Photo-Thermo Catalytic Oxidation of C3H8 and C3H6 over the WO3-TiO2 Supported Pt Single-Atom Catalyst
- Corresponding author: Xiao Yan Liu, xyliu2003@dicp.ac.cn †These authors contributed equally to this work.
Citation: Ruijie Zhu, Leilei Kang, Lin Li, Xiaoli Pan, Hua Wang, Yang Su, Guangyi Li, Hongkui Cheng, Rengui Li, Xiao Yan Liu, Aiqin Wang. Photo-Thermo Catalytic Oxidation of C3H8 and C3H6 over the WO3-TiO2 Supported Pt Single-Atom Catalyst[J]. Acta Physico-Chimica Sinica, ;2024, 40(1): 230300. doi: 10.3866/PKU.WHXB202303003
Sadykov, I. I.; Zabilskiy, M.; Clark, A. H.; Krumeich, F.; Sushkevich, V.; van Bokhoven, J. A.; Nachtegaal, M.; Safonova, O. V. ACS Catal. 2021, 11, 11793. doi: 10.1021/acscatal.1c02795
doi: 10.1021/acscatal.1c02795
Chen, G.; Zhao, Y.; Fu, G.; Duchesne Paul, N.; Gu, L.; Zheng, Y.; Weng, X.; Chen, M.; Zhang, P.; Pao, C.; et al. Science 2014, 344, 495. doi: 10.1126/science.1252553
doi: 10.1126/science.1252553
Zhang, B.; Ren, L.; Xu, Z.; Cheng, N.; Lai, W.; Zhang, L.; Hao, W.; Chu, S.; Wang, Y.; Du, Y.; et al. Small 2021, 17, 2100732. doi: 10.1002/smll.202100732
doi: 10.1002/smll.202100732
Chen, C.; Tian, H.; Fu, Z.; Cui, X.; Kong, F.; Meng, G.; Chen, Y.; Qi, F.; Chang, Z.; Zhu, L.; et al. Appl. Catal. B 2022, 304, 121008. doi: 10.1016/j.apcatb.2021.121008
doi: 10.1016/j.apcatb.2021.121008
Shen, R.; Liu, Y.; Wen, H.; Wu, X.; Han, G.; Yue, X.; Mehdi, S.; Liu, T.; Cao, H.; Liang, E.; et al. Small 2021, 18, 2105588. doi: 10.1002/smll.202105588
doi: 10.1002/smll.202105588
Đukić, T.; Moriau, L. J.; Pavko, L.; Kostelec, M.; Prokop, M.; Ruiz-Zepeda, F.; Šala, M.; Dražić, G.; Gatalo, M.; Hodnik, N. ACS Catal. 2021, 12, 101. doi: 10.1021/acscatal.1c04205
doi: 10.1021/acscatal.1c04205
Kato, M.; Iguchi, Y.; Li, T.; Kato, Y.; Zhuang, Y.; Higashi, K.; Uruga, T.; Saida, T.; Miyabayashi, K.; Yagi, I. ACS Catal. 2021, 12, 259. doi: 10.1021/acscatal.1c04597
doi: 10.1021/acscatal.1c04597
Zaman, S.; Su, Y.; Dong, C.; Qi, R.; Huang, L.; Qin, Y.; Huang, Y.; Li, F.; You, B.; Guo, W.; et al. Angew. Chem. Int. Ed. 2022, 61, e202115835. doi: 10.1002/anie.202115835
doi: 10.1002/anie.202115835
Reina, T. R.; Gonzalez-Castaño, M.; Lopez-Flores, V.; Martínez, T, L. M.; Zitolo, A.; Ivanova, S.; Xu, W.; Centeno, M. A.; Rodriguez, J. A.; Odriozola, J. A. J. Am. Chem. Soc. 2021, 144, 446. doi: 10.1021/jacs.1c10481
doi: 10.1021/jacs.1c10481
Zhai, Y.; Pierre, D.; Si, R.; Deng, W.; Ferrin, P.; Nilekar, A. U.; Peng, G.; Herron, J. A.; Bell, D. C.; Saltsburg, H.; et al. Science 2010, 329, 1633. doi: 10.1126/science.1192449
