Citation: Fan Yang, Zheng Liu, Da Wang, KwunNam Hui, Yelong Zhang, Zhangquan Peng. Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230300. doi: 10.3866/PKU.WHXB202303006
-
With increasing global energy demand and stricter environmental protection requirements, energy storage technology has become a research hotspot in the global energy field. New types of energy storage devices continue to emerge owing to the continuous development of cost-effective energy storage technology. Among them, potassium-ion batteries have received widespread attention as a new type of alkali metal ion battery because of their high capacity and low cost and are considered one of the future development directions. However, the research on potassium-ion batteries is still in its infancy, with many challenges to overcome regarding practical applications. A key factor affecting the performance of potassium-ion batteries is the anode material, as it not only affects the manufacturing costs but also directly affects the power density and energy density of the battery. Traditional anode materials for lithium-ion batteries cannot meet the requirements of potassium-ion batteries. Therefore, developing high-performance anode materials suitable for potassium-ion batteries is an important research direction at present. The charge and discharge rate and cycling life of potassium-ion batteries also need further improvements. Currently, the low-rate performance, short cycle life, and unsatisfactory practical capacities limit their practical application and commercialization. However, the future of potassium-ion batteries remains promising. Upon resolving the aforementioned issues, potassium-ion batteries will have diverse application prospects, such as electric vehicles, energy storage stations, and smart grids, providing important support for solving energy problems. Therefore, the research and development of potassium-ion batteries are an important direction in the global energy field. Current research efforts are primarily focused on exploring novel anode materials with exceptional ratability and cyclability. In this regard, we synthesized a new type of anode material based on bismuth telluride (Bi2Te3) and experimentally studied its applicability in potassium-ion batteries. The performance of Bi2Te3 anode for potassium-ion batteries has been limited by its structural instability and slow electrochemical reaction kinetics. In this study, rod-like Bi2Te3 was grown on accordion-like MXene, followed by P-doping to obtain a high-performance P-Bi2Te3/MXene superstructure. This novel anode had abundant Te vacancies and good self-auto adjustable function, providing excellent cycling stability (323.1 mAh·g-1 after 200 cycles at 0.2 A·g-1) and outstanding rate capability (67.1 mAh·g-1 at 20 A·g-1). Kinetic analysis and ex situ characterization indicate that the superstructure exhibits superior pseudocapacitive properties, high electrical conductivity, favorable diffusion capability, and reversible insertion and conversion reaction mechanism.
-
Keywords:
- Potassium ion battery,
- Anode,
- Bi2Te3,
- MXene,
- P doping
-
-
[1]
(1) Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Nano Res. 2021, 14 (12), 4442. doi: 10.1007/s12274-021-3439-3
-
[2]
-
[3]
(3) Din, M. A. U.; Li, C.; Zhang, L. H.; Han, C. P.; Li, B. H. Mater. Today Phys. 2021, 21, 100486. doi: 10.1016/j.mtphys.2021.100486
-
[4]
-
[5]
(5) Min, X.; Xiao, J.; Fang, M. H.; Wang, W.; Zhao, Y. J.; Liu, Y. G.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. H. Energy Environ. Sci. 2021, 14 (4), 2186. doi: 10.1039/D0EE02917C
-
[6]
(6) Zhang, S. P.; Wang, G.; Wang, B. B.; Wang, J. M.; Bai, J. T.; Wang, H. Adv. Funct. Mater. 2020, 30 (24), 2001592. doi: 10.1002/adfm.202001592
-
[7]
