RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production
- Corresponding author: Hao Huang, huanghao881015@163.com Yu Chen, ndchenyu@gmail.com Shu-Ni Li, lishuni@snnu.edu.cn
Citation:
Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production[J]. Acta Physico-Chimica Sinica,
;2023, 39(12): 230302.
doi:
10.3866/PKU.WHXB202303028
Owing to the energy crisis of fossil fuel consumption and environmental protection, the development and utilization of new clean energy sources is extremely urgent 1–3. Hydrogen has become the most significant alternative fuel 4. Electrochemical water splitting is a more suitable strategy to generate 'green hydrogen' without carbon emission and excessive consumption than stream reforming 5–8. In overall water splitting, the cathodic hydrogen evolution reaction (HER) is the primary reaction that produces hydrogen whereas the anodic oxygen evolution reaction (OER) works as a counter-reaction for oxygen. Even now, the application of the HER is still limited by the overpotential, and there is an urgent need to exploit new electrocatalysts with higher efficiencies to further decrease the energy consumption for H2 production. Because of their high price and low reserves, efficient Pt-based nanomaterials are not suitable for achieving industrialized electrochemical HER. Ru, at a price of 4.2% that of Pt, has received increasing attention as an alternative HER electrocatalyst 9–13. Numerous efforts have been made to improve the activity of Ru sites in electrocatalysts for the HER, including engineering the electronic structure and modulating the morphology 14–18. Several pioneering studies have reported that introducing highly electronegative elements into Ru-based nanomaterials is an effective strategy to adjust the electronic structure of Ru for the HER 14–18. In contrast, highly conductive substrates with large surfaces, such as Ni foam and graphene, favor the electron and mass transfer of Ru nanostructures, resulting in excellent HER activity. Therefore, the synergism of introducing highly electronegative elements and employing a conductive substrate may impart outstanding HER properties to the Ru electrocatalyst, which may even exceed those of the Pt electrocatalyst.
As a counter-reaction to the HER, the anodic OER has four electrons with sluggish kinetics, which leads to a large input cell voltage for the overall water splitting device (up to 2.0 V). Exploiting new electrochemical technologies to replace the OER and saving energy in H2 production has received significant attention. Hydrazine oxidation reaction (HzOR; N2H4 + 4HO− → N2(g) + 4H2O + 4e−) with an electrode potential of −0.33 V vs. a reversible hydrogen electrode (RHE) is a perfect anodic substitutional reaction. Thus, highly efficient H2 production can be achieved with a low cell voltage in the overall hydrazine splitting using the HER and HzOR as electrode reactions. In addition, owing to the inert N2 being a by-product of the HzOR, the membrane-free electrolyzer can further reduce the cost. Unfortunately, despite significant progress in HER electrocatalysts, exploiting effective catalytic activity for the HzOR has been neglected, not to mention the bifunctional catalysts for overall hydrazine splitting.
Recently, metal phosphides have been confirmed as an effective precursor to realize highly active HzOR electrocatalysts because of the modulatory effect of highly electronegative P on the electronic structure of the active metal sites 19,20. For instance, in alkaline media, doping with highly electronegative P in Ni foam resulted in exceptional HER and HzOR activities 17. Thus, highly electronegative P can promote the electrocatalysis of the HzOR. Moreover, N heteroatoms generally provide a synergistic effect with metal sites and enhance hydrophilicity, endowing the catalysts with enhanced activity for electrochemical reactions. Interestingly, electrocatalysts with N heteroatoms also exhibit great potential to catalyze the HzOR 21,22. Thus, we expect to explore a novel bifunctional electrocatalyst with N-doping to boost the development of hydrazine splitting, which has rarely been achieved. In addition, a synergetic mechanism of N heteroatoms and metal sites for HzOR catalysis has yet to be developed, which is of great significance for designing novel electrocatalysts for H2 production via hydrazine splitting.
Herein, we integrate the design concepts of both the HER and HzOR and propose a new bifunctional electrocatalyst strategy for efficient overall hydrazine splitting using ultrasmall RuP nanoparticles anchored on N-doped graphene aerogel (RuP/N-GA). First, highly electronegative P was incorporated into the Ru nanostructure to modulate the electron structure and increase its activity for both the HER and HzOR. Second, the 3D porous structure of the N-doped graphene aerogel (GA) adjusts the electronic structure of the Ru sites and provides effective electron and mass transfer ability for electrocatalytic reactions. Finally, the synergistic effect between N doping and Ru sites contributes to an improvement in the electroactivity of the HzOR. As the result, RuP/N-GA exhibits excellent electrocatalytic activities with a low working potential of −19.6 mV for HER (at 10 mA∙cm−2) and 27 mV for HzOR (at 30 mA∙cm−2). Density functional theory (DFT) calculations confirmed that N doping in GA plays a significant role in the synergistic effect of the Ru sites on HzOR. Importantly, at 10 mA∙cm−2, the overall hydrazine-splitting electrolyzer utilizing the RuP/N-GA as a bifunctional electrocatalyst achieves a significantly low voltage (41 mV). Our work demonstrates that Ru can be used as an alternative to both HER and HzOR electrocatalysts. In addition, the highly electronegative P and N-doping effect strengthen the bifunctional catalytic properties of hydrazine splitting to stimulate efficient H2 production with low energy consumption.
Ruthenium trichloride hydrate (AR, 99.9%, RuCl3), hydrazine hydrate (AR, 80% in water, N2H4∙H2O) and ascorbic acid (AR, 99.7%, AA) were obtained from Aladdin Industrial Co., Ltd. Polyethyleneimine (AR, 99%, PEI, Mw = 10000) was purchased from Nitto Boseki Co., Ltd (Japan). Phytic acid (AR, 70% in water, PA) was acquired from Sinopharm Chemical Reagent Co., Ltd. Graphene oxide (AR, 99.8%, GO) was purchased from JCNANO Technology Co., Ltd. (Nanjing, China). The commercial 20% (mass fraction) Pt/C electrocatalyst was provided by Johnson Matthey Corporation.
Typically, GA is synthesized according to a previously reported method using graphene oxide (GO) as the reaction precursor 22. After adding 10 mg GA into the 6 mL mixture of 0.01 mol∙L−1 RuCl3 and 0.3 mol∙L−1 PEI for 2 h, RuⅢ-PEI-GA hybrids (RuⅢ-PEI-GA) were obtained through centrifugation. Then, RuⅢ-PEI-PA-GA was obtained by mixing the RuⅢ-PEI-GA in ethanol solution of PA for 2 h at 95 ℃. After sufficient freeze-drying for 24 h, RuⅢ-PEI-GA-PA precursors were transferred as RuP/N-GA via pyrolysis at various temperatures for 2 h with a heating rate of 10 ℃∙min−1 under a N2 atmosphere. The prepared RuP/N-GA samples were named RuP/N-GA-700, RuP/N-GA-800, RuP/N-GA-900, RuP/N-GA-1000, and RuP/N-GA-1100 depending on the calcination temperature.