doi: 10.1126/science.1192449
Yang, X.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740. doi: 10.1021/ar300361m
doi: 10.1021/ar300361m
Han, B.; Guo, Y.; Huang, Y.; Xi, W.; Xu, J.; Luo, J.; Qi, H.; Ren, Y.; Liu, X.; Qiao, B.; et al. Angew. Chem. Int. Ed. 2020, 59, 11824. doi: 10.1002/anie.202003208
doi: 10.1002/anie.202003208
Kuo, C.; Lu, Y.; Kovarik, L.; Engelhard, M.; Karim, A. M. ACS Catal. 2019, 9, 11030. doi: 10.1021/acscatal.9b02840
doi: 10.1021/acscatal.9b02840
Li, W.; Yang, J.; Jing, H.; Zhang, J.; Wang, Y.; Li, J.; Zhao, J.; Wang, D.; Li, Y. J. Am. Chem. Soc. 2021, 143, 15453. doi: 10.1021/jacs.1c08088
doi: 10.1021/jacs.1c08088
Wang, L.; Zhu, C.; Xu, M.; Zhao, C.; Gu, J.; Cao, L.; Zhang, X.; Sun, Z.; Wei, S.; Zhou, W.; et al. J. Am. Chem. Soc. 2021, 143, 18854. doi: 10.1021/jacs.1c09498
doi: 10.1021/jacs.1c09498
Scirè, S.; Liotta, L. F. Appl. Catal. B 2012, 125, 222. doi: 10.1016/j.apcatb.2012.05.047
doi: 10.1016/j.apcatb.2012.05.047
FAO/FAOLEX. OJEU 2004, L143, 87.
He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Chem. Rev. 2019, 119, 4471. doi: 10.1021/acs.chemrev.8b00408
doi: 10.1021/acs.chemrev.8b00408
Fang, Y.; Li, H.; Zhang, Q.; Wang, C.; Xu, J.; Shen, H.; Yang, J.; Pan, C.; Zhu, Y.; Luo, Z.; et al. Environ. Sci. Technol. 2022, 56, 3245. doi: 10.1021/acs.est.1c07573
doi: 10.1021/acs.est.1c07573
Zhang, L.; Xue, L.; Lin, B.; Zhao, Q.; Wan, S.; Wang, Y.; Jia, H.; Xiong, H. ChemSusChem 2022, 15, e202102494. doi: 10.1002/cssc.202102494
doi: 10.1002/cssc.202102494
Liu, Y.; Li, X.; Liao, W.; Jia, A.; Wang, Y.; Luo, M.; Lu, J. ACS Catal. 2019, 9, 1472. doi: 10.1021/acscatal.8b03666
doi: 10.1021/acscatal.8b03666
Yang, A.; Zhu, H.; Li, Y.; Cargnello, M. ACS Catal. 2021, 11, 6672. doi: 10.1021/acscatal.1c01280
doi: 10.1021/acscatal.1c01280
Kim, J.; Kim, Y.; Wiebenga, M. H.; Oh, S. H.; Kim, D. H. Appl. Catal. B 2019, 251, 283. doi: 10.1016/j.apcatb.2019.04.001
doi: 10.1016/j.apcatb.2019.04.001
Avgouropoulos, G.; Oikonomopoulos, E.; Kanistras, D.; Ioannides, T. Appl. Catal. B 2006, 65, 62. doi: 10.1016/j.apcatb.2005.12.016
doi: 10.1016/j.apcatb.2005.12.016
Yu, X.; He, J.; Wang, D.; Hu, Y.; Tian, H.; He, Z. J. Phys. Chem. C 2012, 116, 851. doi: 10.1021/jp208947e
doi: 10.1021/jp208947e
Zhang, C.; Liu, F.; Zhai, Y.; Ariga, H.; Yi, N.; Liu, Y.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H. Angew. Chem. Int. Ed. 2012, 51, 9628. doi: 10.1002/anie.201202034
doi: 10.1002/anie.201202034
Jeong, H.; Lee, G.; Kim, B.; Bae, J.; Han, J. W.; Lee, H. J. Am. Chem. Soc. 2018, 140, 9558. doi: 10.1021/jacs.8b04613
