X.; Wu, Y.; Shang, S.; Ling, P.; Qiao, P.; Liu, C.; Hu, J.; Pan, Y.; et al. Angew. Chem. Int. Ed. 2022, 61, e202203249. doi: 10.1002/anie.202203249  doi: 10.1002/anie.202203249

    63. [63]

      Tian, T.; Jin, X.; Guo, N.; Li, H.; Han, Y.; Yuan, Y. Appl. Catal. B 2022, 308, 121227. doi: 10.1016/j.apcatb.2022.121227  doi: 10.1016/j.apcatb.2022.121227

    64. [64]

      Ma, M.; Huang, Z.; Doronkin, D. E.; Fa, W.; Rao, Z.; Zou, Y. Appl. Catal. B 2022, 300, 120695. doi: 10.1016/j.apcatb.2021.120695  doi: 10.1016/j.apcatb.2021.120695

    65. [65]

      Feng, X.; Zheng, R.; Gao, C.; Wei, W.; Peng, J.; Wang, R.; Yang, S.; Zou, W.; Wu, X.; Ji, Y.; et al. Nat. Commun. 2022, 13, 2146. doi: 10.1038/s41467-022-29671-0  doi: 10.1038/s41467-022-29671-0

    66. [66]

      Jiao, W.; Xie, Y.; He, F.; Wang, K.; Ling, Y.; Hu, Y.; Wang, J.; Ye, H.; Wu, J.; Hou, Y. Chem. Eng. J. 2021, 418, 129286. doi: 10.1016/j.cej.2021.129286  doi: 10.1016/j.cej.2021.129286

    67. [67]

      Zhu, L.; Liu, Y.; Peng, X.; Li, Y.; Men, Y. L.; Liu, P.; Pan, Y. X. ACS Appl. Mater. Interfaces 2020, 12, 12892. doi: 10.1021/acsami.0c00163  doi: 10.1021/acsami.0c00163

    68. [68]

      Wang, Y.; Liu, X.; Han, X.; Godin, R.; Chen, J.; Zhou, W.; Jiang, C.; Thompson, J. F.; Mustafa, K. B.; Shevlin, S. A.; et al. Nat. Commun. 2020, 11, 2531. doi: 10.1038/s41467-020-16227-3  doi: 10.1038/s41467-020-16227-3

    69. [69]

      Liu, P.; Huang, Z.; Gao, X.; Hong, X.; Zhu, J.; Wang, G.; Wu, Y.; Zeng, J.; Zheng, X. Adv. Mater. 2022, 34, 2200057. doi: 10.1002/adma.202200057  doi: 10.1002/adma.202200057

    70. [70]

      Shi, Y.; Li, J.; Mao, C.; Liu, S.; Wang, X.; Liu, X.; Zhao, S.; Liu, X.; Huang, Y.; Zhang, L. Nat. Commun. 2021, 12, 5923. doi: 10.1038/s41467-021-26219-6  doi: 10.1038/s41467-021-26219-6

    71. [71]

      Wang, J.; Bo, T.; Shao, B.; Zhang, Y.; Jia, L.; Tan, X.; Zhou, W.; Yu, T. Appl. Catal. B 2021, 297, 120498. doi: 10.1016/j.apcatb.2021.120498  doi: 10.1016/j.apcatb.2021.120498

    72. [72]

      Yu, Z.; Yang, K.; Yu, C.; Lu, K.; Huang, W.; Xu, L.; Zou, L. X.; Wang, S.; Chen, Z.; Hu, J.; et al. Adv. Funct. Mater. 2022, 32, 2111999. doi: 10.1002/adfm.202111999  doi: 10.1002/adfm.202111999

    73. [73]

      Yue, X.; Cheng, L.; Li, F.; Fan, J.; Xiang, Q. Angew. Chem. Int. Ed. 2022, 61, e202208414. doi: 10.1002/anie.202208414  doi: 10.1002/anie.202208414

    74. [74]