Under the same synthetic conditions, a N-doped GA (N-GA) sample was synthesized without RuCl3 or PA, a RuP/GA sample was synthesized without PEI, and a Ru/N-GA sample was synthesized without PA to compare the active sites of the catalytic materials.
Details of the DFT calculations and physical and electrochemical characterizations are provided in the supporting information.
In this study, GA was utilized as a conductive substrate with a 3D porous framework formed through the reduction of GO by ascorbic acid 24. The RuP/N-GA precursor was prepared via a simple coordination-absorption method. Briefly, the RuⅢ-polyethyleneimine (RuⅢ-PEI) complex is coordinated by the N sites of PEI, which are then adsorbed on the surface of GA. Ultraviolet and visible (UV-Vis) spectroscopy is carried out to verify the formation of the RuⅢ-PEI complex (Fig. S1, Supporting Information). Compared with RuCl3, there is an obvious broad peak at approximately 387 nm, indicating the presence of the RuⅢ-PEI complex. After adsorbing phytic acid (PA) in ethanol via the hydrogen bond between PA and PEI, the RuⅢ-PEI-PA-GA hybrids (RuⅢ-PEI-GA-PA) work as a precursor to synthesize RuP nanoparticles anchored on N-doped GA (RuP/N-GA) through the phosphorization reaction. In this process, an ultrasmall RuP nanostructure is formed by the steric hindrance of the GA. The decomposition of PEI introduces abundant nitrogen heteroatoms into the GA structure (Fig. 1a).
To clarify the elemental composition, energy dispersive X-ray (EDX) spectroscopy was performed for the RuP/N-GA sample. The spectrum shows that RuP/N-GA is composed of Ru, P, C, and N, and the atomic ratio of Ru : P is extremely close to 1 : 1 (Fig. S2). Both X-ray powder diffractometer (XRD) patterns of RuP/N-GA show a wide diffraction peak at 2θ = 26.8° (Fig. 1b) attributed to the graphitic structure. Obviously, GO precursor is successfully reduced by ascorbic acid (AA). Additionally, there is no characteristic peak of the RuP crystal in the XRD pattern of RuP/N-GA, which suggests that RuP nanoparticles occur in the form of ultrasmall or amorphous structures. The morphology of RuP/N-GA was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM image shows the 3D porous framework structure of RuP/N-GA. RuP nanoparticles are not observed in the SEM images (Fig. 1c). This phenomenon implies that RuP exists as ultrasmall nanoparticles, as indicated by the XRD pattern. The TEM images reveal the ultrathin layered structure of GA (Fig. 2a) and ultrasmall RuP nanoparticles in the RuP/N-GA sample (Fig. 2b, c). The corresponding size statistics for RuP show that the size of most nanoparticles is < 5 nm. Such ultrasmall RuP nanoparticles can be one of the factors of the high electrochemical activity for bifunctional electrocatalysis (Fig. S3). The corresponding high-resolution transmission electron microscopy (HRTEM) image shows that the crystal spacings of the nanoparticles are approximately 0.251, 0.267, and 0.276 nm (Fig. 2d), corresponding to the (111), (102), and (200) planes of RuP (JCPDS No. 64-8015), respectively. The selected-area electron diffraction (SAED) images show extremely weak diffraction rings of the RuP nanoparticles, which also illustrate the low crystallinity of the nanoparticles (Fig. 2e). In addition, the mapping measurements on TEM are conducted to analyze the elemental distribution of RuP/N-GA. The uniform distribution of Ru, P, C, and N in RuP/N-GA indicated the presence of RuP nanoparticles and N-doped GA (Fig. 2f). The thermogravimetric curve shows that the sample loses up to 89.8% of its weight, indicating that only trace Ru is present in the RuP/N-GA sample (Fig. S4). Raman spectra were recorded to investigate the graphitization of GA and RuP/N-GA. The Raman spectra of both RuP/N-GA and GA samples show two peaks (at approximately 1350 and 1580 cm−1), corresponding to the G and D peaks of the graphitic structure (Fig. S5). The ID/IG ratio of RuP/N-GA was greater than that of GA, indicating the presence of more carbon defects in RuP/N-GA.
X-ray photoemission spectroscopy (XPS) technology is typically used to study the elemental composition and oxidation states on the surfaces of electrocatalysts. The overall XPS spectrum shows that Ru, P, C, and N are present in the structure of the RuP/N-GA sample (Fig. 3a), which is consistent with the EDX results. For the C 1s orbital, the high-resolution spectrum exhibits a peak at approximately 284.5 eV (Fig. 3b). Further analysis of the C 1s spectrum reveals peaks at 284.5, 285.8, and 285.2 eV, which are assigned to the binding energy of C=C 25, C―C 26, and C―N 25, respectively. The formation of C―N bonds revealed that N heteroatoms were successfully doped into the GA structure. The peak at approximately 280.4 eV is characteristic of Ru 3d5/2 25. Because of the very close peak positions of Ru 3d5/2 and C 1s, it was difficult to investigate the oxidation state of Ru based on the Ru 3d orbital. Therefore, Ru 3p XPS is useful for studying the chemical states of carbon-supported Ru-based nanomaterials. The peaks at 461.6 and 483.9 eV belong to the binding energies of Ru 3p3/2 and Ru 3p1/2, respectively. The sub-peaks at 464.1 and 486.8 eV indicate the existence of Ru―O on the surface of the sample 14 (Fig. 3c). The P 2p XPS spectrum exhibits several characteristic peaks at 130.0, 132.6, and 133.6 eV 15 (Fig. 3d), which were identified as the metal phosphide (RuP), P―C, and P―O bonds, respectively. In particular, the presence of the P―C bond implies that some P heteroatoms were doped into the structure of GA.
Furthermore, the N2 adsorption-desorption isotherm was used to analyze the specific surface area of the porous nanostructure. The Brunauer-Emmett-Teller (BET) surface area of RuP/N-GA is up to 200.4 m2∙g−1 (Fig. S6a), which is mainly attributed to the 3D structure of N-GA. The pore volume of the sample is measured at 611.9 cm3∙g−1 at a partial pressure (p/p0) of 1, reflected from the pore-size distribution diagram (Fig. S6b). In addition, no obvious adsorption isotherm plateau was observed under saturated vapor pressure, indicating that the pore-like structure exhibited by the GA mainly consists of narrow wedge-shaped pores. The adsorption-desorption curve indicated that slit pores were formed by the accumulation of layered materials, which was also confirmed by the TEM image (Fig. S7). The large surface area and pore volume of the RuP/N-GA sample were attributed to the ultrasmall nanoparticles, abundant nanoholes, and 3D structure of N-GA. These structural features are beneficial for mass and charge transfer in electrocatalytic reactions.