(7) Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. J. Am. Chem. Soc. 2017, 139 (9), 3316. doi: 10.1021/jacs.6b12185
-
[8]
(8) Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B. Adv. Mater. 2018, 30 (23), 1707334. doi: 10.1002/adma.201707334
-
[9]
(9) Zhou, J. W.; Zhang, Y. L.; Liu, Z.; Qiu, Z. P.; Wang, D.; Zeng, Q. G.; Yang, C.; Hui, K. N.; Yang, Y.; Peng, Z. Q.; et al. Sci. China Mater. 2022, 65, 3418. doi: 10.1007/s40843-022-2073-y
-
[10]
(10) Li, H. X.; Chen, J. T.; Zhang, L.; Wang, K.; Zhang, X.; Yang, B. J.; Liu, L. Y.; Liu, W. S.; Yan, X. B. J. Mater. Chem. A 2020, 8 (32), 16302. doi: 10.1039/D0TA04912C
-
[11]
(11) Tao, L.; Yang, Y. P.; Wang, H. L.; Zheng, Y. long; Hao, H. C.; Song, W. P.; Shi, J.; Huang, M. H.; Mitlin, D. Energy Storage Mater. 2020, 27, 212. doi: 10.1016/j.ensm.2020.02.004
-
[12]
(12) Zhang, J.; Lai, L.; Wang, H.; Chen, M.; Shen, Z. X. Mater. Today Energy 2021, 21, 100747. doi: 10.1016/j.mtener.2021.100747
-
[13]
(13) Cui, J.; Yao, S. S.; Ihsan-Ul-Haq, M.; Mubarak, N.; Wang, M. Y.; Wu, J. X.; Kim, J. K. ACS Mater. Lett. 2021, 3 (4), 406. doi: 10.1021/acsmaterialslett.0c00627
-
[14]
(14) Park, G. D.; Kang, Y. C. Small Methods 2020, 4 (10), 2000556. doi: 10.1002/smtd.202000556
-
[15]
(15) Yi, Z.; Qian, Y.; Tian, J.; Shen, K. Z.; Lin, N.; Qian, Y. T. J. Mater. Chem. A 2019, 7 (19), 12283. doi: 10.1039/C9TA02204J
-
[16]
(16) Soares, D. M.; Singh, G. Nanotechnology 2021, 32 (50), 505402. doi: 10.1088/1361-6528/ac23f3
-
[17]
(17) Romanenko, A. I.; Chebanova, G. E.; Drozhzhin, M. V.; Katamanin, I. N.; Komarov, V. Y.; Han, M.; Kim, S.; Chen, T. T.; Wang, H. C. J. Am. Ceram. Soc. 2021, 104 (12), 6242. doi: 10.1111/jace.17988
-
[18]
(18) Ko, J. K.; Jo, J. H.; Kim, H. J.; Park, J. S.; Yashiro, H.; Voronina, N.; Myung, S. Energy Storage Mater. 2021, 43, 411. doi: 10.1016/j.ensm.2021.09.028
-
[19]
(19) Zhang, G. Q.; Kirk, B.; Jauregui, L. A.; Yang, H.; Xu, X. F.; Chen, Y. P.; Wu, Y. Nano Lett. 2012, 12 (1), 56. doi: 10.1021/nl202935k
-
[20]
(20) Dong, Y. F.; Shi, H. D.; Wu, Z. S. Adv. Funct. Mater. 2020, 30 (47), 2000706. doi: 10.1002/adfm.202000706
-
[21]
(21) Cao, Y. P.; Chen, H.; Shen, Y. P.; Chen, M.; Zhang, Y. L.; Zhang, L. Y.; Wang, Q.; Guo, S. J.; Yang, H. ACS Appl. Mater. Interfaces 2021, 13 (15), 17668. doi: 10.1021/acsami.1c02590
-
[22]
(22) Xu, X. D.; Zhang, Y. L.; Sun, H. Y.; Zhou, J. W.; Liu, Z.; Qiu, Z. P.; Wang, D.; Yang, C.; Zeng, Q. G.; Peng, Z. Q.; et al. Adv. Mater. 2021, 33 (31), 2100272. doi: 10.1002/adma.202100272
-
[23]
(23) Zhang, Y. L.; Mu, Z. J.; Yang, C.; Xu, Z. K.; Zhang, S.; Zhang, X. Y.; Li, Y. J.; Lai, J. P.; Sun, Z. H.; Yang, Y.; et al. Adv. Funct. Mater. 2018, 28 (38), 1707578. doi: 10.1002/adfm.201707578
-
[24]
(24) Gabaudan, V.; Berthelot, R.; Stievano, L.; Monconduit, L. J. Phys. Chem. C 2018, 122 (32), 18266. doi: 10.1021/acs.jpcc.8b04575
-
[25]
(25) Kumari, P.; Pal, P.; Shinzato, K.; Awasthi, K.; Ichikawa, T.; Jain, A.; Kumar, M. Int. J. Hydrog. Energy 2020, 45 (34), 16992. doi: 10.1016/j.ijhydene.2019.06.175
-
[26]
(26) Aliev, Z. S.; Amiraslanov, I. R.; Nasonova, D. I.; Shevelkov, A. V.; Abdullayev, N. A.; Jahangirli, Z. A.; Orujlu, E. N.; Otrokov, M. M.; Mamedov, N. T.; Babanly, M. B.; et al. J. Alloy. Compd. 2019, 789, 443. doi: 10.1016/j.jallcom.2019.03.030
-
[27]
(27) Dong, S.; Yu, D. D.; Yang, J.; Jiang, L.; Wang, J.; Cheng, L. W.; Zhou, Y.; Yue, H.; Wang, H.; Guo, L. Adv. Mater. 2020, 32 (23), 1908027. doi: 10.1002/adma.201908027
-
[28]
(28) Qin, T. T.; Chu, X. F.; Deng, T.; Wang, B. R.; Zhang, X.; Dong, T. W.; Li, Z. M.; Fan, X. F.; Ge, X.; Wang, Z. Z.; et al. J. Energy Chem. 2020, 48, 21. doi: 10.1016/j.jechem.2019.12.012
-
[29]
(29) Zhan, J.; Long, Y. Y. Ceram. Int. 2018, 44 (12), 14891. doi: 10.1016/j.ceramint.2018.04.189
-
[30]
(30) Nan, J. L.; Liu, Y. Q.; Chao, D. Y.; Fang, Y.; Dong, S. J. Nano Res. 2023, 1. doi: 10.1007/s12274-022-5319-x
-