      Xin, Z. K.; Gao, Y. J.; Gao, Y.; Song, H. W.; Zhao, J.; Fan, F. T.; Xia, A. D.; Li, X. B.; Tung, C. H.; Wu, L. Z. Adv. Mater. 2022, 34, 2106662. doi: 10.1002/adma.202106662  doi: 10.1002/adma.202106662

    75. [75]

      Xiao, Y.; Maimaitizi, H.; Okitsu, K.; Tursun, Y.; Abulizi, A. Part. Part. Syst. Charact. 2022, 39, 2200019. doi: 10.1002/ppsc.202200019  doi: 10.1002/ppsc.202200019

    76. [76]

      Yang, Y.; Pan, Y. X.; Tu, X.; Liu, C. J. Nano Energy 2022, 101, 107613. doi: 10.1016/j.nanoen.2022.107613  doi: 10.1016/j.nanoen.2022.107613

    77. [77]

      Shi, X.; Dong, X.; He, Y.; Yan, P.; Zhang, S.; Dong, F. ACS Catal 2022, 12, 3965. doi: 10.1021/acscatal.2c00157  doi: 10.1021/acscatal.2c00157

    78. [78]

      Li, L.; Dai, X.; Chen, D. L.; Zeng, Y.; Hu, Y.; Lou, X. W. Angew. Chem. Int. Ed. 2022, 61, e202205839. doi: 10.1002/anie.202205839  doi: 10.1002/anie.202205839

    79. [79]

      Cao, H.; Jiang, S.; Xue, J.; Zhu, X.; Zhang, Q.; Bao, J. J. Phys. Chem. Lett. 2022, 13, 8397. doi: 10.1021/acs.jpclett.2c01983  doi: 10.1021/acs.jpclett.2c01983

    80. [80]

      Ni, M.; Zhu, Y.; Guo, C.; Chen, D. L.; Ning, J.; Zhong, Y.; Hu, Y. ACS Catal 2023, 13, 2502. doi: 10.1021/acscatal.2c05577  doi: 10.1021/acscatal.2c05577

    81. [81]

      Álvarez, A.; Borges, M.; Corral-Pérez, J. J.; Olcina, J. G.; Hu, L.; Cornu, D.; Huang, R.; Stoian, D.; Urakawa, A. ChemPhysChem 2017, 18, 3135. doi: 10.1002/cphc.201700782  doi: 10.1002/cphc.201700782

    82. [82]

      Cao, Y.; Zhang, R.; Zhou, T.; Jin, S.; Huang, J.; Ye, L.; Huang, Z.; Wang, F.; Zhou, Y. ACS Appl. Mater. Interfaces 2020, 12, 9935. doi: 10.1021/acsami.9b21157  doi: 10.1021/acsami.9b21157

    83. [83]

      Xiong, Z.; Wang, H.; Xu, N.; Li, H.; Fang, B.; Zhao, Y.; Zhang, J.; Zheng, C. Int. J. Hydrog. Energy 2015, 40, 10049. doi: 10.1016/j.ijhydene.2015.06.075  doi: 10.1016/j.ijhydene.2015.06.075

    84. [84]

      Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. J. Am. Chem. Soc. 2011, 133, 20863. doi: 10.1021/ja207586e  doi: 10.1021/ja207586e

    85. [85]

      Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. J. Mater. Chem. A 2015, 3, 11313. doi: 10.1039/C5TA01697E  doi: 10.1039/C5TA01697E

    86. [86]

      Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. ACS Appl. Mater. Interfaces 2011, 3, 2594. doi: 10.1021/am200425y  doi: 10.1021/am200425y

    87. [87]

      Baran, T.; Wojtyła, S.; Dibenedetto, A.; Aresta, M.; Macyk, W. Appl. Catal. B 2015, 178, 170. doi: 10.1016/j.apcatb.2014.09.052  doi: 10.1016/j.apcatb.2014.09.052

    88. [88]

      Solymosi, F.; Tombácz, I. Catal. Lett. 1994, 27, 61. doi: 10.1007/BF00806978  doi: 10.1007/BF00806978

    89. [89]

      Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. A. S.; Wang, P.; Guliants, E. A.; Tackett, K. N.; Sun, Y. P. J. Am. Chem. Soc. 2011, 133, 4754. doi: 10.1021/ja200804h  doi: 10.1021/ja200804h

    90. [90]

      Zhang, H.; Wang, Y.; Zuo, S.; Zhou, W.; Zhang, J.; Lou, X. W. D. J. Am. Chem. Soc. 2021, 143, 2173. doi: 10.1021/jacs.0c08409  doi: 10.1021/jacs.0c08409

    91. [91]

      Zhang, Z.; Wang, Z.; Cao, S. W.; Xue, C. J. Phys. Chem. C 2013, 117, 25939. doi: 10.1021/jp409311x  doi: 10.1021/jp409311x

    92. [92]

      Ma, Z.; Li, P.; Ye, L.; Zhou, Y.; Su, F.; Ding, C.; Xie, H.; Bai, Y.; Wong, P. K. J. Mater. Chem. A 2017, 5, 24995. doi: 10.1039/C7TA08766G  doi: 10.1039/C7TA08766G

    93. [93]

      Yu, H.; Li, J.; Zhang, Y.; Yang, S.; Han, K.; Dong, F.; Ma, T.; Huang, H. Angew. Chem. Int. Ed. 2019, 58, 3880. doi: 10.1002/anie.201813967  doi: 10.1002/anie.201813967

    94. [94]

      Wang, B.; Yang, S. Z.; Chen, H.; Gao, Q.; Weng, Y. X.; Zhu, W.; Liu, G.; Zhang, Y.; Ye, Y.; Zhu, H.; et al. Appl. Catal. B 2020, 277, 119170. doi: 10.1016/j.apcatb.2020.119170  doi: 10.1016/j.apcatb.2020.119170

    95. [95]

      Jin, X.; Lv, C.; Zhou, X.; Ye, L.; Xie, H.; Liu, Y.; Su, H.; Zhang, B.; Chen, G. ChemSusChem 2019, 12, 2740. doi: 10.1002/cssc.201900621  doi: 10.1002/cssc.201900621

    96. [96]

      Yang, X.; Wang, S.; Yang, N.; Zhou, W.; Wang, P.; Jiang, K.; Li, S.; Song, H.; Ding, X.; Chen, H.; et al. Appl. Catal. B 2019, 259, 118088. doi: 10.1016/j.apcatb.2019.118088  doi: 10.1016/j.apcatb.2019.118088

    97. [97]

      Wang, F.; Wei, S.; Zhang, Z.; Patzke, G. R.; Zhou, Y. Phys. Chem. Chem. Phys. 2016, 18, 6706. doi: 10.1039/C5CP06835E  doi: 10.1039/C5CP06835E

    98. [98]

      Zuo, F.; Wang, L.; Wu, T.; Zhang, Z.; Borchardt, D.; Feng, P. J. Am. Chem. Soc 2010, 132, 11856. doi: 10.1021/ja103843d  doi: 10.1021/ja103843d

    99. [99]

      Zhao, Z.; Tan, H.; Zhao, H.; Lv, Y.; Zhou, L. J.; Song, Y.; Sun, Z. Chem. Commun. 2014, 50, 2755. doi: 10.1039/C3CC49182J  doi: 10.1039/C3CC49182J

    100. [100]

      Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. ACS Catal. 2016, 6, 2462. doi: 10.1021/acscatal.5b02922  doi: 10.1021/acscatal.5b02922

    101. [101]

      Dong, X.; Li, J.; Xing, Q.; Zhou, Y.; Huang, H.; Dong, F. Appl. Catal. B 2018, 232, 69. doi: 10.1016/j.apcatb.2018.03.054  doi: 10.1016/j.apcatb.2018.03.054

    102. [102]

      Chen, P.; Lei, B.; Dong, X.; Wang, H.; Sheng, J.; Cui, W.; Li, J.; Sun, Y.; Wang, Z.; Dong, F. ACS Nano 2020, 14, 15841. doi: 10.1021/acsnano.0c07083  doi: 10.1021/acsnano.0c07083