Linear sweep voltammetry (LSV) was performed to investigate the HER activity of the as-synthesized electrocatalysts. The LSV curve on RuP/N-GA is measured in the N2-saturated 1 mol∙L−1 KOH electrolyte, which displays a better HER activity than the commercial Pt/C (Fig. 4a). The overpotential is 19.6 and 26.6 mV at 10 mA∙cm−2 for RuP/N-GA-900 and commercial Pt/C, respectively. The enhanced HER activity of RuP/N-GA could be attributed to three factors: 1) the high-activity ultrasmall RuP nanoparticles, 2) the excellent electrical conductivity of N-GA for high charge-transfer efficiency, and 3) the 3D porous structure of N-GA with abundant nanoholes and large specific area for effective mass transfer.
To further investigate the HER activity of RuP/N-GA, the LSV curves of GA, N-GA, RuP-GA, and Ru/N-GA were obtained under identical conditions (Fig. S8). Hardly any HER performance was observed for the GA and N-GA. Instead, the Ru/N-GA and RuP-GA samples have obvious electrocatalytic activities with overpotentials at 50.6 and 47.6 mV for HER, respectively. Compared to the GA structure, Ru is a more effective active species for HER electrocatalysis. The phosphatization of Ru can improve the HER activity, and the highly electronegative P can promote the further accumulation of electrons at the exposed Ru sites. Thus, RuP exhibits outstanding electrocatalytic activity for the HER than Ru 14,27. The atomic radii of the N atoms were similar to those of the C atoms. The introduction of N can reduce damage to the GA structure. This can optimize the charge and spin densities of the adjacent C atoms, thereby optimizing the H2 adsorption energy of the catalyst. In contrast, N doping and P incorporation in the RuP/N-GA structure can also synergize with Ru phosphide to enhance the electrical conductivity and improve the charge transfer efficiency between the electrocatalyst and electrolyte 17.
To investigate the effect of the pyrolysis temperature on the bifunctional electroactivity, various RuP/N-GA samples were prepared, denoted as RuP/N-GA-X (where X is the pyrolysis temperature). The LSV curves show that the RuP/N-GA-900 sample exhibits the best electrocatalytic behavior for the HER (Fig. 4a and S9). With an increased calcination temperature, GA can obtain a better graphitization degree and more defects. Therefore, the enriched defects of RuP/N-GA-900, rather than those of RuP/N-GA-700 and RuP/N-GA-800, can be confirmed by the Raman spectra (Fig. S10). On the other hand, increasing the temperature to 1000 or 1100 ℃ can lead to severe agglomeration of RuP (Fig. S11). As a result, RuP/N-GA-1000 and RuP/N-GA-1100 showed lower HER activities. The Tafel slope (Fig. 4b) was used to assess the HER kinetics of the RuP/N-GA-X catalysts. The Tafel plot of RuP/N-GA-900 reveals the smallest value of 37.03 mV∙dec−1, which is considerably lower than that of RuP/N-GA-700 (73.28 mV∙dec−1), RuP/N-GA-800 (66.09 mV∙dec−1), RuP/N-GA-1000 (104.56 mV∙dec−1), RuP/N-GA-1100 (107.24 mV∙dec−1), and even commercial Pt/C (48.59 mV∙dec−1). The lowest Tafel slope indicates the fastest HER kinetics on the surface of RuP/N-GA-900, and the HER route of RuP/N-GA-900 follows a Heyrovsky mechanism similar to that of Pt. Generally, the HER rate is determined by the recombination rate of H* on the surface of RuP/N-GA-900 28. Because of the low Ru loading, the RuP/N-GA-900 sample has a greater advantage in HER electrocatalysis than commercial Pt/C and other Ru phosphide nanocatalysts (Table 1).
Electrocatalyst | Electrolyte | Overpotential/mV | Ref. |
RuP/N-GA-900 | 1 mol∙L−1 KOH | 19.6 | This work |
RuP nanoparticles | 1 mol∙L−1 KOH | 22 | 14 |
RuPx nanoparticles in N, P-codoped carbon nanospheres | 1 mol∙L−1 KOH | 74 | 15 |
RuP nanoparticles | 1 mol∙L−1 KOH | 31 | 16 |
RuP2 in N, P-codoped carbon | 1 mol∙L−1 KOH | 52 | 17 |
Ru nanocrystal | 1 mol∙L−1 KOH | 81 | 29 |
Ru nanoparticles on multi-walled carbon nanotubes | 1 mol∙L−1 KOH | 17 | 30 |
NiTe nanoarrays with RuO2 | 1 mol∙L−1 KOH | 19 | 31 |
P-doped Ru supported on XC-72 carbon | 1 mol∙L−1 KOH | 31 | 32 |
S-doped RuP nanoparticles in N, P, and S-codoped carbon | 1 mol∙L−1 KOH | 92 | 33 |
Ru/CoO hybrid | 1 mol∙L−1 KOH | 55 | 34 |
RuBe nanosheets | 1 mol∙L−1 KOH | 34.8 | 35 |
Ru MOF-assisted CoFe nanoarrays | 1 mol∙L−1 KOH | 50 | 36 |
Ru nanoparticles on N-doped porous carbon nanosheets | 1 mol∙L−1 KOH | 50 | 37 |
To investigate the charge-transfer properties, electrochemical impedance spectroscopy (EIS) tests were performed on RuP/N-GA-900 and commercial Pt/C (Fig. 4c). In 1 mol∙L−1 KOH, the Rct of RuP/N-GA-900 is 47.3 Ω, smaller than that of commercial Pt/C (67.7 Ω). A smaller Rct indicates faster charge transfer at the electrode surface of RuP/N-GA-900. The long-term stability of electrocatalysts is another significant factor affecting their successful application. The LSV curve after 5000 cycles displays a 10.5 mV increase shift to the first LSV curve on RuP/N-GA-900 at 10 mA∙cm−2 (Fig. S12). In contrast, the commercial Pt/C catalyst shows an approximate 16.5 mV shift between the first and 5000th cycle, revealing relatively better stability on RuP/N-GA-900 for HER. After 5000 CV cycles, RuP does not significantly aggregate (Fig. S13). Similarly, the chronoamperometry curve only displays a slightly decreased current after 10 h of electrocatalysis (Fig. 4d). Anchoring on N-GA effectively prevented the agglomeration of the ultrasmall RuP structure during the electrochemical process. The TEM image of RuP/N-GA-900 after a 10-h chronoamperometry test confirms the uniform dispersion of the RuP nanoparticles (Fig. S14). Therefore, RuP/N-GA-900 showed high stability in the long-term electrocatalytic process, suggesting its promising application for H2 production under alkaline conditions.