[31]
(31) Peng, J.; Pan, Y.; Yu, Z.; Wu, J.; Wu, J.; Zhou, Y.; Guo, Y.; Wu, X.; Wu, C.; Xie, Y. Angew. Chem. Int. Ed. 2018, 57 (41), 13533. doi: 10.1002/anie.201808050
-
[32]
(32) Zhang, H.; Wang, T. T.; Sumboja, A.; Zang, W. J.; Xie, J. P.; Gao, D.; Pennycook, S. J.; Liu, Z. L.; Guan, C.; Wang, J. Adv. Funct. Mater. 2018, 28 (40), 1804846. doi: 10.1002/adfm.201804846
-
[33]
(33) Deng, L. Q.; Chang, B.; Shi, D.; Yao, X. G.; Shao, Y.; Shen, J. X.; Zhang, B. G.; Wu, Y. Z.; Hao, X. P. Renew. Energy 2021, 170, 858. doi: 10.1016/j.renene.2021.02.040
-
[34]
(34) Yoon, Y.; Tiwari, A. P.; Choi, M.; Novak, T. G.; Song, W.; Chang, H.; Zyung, T.; Lee, S. S.; Jeon, S.; An, K. Adv. Funct. Mater. 2019, 29 (30), 1903443. doi: 10.1002/adfm.201903443
-
[35]
(35) Gillard, C. H. R.; Jana, P. P.; Rawal, A.; Sharma, N. J. Alloys Compd. 2021, 854, 155621. doi: 10.1016/j.jallcom.2020.155621
-
[36]
(36) Cui, J.; Zheng, H. K.; Zhang, Z. L.; Hwang, S.; Yang, X. Q.; He, K. Matter 2021, 4 (4), 1335. doi: 10.1016/j.matt.2021.01.005
-
[37]
(37) Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X.; Sen Wang; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Nano Energy 2017, 40, 1. doi: 10.1016/j.nanoen.2017.08.002
-
[38]
(38) Cui, R. C.; Zhou, H. Y.; Li, J. C.; Yang, C. C.; Jiang, Q. Adv. Funct. Mater. 2021, 31 (33), 2103067. doi: 10.1002/adfm.202103067
-
[39]
(39) Zhang, W. L.; Ming, J.; Zhao, W. L.; Dong, X. C.; Hedhili, M. N.; Costa, P. M.; Alshareef, H. N. Adv. Funct. Mater. 2019, 29 (35), 1903641. doi: 10.1002/adfm.201903641
-
[40]
(40) Wang, J.; Wang, B.; Liu, Z.; Fan, L.; Zhang, Q. F.; Ding, H. B.; Wang, L. L.; Yang, H. G.; Yu, X. Z.; Lu, B. Adv. Sci. 2019, 6 (17), 1900904. doi: 10.1002/advs.201900904
-
[41]
(41) Li, Y. P.; Zhang, Q. B.; Yuan, Y. F.; Liu, H. D.; Yang, C. H.; Lin, Z.; Lu, J. Adv. Energy Mater. 2020, 10 (23), 2000717. doi: 10.1002/aenm.202000717
-
[42]
(42) Tian, H. J.; Yu, X. C.; Shao, H. Z.; Dong, L. B.; Chen, Y.; Fang, X. Q.; Wang, C. Y.; Han, W. Q.; Wang, G. X. Adv. Energy Mater. 2019, 9 (29), 1901560. doi: 10.1002/aenm.201901560
-
[43]
(43) Xu, Y.; Bahmani, F.; Zhou, M.; Li, Y. L.; Zhang, C. L.; Liang, F.; Kazemi, S. H.; Kaiser, U.; Meng, G.; Lei, Y. Nanoscale Horiz. 2019, 4 (1), 202. doi: 10.1039/C8NH00305J
-
[44]
(44) Liu, S. T.; Yang, B. B.; Zhou, J. S.; Song, H. H. J. Mater. Chem. A 2019, 7 (31), 18499. doi: 10.1039/C9TA04699B
-
[45]
(45) Chao, D. L.; Zhu, C.; Yang, P. H.; Xia, X.; Liu, J.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J.; et al. Nat. Commun. 2016, 7 (1), 12122. doi: 10.1038/ncomms12122
-
[46]
(46) Du, Y. Q.; Zhang, B. Y.; Zhang, W. Y.; Jin, H. X.; Qin, J.; Wan, J. Q.; Zhang, J. X.; Chen, G. W. Energy Storage Mater. 2021, 38, 231. doi: 10.1016/j.ensm.2021.03.012
-
[1]
-
-
[1]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[2]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[3]
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
-
[4]
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
-
[5]
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
-
[6]
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
-
[7]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[8]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[9]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[10]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[13]
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
-
[14]
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
-
[15]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[16]
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
-
[17]
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
-
[18]
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
-
[19]
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
-
[20]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(108)
- HTML views(10)