    103. [103]

      Zhang, R.; Li, P.; Wang, F.; Ye, L.; Gaur, A.; Huang, Z.; Zhao, Z.; Bai, Y.; Zhou, Y. Appl. Catal. B 2019, 250, 273. doi: 10.1016/j.apcatb.2019.03.025  doi: 10.1016/j.apcatb.2019.03.025

    104. [104]

      Gao, Q.; Xu, J.; Wang, Z.; Zhu, Y. Appl. Catal. B 2020, 271, 118933. doi: 10.1016/j.apcatb.2020.118933  doi: 10.1016/j.apcatb.2020.118933

    105. [105]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    106. [106]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    107. [107]

      Chen, Y.; Wang, F.; Cao, Y.; Zhang, F.; Zou, Y.; Huang, Z.; Ye, L.; Zhou, Y. ACS Appl. Energy Mater. 2020, 3, 4610. doi: 10.1021/acsaem.0c00273  doi: 10.1021/acsaem.0c00273

    108. [108]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    109. [109]

      Li, J.; Huang, H.; Xue, W.; Sun, K.; Song, X.; Wu, C.; Nie, L.; Li, Y.; Liu, C.; Pan, Y.; et al. Nat. Catal. 2021, 4, 719. doi: 10.1038/s41929-021-00665-3  doi: 10.1038/s41929-021-00665-3

    110. [110]

      Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu, J.; Xie, Y. Nat. Energy 2019, 4, 690. doi: 10.1038/s41560-019-0431-1  doi: 10.1038/s41560-019-0431-1

    111. [111]

      Li, Y.; Wang, S.; Wang, X.; He, Y.; Wang, Q.; Li, Y.; Li, M.; Yang, G.; Yi, J.; Lin, H.; et al. J. Am. Chem. Soc. 2020, 142, 19259. doi: 10.1021/jacs.0c09060  doi: 10.1021/jacs.0c09060

    112. [112]

      Guo, L.; Cao, Y.; Dan, M.; Zou, C.; Huang, Z.; Zhou, Y. Chin. Sci. Bull. 2020, 65, 522. doi: 10.1360/TB-2019-0670  doi: 10.1360/TB-2019-0670

    113. [113]

      Ma, M.; Chen, J.; Huang, Z.; Fa, W.; Wang, F.; Cao, Y.; Yang, Y.; Rao, Z.; Wang, R.; Zhang, R.; et al. Chem. Eng. J. 2022, 444, 136585. doi: 10.1016/j.cej.2022.136585  doi: 10.1016/j.cej.2022.136585

    114. [114]

      Wang, J.; Xia, T.; Wang, L.; Zheng, X.; Qi, Z.; Gao, C.; Zhu, J.; Li, Z.; Xu, H.; Xiong, Y. Angew. Chem. Int. Edit. 2018, 57, 16447. doi: 10.1002/anie.201810550  doi: 10.1002/anie.201810550

    115. [115]

      Cao, Y.; Zhang, R.; Zhou, T.; Jin, S.; Huang, J.; Ye, L.; Huang, Z.; Wang, F.; Zhou, Y. ACS Appl. Mater. Interfaces 2020, 12, 9935. doi: 10.1021/acsami.9b21157  doi: 10.1021/acsami.9b21157

    116. [116]

      Ma, M.; Huang, Z.; Wang, R.; Zhang, R.; Yang, T.; Rao, Z.; Fa, W.; Zhang, F.; Cao, Y.; Yu, S.; et al. Green Chem. 2022, 24, 8791. doi: 10.1039/D2GC03226K  doi: 10.1039/D2GC03226K

  • 加载中
    1. [1]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    2. [2]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    3. [3]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    5. [5]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    6. [6]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    7. [7]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    8. [8]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    9. [9]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    10. [10]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    13. [13]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    14. [14]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    15. [15]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    16. [16]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    17. [17]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    18. [18]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    19. [19]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    20. [20]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

Metrics
  • PDF Downloads(12)
  • Abstract views(716)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return