The HzOR behaviors of RuP/N-GA-X were investigated in 1 mol∙L−1 KOH with 0.4 mol∙L−1 N2H4 (Fig. 5a). The LSV curves show that all the RuP/N-GA-X catalysts have obvious electrochemical activities toward the HzOR. In particular, the RuP/N-GA-900 has the best HzOR performance with a potential of −54 and 24 mV at 10 and 50 mA∙cm−2, respectively. Compared with current HzOR electrocatalysts, RuP/N-GA-900 is still a very competitive catalyst in alkaline electrolytes (Table 2). Such high activity originates from the structural advantages of RuP/N-GA-900, as demonstrated by HER electrocatalysis: 1) ultrasmall RuP nanoparticles, 2) N-doping in GA frameworks, and 3) few-layer N-GA morphology. Moreover, LSV measurement with different hydrazine concentrations in 1 mol∙L−1 KOH was conducted. A larger concentration of N2H4 (0.1–0.4 mol∙L−1) can lead to an increased current density of hydrazine oxidation (Fig. 5b). After the hydrazine concentration reaches 0.5 mol∙L−1, the LSV curve keeps a similar catalytic current as that of 0.4 mol∙L−1 N2H4. This phenomenon indicates that higher hydrazine concentration can not improve the efficiency of HzOR. The electrocatalytic activity of RuP/N-GA-900 is already saturated when hydrazine concentration reaches 0.4 mol∙L−1. Chronoamperometry was used to investigate the stability of RuP/N-GA-900 in the HzOR. In the chronoamperometry curves, RuP/N-GA-900 maintains a stable current density for 5 h (Fig. 5c), indicating that RuP/N-GA-900 is more stable than commercial Pt/C for HzOR.
Catalyst | Electrolyte | Work potential/mV | Ref. |
RuP/N-GA-900 | 1.0 mol∙L−1 KOH + 0.4 mol∙L−1 N2H4 | −54 | This work |
Ru single atoms into WO3 | 1.0 mol∙L−1 KOH + 0.5 mol∙L−1 N2H4 | −58 | 38 |
Ru nanoparticles on N-doped carbon | 1.0 mol∙L−1 KOH + 0.5 mol∙L−1 N2H4 | −39 | 39 |
RuP2 nanoparticles on carbon microsheets | 1.0 mol∙L−1 KOH + 0.3 mol∙L−1 N2H4 | −70 | 40 |
CoRuOx in N-doped carbon shell | 1.0 mol∙L−1 KOH + 0.5 mol∙L−1 N2H4 | −19 | 41 |
carbon-coated RuP2 porous microsheets | 1.0 mol∙L−1 KOH + 0.3 mol∙L−1 N2H4 | −36 | 42 |
NiFeP on nickel foam | 1.0 mol∙L−1 KOH + 0.1 mol∙L−1 N2H4 | 77 | 43 |
Co-doped Ni2P | 1.0 mol∙L−1 KOH + 0.1 mol∙L−1 N2H4 | 10 | 44 |
PdCo nanoparticles into carbon nanofibers | 3.0 mol∙L−1 KOH + 0.2 mol∙L−1 N2H4 | 25 | 45 |
CoP/Co nanoparticles on carbon layers | 1.0 mol∙L−1 KOH + 0.5 mol∙L−1 N2H4 | −69 | 46 |
V-doped Ni3N nanosheet self-supported on Ni foam | 1.0 mol∙L−1 KOH + 0.1 mol∙L−1 N2H4 | 2 | 47 |
Low-crystalline Rh metallene | 1.0 mol∙L−1 KOH + 0.1 mol∙L−1 N2H4 | −2 | 48 |
RhIr mesoporous nanospheres | 1.0 mol∙L−1 KOH + 0.5 mol∙L−1 N2H4 | −12 mV | 49 |
RuP/N-GA-900 is a promising bifunctional electrocatalyst with excellent hydrazine oxidation-assisted H2 production. Considering the large voltage required in the overall water splitting (OWS) system, a bifunctional two-electrode overall hydrazine splitting (OHzS) system was designed using RuP/N-GA-900 as an electrocatalyst for efficient HzOR and HER. Fortunately, the OHzS system with RuP/N-GA-900 can achieve a very low voltage of 41 mV at 10 mA∙cm−2. In contrast, the OHzS system based on the commercial Pt/C electrocatalyst requires 202.0 mV to drive H2 production (Fig. 5d). This result indicates that RuP/N-GA-900 is a better alternative to the commercial Pt/C electrocatalyst for hydrazine splitting.
DFT calculations were performed to investigate the possible electrocatalytic mechanism of HzOR. RuP/N-GA and RuP on GA (RuP/GA) slabs were prepared to elucidate the synergistic effect between N doping and Ru sites. The electronic properties were clarified from the total and partial density of states (PDOS) results (Fig. 6a, b). The electron distribution of both slabs was continuous near the Fermi level, indicating that the slabs had metallicity and excellent conductivity for electrocatalysis. Meantime, for the Ru sites, the d-band center of RuP/N-GA is −1.62 eV, more positive than that of RuP/GA (−1.76 eV). This indicates that N doping can effectively adjust the electronic structure of the Ru active sites, and the moderate value of the d-band center could achieve a balance between adsorption and desorption 50. Thus, the N heteroatoms in the RuP/N-GA slab can modulate the electronic structure of the Ru sites, which could be advantageous for bifunctional electrocatalytic activity. However, the study of HzOR is in its fledgling stages, thus, DFT calculations on the electrochemical reaction mechanisms are meaningful for further studies. According to the limited previous work, the HzOR process is composed of the adsorption and dehydrogenation steps (*N2H4 → *N2H3 → *N2H2 → *N2H → *N2) 51. The free energies and number of hydrazine molecules adsorbed on the RuP/N-GA and RuP/GA slabs (Fig. 7) were calculated (Fig. 6c). The free energy on RuP/N-GA is −0.68 eV, much lower than that of RuP/GA (−0.59 eV), suggesting that N-doping makes it easier for RuP/N-GA to adsorb hydrazine molecule on Ru sites. In the dehydrogenation steps, for both slabs, the dehydrogenation of *N2H2 to *N2H is the rate-determining step (RDS). On RuP/N-GA, the free energy difference value is 0.79 eV, which is smaller than the dehydrogenation energy on RuP/GA. This result shows the N-doping in the structure of RuP/N-Ga can modulate the electronic structure of Ru active sites, which also contributes to HzOR activity enhancement of Ru sites.
To achieve an effective bifunctional electrocatalyst for overall hydrazine splitting, ultrasmall RuP nanoparticles anchored on N-doped graphene aerogels were prepared via a facile adsorption-phosphatization method. During pyrolysis, PEI can release N active atoms as heteroatoms for doping into the 3D structure of the GA framework, which simultaneously introduces abundant defects in RuP/N-GA to increase both the HER and HzOR activities. As a result, RuP/N-GA exhibits better performance with a low overpotential (19.6 mV) for the HER than a commercial Pt/C catalyst. Additionally, RuP/N-GA exhibits an excellent HzOR electrocatalytic activity, which only requires a very low potential (−54 mV) for 10 mA∙cm−2. Such high activity can be attributed to the structural advantages of RuP/N-GA-900: 1) ultrasmall RuP nanoparticles for abundant Ru active sites, 2) the synergistic effect of N-doping in GA frameworks with Ru phosphide for better electrocatalytic activity, and 3) 3D porous N-GA with a few-layer morphology for superior electron and mass transfer. The DFT calculation results confirm that N doping can effectively enhance the PDS activity of the HzOR. Impressively, the OHzS system utilizing the RuP/N-GA-900 as a bifunctional electrocatalyst achieves a very low voltage of 41 mV at 10 mA∙cm−2. Thus, the HzOR-assisted H2 production was successfully achieved at low voltages. This work extends the bifunctional electrocatalyst for the HER and HzOR and sheds new light on the design and synthesis of advanced electrocatalysts via the adsorption-phosphatization method.
Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Acta Phys. -Chim. Sin. 2021, 37, 2010025.
doi: 10.3866/PKU.WHXB202010025
Wang, T. J.; Jiang, Y. C.; He, J. W.; Li, F. M.; Ding, Y.; Chen, P.; Chen, Y. Carbon Energy 2022, 4, 283. doi: 10.1002/cey2.170
doi: 10.1002/cey2.170
Hong, Q. L.; Miao, B. Q.; Wang, T. J.; Li, F. M.; Chen, Y.; Energy Lab. 2023, 1, 220022. doi: 10.54227/elab.20220022
doi: 10.54227/elab.20220022
Qin, R.; Wang, P. Y.; Lin, C.; Cao, F.; Zhang, J. Y.; Chen, L.; Mu S. C. Acta Phys. -Chim. Sin. 2021, 37, 2009099.
doi: 10.3866/PKU.WHXB202009099
Lei, Z. N.; Ma, X. Y.; Hu, X. Y.; Fan, J.; Liu, E. Z. Acta Phys. -Chim. Sin. 2022, 38, 2110049.
doi: 10.3866/PKU.WHXB202110049
Xue, Q.; Bai, X. Y.; Zhao, Y.; Li, Y. N.; Wang, T. J.; Li, Y. N.; Sun, H. Y.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. B.; et al. J. Energy Chem. 2022, 65, 94. doi: 10.1016/j.jechem.2021.05.034
doi: 10.1016/j.jechem.2021.05.034
Song, W.; Li, M.; Wang, C.; Lu, X. Carbon Energy 2021, 3, 101. doi: 10.1002/cey2.85
doi: 10.1002/cey2.85
Zhao, T. W.; Wang, Y.; Karuturi, S.; Catchpole, K.; Zhang, Q.; Zhao, C. Carbon Energy 2020, 2, 582. doi: 10.1002/cey2.79
doi: 10.1002/cey2.79
Liu, Y.; Li, W. D.; Wu, H.; Lu, S. Y. Acta Phys. -Chim. Sin. 2021, 37, 2009082.
doi: 10.3866/PKU.WHXB202009082
Hu, Q.; Gao, K.; Wang, X.; Zheng, H. J.; Cao, J. G.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Nat. Commun. 2022, 13, 3958. doi: 10.1038/s41467-022-31660-2
doi: 10.1038/s41467-022-31660-2
Li, C.; Jang, H.; Kim, M. G.; Hou, L.; Liu, X.; Cho, J. Appl. Catal. B 2022, 307, 121204. doi: 10.1016/j.apcatb.2022.121204
doi: 10.1016/j.apcatb.2022.121204
Ding, Y.; Cao, K. W.; He, J. W.; Li, F. M.; Huang, H.; Chen, P.; Chen, Y. Chin. J. Catal. 2022, 43, 1535. doi: 10.1016/S1872-2067(21)63977-3
doi: 10.1016/S1872-2067(21)63977-3
Zhang, F.; Zhu, Y. L.; Chen, Y.; Lu, Y.; Lin, Q.; Zhang L.; Tao, S. W.; Zhang, X. W.; Wang, H. T. J. Mater. Chem. A 2020, 8, 12810. doi: 10.1039/D0TA04491A
doi: 10.1039/D0TA04491A
Chang, Q. B.; Ma, J. W.; Zhu, Y. Z.; Li, Z.; Xu, D. Y.; Duan, X. Z.; Peng, W. C.; Li, Y.; Zhang, G.L.; Zhang, F. B. ACS Sustain. Chem. Eng. 2018, 6, 6388. doi: 10.1021/acssuschemeng.8b00187
doi: 10.1021/acssuschemeng.8b00187
Chi, J. Q.; Gao, W. K.; Lin, J. H.; Dong, B.; Yan, K. L.; Qin, J. F.; Liu, Bin.; Chai, Y. M.; Liu, C.G. ChemSusChem 2018, 11, 743. doi: 10.1002/cssc.201702010
doi: 10.1002/cssc.201702010
Guo, L.; Luo, F.; Guo, F.; Zhang, Q.; Qu, K.; Yang, Z. H.; Cai, W. W. Chem. Commun. 2019, 55, 7623. doi: 10.1039/C9CC03675J
doi: 10.1039/C9CC03675J
Li, Y.; Luo, Y.; Zhang, Z. Q.; Yu, Li, C. Zhang, Q.; Zheng, Z.; Liu, H. K.; Liu, B. L.; Dou, S. X. Carbon 2021, 183, 362. doi: 10.1016/j.carbon.2021.07.039
doi: 10.1016/j.carbon.2021.07.039
Chen, Y. J.; Li, J.; Wang, N.; Zhou, Y. N.; Zheng, J.; Chu, W. J. Energy Chem. 2022, 448, 137611. doi: 10.1016/j.cej.2022.137611
doi: 10.1016/j.cej.2022.137611
Zhu, Y.; Zhang, J.; Qian, Q.; Li, Y.; Li, Z.; Liu, Y.; Xiao, C.; Zhang, G. Q.; Xie Y. Angew. Chem. Int. Ed. 2022, 61, e202113082. doi: 10.1002/anie.202113082
doi: 10.1002/anie.202113082
Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C.; Zhang G. Q.; Xie, Y. Angew. Chem. Int. Ed. 2021, 60, 5984. doi: 10.1002/anie.202014362
doi: 10.1002/anie.202014362
Wang, Z.; Xu, L.; Huang, F.; Qu, L.; Li, J.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. Adv. Energy Mater. 2019, 9, 1900390. doi: 10.1002/aenm.201900390
doi: 10.1002/aenm.201900390
Liu, Y.; Zhang, J.; Li, Y.; Qian, Li, Q. Z.; Zhu, Y.; Zhang G. Q. Nat. Commun. 2020, 11, 1853. doi: 10.1038/s41467-020-15563-8
doi: 10.1038/s41467-020-15563-8
Cui, S. F.; Wu, W.; Liu, C.; Wang, Y.; Chen, Q. M.; Liu, X. R. Nanoscale 2021, 13, 18247. doi: 10.1039/D1NR04075H
doi: 10.1039/D1NR04075H
Xue, Q.; Ding, Y.; Xue, Y. Y.; Li, F. M.; Chen, P.; Chen, Y. Carbon 2018, 139, 137. doi: 10.1016/j.Carbon.2018.06.052
doi: 10.1016/j.Carbon.2018.06.052
Wang, Y. H.; Li, R. Q.; Li, H. B.; Huang, H. L.; Guo, Z. J.; Chen, H. Y.; Zheng, Y.; Qu, K. G. Rare Metals 2021, 40, 1040. doi: 10.1007/s12598-020-01665-1
doi: 10.1007/s12598-020-01665-1
Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Nat. Commun. 2014, 5, 5291. doi: 10.1038/ncomms6291
doi: 10.1038/ncomms6291
Ge, R.; Wang, S.; Su, J.; Dong, Y.; Lin, Y.; Zhang, Q.; Chen, L. Nanoscale 2018, 10, 13930. doi: 10.1039/C8NR03554G
doi: 10.1039/C8NR03554G
Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M. H.; Yang, H.; Guo, S. Adv. Energy Mater. 2020, 10, 1903120. doi: 10.1002/aenm.201903120
doi: 10.1002/aenm.201903120
Li, Y.; Chu, F.; Liu, Y.; Kong, Y.; Tao, Y.; Li, Y.; Qin, Y. Chem. Commun. 2018, 54, 13076. doi: 10.1039/C8CC08276F
doi: 10.1039/C8CC08276F
Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Nat. Commun. 2020, 11, 1278. doi: 10.1038/s41467-020-15069-3
doi: 10.1038/s41467-020-15069-3
Sun, H. C.; Yang, J. M.; Li, J. G.; Li, Z. S.; Ao, X.; Liu, Y. Z.; Zhang, Y.; Li, Y.; Wang, C.; Tang, H. Appl. Catal. B 2020, 272, 118988. doi: 10.1016/j.apcatb.2020.118988
doi: 10.1016/j.apcatb.2020.118988
Zhao, Y. M.; Wang, X. W.; Cheng, G. Z.; Luo, W. ACS Catal. 2020, 10, 11751. doi: 10.1021/acscatal.0c03148
doi: 10.1021/acscatal.0c03148
Liu, X.; Liu, F.; Yu, J.; Xiong, G.; Zhao, L.; Sang, Y.; Zuo, S.; Zhang, J.; Liu, H.; Zhou, W. Adv. Sci. 2020, 7, 2001526. doi: 10.1002/advs.202001526
doi: 10.1002/advs.202001526
Guo, J. X.; Yan, D. Y.; Qiu, K. W.; Mu, C.; Jiao, D.; Wang, H.; Lin, T. J. Energy Chem. 2019, 37, 143. doi: 10.1016/j.jechem.2018.12.011
doi: 10.1016/j.jechem.2018.12.011
Xu, J.; Wang, S. I.; Yang, C. L.; Li, T. T.; Liu, Q. C.; Kong, X. Chem. Eng. J. 2021, 421, 129741. doi: 10.1016/j.cej.2021.129741
doi: 10.1016/j.cej.2021.129741
Muthurasu, A.; Chhetri, K.; Dahal, B.; Kim, H. Y. Nanoscale 2022, 14, 6557. doi: 10.1039/D2NR00060A
doi: 10.1039/D2NR00060A
Yang, Q.; Zhu, B.; Wang, F.; Zhang, C.; Cai, J. J. Nano Res. 2022, 15, 5134. doi: 10.1007/s12274-022-4148-2
doi: 10.1007/s12274-022-4148-2
Li, J.; Zhang, C.; Zhang, C.; Ma, H.; Yang, Y.; Guo, Z.; Wang, Y.; Ma, H. Chem. Eng. J. 2022, 430, 132953. doi: 10.1016/j.cej.2021.132953
doi: 10.1016/j.cej.2021.132953
Wang, J.; Guan, X.; Li, H.; Zeng, S.; Li, R.; Yao, Q.; Chen, H.; Zheng, Y.; Qu, K. Nano Energy, 2022, 100, 107467. doi: 10.1016/j.nanoen.2022.107467
doi: 10.1016/j.nanoen.2022.107467
Li, Y.; Zhang, J.; Liu, Y.; Qian, Q.; Li, Z.; Zhu, Y.; Zhang, G. Sci. Adv. 2020, 6, 131099. doi: 10.1126/sciadv.abb4197
doi: 10.1126/sciadv.abb4197
Yang, Q. F.; Cui, Y. C.; Li, Q. Y.; Cai, J. H.; Wang, D.; Feng L. Chem. Eng. 2020, 8, 12089. doi: 10.1021/acssuschemeng.0c03410
doi: 10.1021/acssuschemeng.0c03410
Li, Y.; Wang, W.; Cheng, M.; Qian, Q.; Zhu, Y.; Zhang, G. Catal. Sci. Technol. 2022, 12, 6258. doi: 10.1039/D2CY00055E
doi: 10.1039/D2CY00055E
Wang, H.; Tao, S. Nanoscale Adv. 2021, 3, 2280. doi: 10.1039/D1NA00043H
doi: 10.1039/D1NA00043H
Zhou, B.; Li, M. Y.; Li, Y. Y.; Liu, Y. B.; Lu, Y. X.; Li, W.; Wu, Y. J.; Huo, J.; Wang, Y. Y.; Tao, L.; Wang, S. Y. Chin. J. Catal. 2022, 43, 1131. doi: 10.1016/S1872-2067(21)63951-7
doi: 10.1016/S1872-2067(21)63951-7
Ao, Y.; Chen, S.; Wang, C.; Lu, X. J. Colloid Interface Sci. 2021, 601, 495. doi: 10.1016/j.jcis.2021.05.119
doi: 10.1016/j.jcis.2021.05.119
Chen, S.; Wang, C.; Liu, S.; Huang, M.; Lu, J. J. Phys. Chem. Lett. 2021, 12, 4849. doi: 10.1021/acs.jpclett.1c00963
doi: 10.1021/acs.jpclett.1c00963
Zhang, J.; Liu, Y.; Li, J.; Jin, X.; Li, Y.; Qian, Q.; Wang, Y.; El-Harairy, A.; Li, Z.; Zhu, Y. et al. ACS Appl. Mater. Interfaces 2021, 13, 3881. doi: 10.1021/acsami.0c18684
doi: 10.1021/acsami.0c18684
Deng, K.; Mao, Q.; Wang, W.; Wang, P.; Wang, Z.; Xu, Y.; Li, X.; Wang, H. J.; Wang, L. Appl. Catal. B 2022, 310, 121338. doi: 10.1016/j.apcatb.2022
doi: 10.1016/j.apcatb.2022
Zhang, M.; Wang, Z.; Duan, Z.; Wang, S.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. J. Mater. Chem. A 2021, 9, 18323. doi: 10.1039/D1TA05564J
doi: 10.1039/D1TA05564J
Song, Q.; Li, J.; Wang, S.; Liu, J.; Liu, X.; Pang, L. Y.; Li, H.; Liu, H. Small 2019, 15, e1903395. doi: 10.1002/smll.201903395
doi: 10.1002/smll.201903395
Zhou, L.; Shao, M.; Zhang, C.; Zhao, J.; He, S.; Rao, D.; Wei, M.; Evans, D. G.; Duan, X. Adv. Mater. 2017, 29, 1604080. doi: 10.1002/adma.201604080
doi: 10.1002/adma.201604080
Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Acta Phys. -Chim. Sin. 2021, 37, 2010025.
doi: 10.3866/PKU.WHXB202010025
Wang, T. J.; Jiang, Y. C.; He, J. W.; Li, F. M.; Ding, Y.; Chen, P.; Chen, Y. Carbon Energy 2022, 4, 283. doi: 10.1002/cey2.170
doi: 10.1002/cey2.170
Hong, Q. L.; Miao, B. Q.; Wang, T. J.; Li, F. M.; Chen, Y.; Energy Lab. 2023, 1, 220022. doi: 10.54227/elab.20220022
doi: 10.54227/elab.20220022
Qin, R.; Wang, P. Y.; Lin, C.; Cao, F.; Zhang, J. Y.; Chen, L.; Mu S. C. Acta Phys. -Chim. Sin. 2021, 37, 2009099.
doi: 10.3866/PKU.WHXB202009099
Lei, Z. N.; Ma, X. Y.; Hu, X. Y.; Fan, J.; Liu, E. Z. Acta Phys. -Chim. Sin. 2022, 38, 2110049.
doi: 10.3866/PKU.WHXB202110049
Xue, Q.; Bai, X. Y.; Zhao, Y.; Li, Y. N.; Wang, T. J.; Li, Y. N.; Sun, H. Y.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. B.; et al. J. Energy Chem. 2022, 65, 94. doi: 10.1016/j.jechem.2021.05.034
doi: 10.1016/j.jechem.2021.05.034
Song, W.; Li, M.; Wang, C.; Lu, X. Carbon Energy 2021, 3, 101. doi: 10.1002/cey2.85
doi: 10.1002/cey2.85
Zhao, T. W.; Wang, Y.; Karuturi, S.; Catchpole, K.; Zhang, Q.; Zhao, C. Carbon Energy 2020, 2, 582. doi: 10.1002/cey2.79
doi: 10.1002/cey2.79
Liu, Y.; Li, W. D.; Wu, H.; Lu, S. Y. Acta Phys. -Chim. Sin. 2021, 37, 2009082.
doi: 10.3866/PKU.WHXB202009082
Hu, Q.; Gao, K.; Wang, X.; Zheng, H. J.; Cao, J. G.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Nat. Commun. 2022, 13, 3958. doi: 10.1038/s41467-022-31660-2
doi: 10.1038/s41467-022-31660-2
Li, C.; Jang, H.; Kim, M. G.; Hou, L.; Liu, X.; Cho, J. Appl. Catal. B 2022, 307, 121204. doi: 10.1016/j.apcatb.2022.121204
doi: 10.1016/j.apcatb.2022.121204
Ding, Y.; Cao, K. W.; He, J. W.; Li, F. M.; Huang, H.; Chen, P.; Chen, Y. Chin. J. Catal. 2022, 43, 1535. doi: 10.1016/S1872-2067(21)63977-3
doi: 10.1016/S1872-2067(21)63977-3
Zhang, F.; Zhu, Y. L.; Chen, Y.; Lu, Y.; Lin, Q.; Zhang L.; Tao, S. W.; Zhang, X. W.; Wang, H. T. J. Mater. Chem. A 2020, 8, 12810. doi: 10.1039/D0TA04491A
doi: 10.1039/D0TA04491A
Chang, Q. B.; Ma, J. W.; Zhu, Y. Z.; Li, Z.; Xu, D. Y.; Duan, X. Z.; Peng, W. C.; Li, Y.; Zhang, G.L.; Zhang, F. B. ACS Sustain. Chem. Eng. 2018, 6, 6388. doi: 10.1021/acssuschemeng.8b00187
doi: 10.1021/acssuschemeng.8b00187
Chi, J. Q.; Gao, W. K.; Lin, J. H.; Dong, B.; Yan, K. L.; Qin, J. F.; Liu, Bin.; Chai, Y. M.; Liu, C.G. ChemSusChem 2018, 11, 743. doi: 10.1002/cssc.201702010
doi: 10.1002/cssc.201702010
Guo, L.; Luo, F.; Guo, F.; Zhang, Q.; Qu, K.; Yang, Z. H.; Cai, W. W. Chem. Commun. 2019, 55, 7623. doi: 10.1039/C9CC03675J
doi: 10.1039/C9CC03675J
Li, Y.; Luo, Y.; Zhang, Z. Q.; Yu, Li, C. Zhang, Q.; Zheng, Z.; Liu, H. K.; Liu, B. L.; Dou, S. X. Carbon 2021, 183, 362. doi: 10.1016/j.carbon.2021.07.039
doi: 10.1016/j.carbon.2021.07.039
Chen, Y. J.; Li, J.; Wang, N.; Zhou, Y. N.; Zheng, J.; Chu, W. J. Energy Chem. 2022, 448, 137611. doi: 10.1016/j.cej.2022.137611
doi: 10.1016/j.cej.2022.137611
Zhu, Y.; Zhang, J.; Qian, Q.; Li, Y.; Li, Z.; Liu, Y.; Xiao, C.; Zhang, G. Q.; Xie Y. Angew. Chem. Int. Ed. 2022, 61, e202113082. doi: 10.1002/anie.202113082
doi: 10.1002/anie.202113082
Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C.; Zhang G. Q.; Xie, Y. Angew. Chem. Int. Ed. 2021, 60, 5984. doi: 10.1002/anie.202014362
doi: 10.1002/anie.202014362
Wang, Z.; Xu, L.; Huang, F.; Qu, L.; Li, J.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. Adv. Energy Mater. 2019, 9, 1900390. doi: 10.1002/aenm.201900390
doi: 10.1002/aenm.201900390
Liu, Y.; Zhang, J.; Li, Y.; Qian, Li, Q. Z.; Zhu, Y.; Zhang G. Q. Nat. Commun. 2020, 11, 1853. doi: 10.1038/s41467-020-15563-8
doi: 10.1038/s41467-020-15563-8
Cui, S. F.; Wu, W.; Liu, C.; Wang, Y.; Chen, Q. M.; Liu, X. R. Nanoscale 2021, 13, 18247. doi: 10.1039/D1NR04075H
doi: 10.1039/D1NR04075H
Xue, Q.; Ding, Y.; Xue, Y. Y.; Li, F. M.; Chen, P.; Chen, Y. Carbon 2018, 139, 137. doi: 10.1016/j.Carbon.2018.06.052
doi: 10.1016/j.Carbon.2018.06.052
Wang, Y. H.; Li, R. Q.; Li, H. B.; Huang, H. L.; Guo, Z. J.; Chen, H. Y.; Zheng, Y.; Qu, K. G. Rare Metals 2021, 40, 1040. doi: 10.1007/s12598-020-01665-1
doi: 10.1007/s12598-020-01665-1
Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Nat. Commun. 2014, 5, 5291. doi: 10.1038/ncomms6291
doi: 10.1038/ncomms6291
Ge, R.; Wang, S.; Su, J.; Dong, Y.; Lin, Y.; Zhang, Q.; Chen, L. Nanoscale 2018, 10, 13930. doi: 10.1039/C8NR03554G
doi: 10.1039/C8NR03554G
Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M. H.; Yang, H.; Guo, S. Adv. Energy Mater. 2020, 10, 1903120. doi: 10.1002/aenm.201903120
doi: 10.1002/aenm.201903120
Li, Y.; Chu, F.; Liu, Y.; Kong, Y.; Tao, Y.; Li, Y.; Qin, Y. Chem. Commun. 2018, 54, 13076. doi: 10.1039/C8CC08276F
doi: 10.1039/C8CC08276F
Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Nat. Commun. 2020, 11, 1278. doi: 10.1038/s41467-020-15069-3
doi: 10.1038/s41467-020-15069-3
Sun, H. C.; Yang, J. M.; Li, J. G.; Li, Z. S.; Ao, X.; Liu, Y. Z.; Zhang, Y.; Li, Y.; Wang, C.; Tang, H. Appl. Catal. B 2020, 272, 118988. doi: 10.1016/j.apcatb.2020.118988
doi: 10.1016/j.apcatb.2020.118988
Zhao, Y. M.; Wang, X. W.; Cheng, G. Z.; Luo, W. ACS Catal. 2020, 10, 11751. doi: 10.1021/acscatal.0c03148
doi: 10.1021/acscatal.0c03148
Liu, X.; Liu, F.; Yu, J.; Xiong, G.; Zhao, L.; Sang, Y.; Zuo, S.; Zhang, J.; Liu, H.; Zhou, W. Adv. Sci. 2020, 7, 2001526. doi: 10.1002/advs.202001526
doi: 10.1002/advs.202001526
Guo, J. X.; Yan, D. Y.; Qiu, K. W.; Mu, C.; Jiao, D.; Wang, H.; Lin, T. J. Energy Chem. 2019, 37, 143. doi: 10.1016/j.jechem.2018.12.011
doi: 10.1016/j.jechem.2018.12.011
Xu, J.; Wang, S. I.; Yang, C. L.; Li, T. T.; Liu, Q. C.; Kong, X. Chem. Eng. J. 2021, 421, 129741. doi: 10.1016/j.cej.2021.129741
doi: 10.1016/j.cej.2021.129741
Muthurasu, A.; Chhetri, K.; Dahal, B.; Kim, H. Y. Nanoscale 2022, 14, 6557. doi: 10.1039/D2NR00060A
doi: 10.1039/D2NR00060A
Yang, Q.; Zhu, B.; Wang, F.; Zhang, C.; Cai, J. J. Nano Res. 2022, 15, 5134. doi: 10.1007/s12274-022-4148-2
doi: 10.1007/s12274-022-4148-2
Li, J.; Zhang, C.; Zhang, C.; Ma, H.; Yang, Y.; Guo, Z.; Wang, Y.; Ma, H. Chem. Eng. J. 2022, 430, 132953. doi: 10.1016/j.cej.2021.132953
doi: 10.1016/j.cej.2021.132953
Wang, J.; Guan, X.; Li, H.; Zeng, S.; Li, R.; Yao, Q.; Chen, H.; Zheng, Y.; Qu, K. Nano Energy, 2022, 100, 107467. doi: 10.1016/j.nanoen.2022.107467
doi: 10.1016/j.nanoen.2022.107467
Li, Y.; Zhang, J.; Liu, Y.; Qian, Q.; Li, Z.; Zhu, Y.; Zhang, G. Sci. Adv. 2020, 6, 131099. doi: 10.1126/sciadv.abb4197
doi: 10.1126/sciadv.abb4197
Yang, Q. F.; Cui, Y. C.; Li, Q. Y.; Cai, J. H.; Wang, D.; Feng L. Chem. Eng. 2020, 8, 12089. doi: 10.1021/acssuschemeng.0c03410
doi: 10.1021/acssuschemeng.0c03410
Li, Y.; Wang, W.; Cheng, M.; Qian, Q.; Zhu, Y.; Zhang, G. Catal. Sci. Technol. 2022, 12, 6258. doi: 10.1039/D2CY00055E
doi: 10.1039/D2CY00055E
Wang, H.; Tao, S. Nanoscale Adv. 2021, 3, 2280. doi: 10.1039/D1NA00043H
doi: 10.1039/D1NA00043H
Zhou, B.; Li, M. Y.; Li, Y. Y.; Liu, Y. B.; Lu, Y. X.; Li, W.; Wu, Y. J.; Huo, J.; Wang, Y. Y.; Tao, L.; Wang, S. Y. Chin. J. Catal. 2022, 43, 1131. doi: 10.1016/S1872-2067(21)63951-7
doi: 10.1016/S1872-2067(21)63951-7
Ao, Y.; Chen, S.; Wang, C.; Lu, X. J. Colloid Interface Sci. 2021, 601, 495. doi: 10.1016/j.jcis.2021.05.119
doi: 10.1016/j.jcis.2021.05.119
Chen, S.; Wang, C.; Liu, S.; Huang, M.; Lu, J. J. Phys. Chem. Lett. 2021, 12, 4849. doi: 10.1021/acs.jpclett.1c00963
doi: 10.1021/acs.jpclett.1c00963
Zhang, J.; Liu, Y.; Li, J.; Jin, X.; Li, Y.; Qian, Q.; Wang, Y.; El-Harairy, A.; Li, Z.; Zhu, Y. et al. ACS Appl. Mater. Interfaces 2021, 13, 3881. doi: 10.1021/acsami.0c18684
doi: 10.1021/acsami.0c18684
Deng, K.; Mao, Q.; Wang, W.; Wang, P.; Wang, Z.; Xu, Y.; Li, X.; Wang, H. J.; Wang, L. Appl. Catal. B 2022, 310, 121338. doi: 10.1016/j.apcatb.2022
doi: 10.1016/j.apcatb.2022
Zhang, M.; Wang, Z.; Duan, Z.; Wang, S.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. J. Mater. Chem. A 2021, 9, 18323. doi: 10.1039/D1TA05564J
doi: 10.1039/D1TA05564J
Song, Q.; Li, J.; Wang, S.; Liu, J.; Liu, X.; Pang, L. Y.; Li, H.; Liu, H. Small 2019, 15, e1903395. doi: 10.1002/smll.201903395
doi: 10.1002/smll.201903395
Zhou, L.; Shao, M.; Zhang, C.; Zhao, J.; He, S.; Rao, D.; Wei, M.; Evans, D. G.; Duan, X. Adv. Mater. 2017, 29, 1604080. doi: 10.1002/adma.201604080
doi: 10.1002/adma.201604080
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Zhuo Li , Peng Yu , Di Shen , Xinxin Zhang , Zhijian Liang , Baoluo Wang , Lei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Xiaoli Deng , Xiangchao Lu , Yang Cao , Qianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686