doi: 10.1021/jacs.8b04613
Jeong, H.; Kwon, O.; Kim, B.; Bae, J.; Shin, S.; Kim, H.; Kim, J.; Lee, H. Nat. Catal. 2020, 3, 368. doi: 10.1038/s41929-020-0427-z
doi: 10.1038/s41929-020-0427-z
Wang, Z.; Song, H.; Liu, H.; Ye, J. Angew. Chem. Int. Ed. 2020, 59, 8016. doi: 10.1002/anie.201907443
doi: 10.1002/anie.201907443
Christopher, P.; Xin, H.; Marimuthu, A.; Linic, S. Nat. Mater. 2012, 11, 1044. doi: 10.1038/nmat3454
doi: 10.1038/nmat3454
Tan, T. H.; Scott, J.; Ng, Y. H.; Taylor, R. A.; Aguey-Zinsou, K. -F.; Amal, R. ACS Catal. 2016, 6, 1870. doi: 10.1021/acscatal.5b02785
doi: 10.1021/acscatal.5b02785
Zhou, L.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H.; Henderson, L.; Dong, L.; Christopher, P.; Carter, E. A.; Nordlander, P.; et al. Science 2018, 362, 69. doi: 10.1126/science.aat6967
doi: 10.1126/science.aat6967
Kang, L.; Liu, X. Y.; Wang, A.; Li, L.; Ren, Y.; Li, X.; Pan, X.; Li, Y.; Zong, X.; Liu, H.; et al. Angew. Chem. Int. Ed. 2020, 59, 12909. doi: 10.1002/anie.202001701
doi: 10.1002/anie.202001701
Feng, Y.; Dai, L.; Wang, Z.; Peng, Y.; Duan, E.; Liu, Y.; Jing, L.; Wang, X.; Rastegarpanah, A.; Dai, H.; et al. Environ. Sci. Technol. 2022, 56, 8722. doi: 10.1021/acs.est.1c08643
doi: 10.1021/acs.est.1c08643
Wang, Y.; Dai, J.; Wang, M.; Qi, F.; Jin, X.; Zhang, L. J. Colloid Interface Sci. 2023, 636, 577. doi: 10.1016/j.jcis.2023.01.053
doi: 10.1016/j.jcis.2023.01.053
Lang, R.; Xi, W.; Liu, J.; Cui, Y.; Li, T.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L.; et al. Nat. Commun. 2019, 10, 234. doi: 10.1038/s41467-018-08136-3
doi: 10.1038/s41467-018-08136-3
DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X.; Christopher, P. J. Am. Chem. Soc. 2017, 139, 14150. doi: 10.1021/jacs.7b07093
doi: 10.1021/jacs.7b07093
Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095
doi: 10.1038/nchem.1095
Kale, M. J.; Christopher, P. ACS Catal. 2016, 6, 5599. doi: 10.1021/acscatal.6b01128
doi: 10.1021/acscatal.6b01128
Lu, Y.; Wang, Y.; Tang, Q.; Cao, Q.; Fang, W. Appl. Catal. B 2022, 300, 120746. doi: 10.1016/j.apcatb.2021.120746
doi: 10.1016/j.apcatb.2021.120746
Yazawa, Y.; Kagi, N.; Komai, S. -I.; Satsuma, A.; Murakami, Y.; Hattori, T. Catal. Lett. 2001, 72, 157. doi: 10.1023/A:1009027926457
doi: 10.1023/A:1009027926457
Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Angew. Chem. Int. Ed. 2012, 51, 6223. doi: 10.1002/anie.201202191
doi: 10.1002/anie.201202191
Qiu, C.; Shen, J.; Lin, J.; Liu, D.; Li, D.; Zhang, J.; Zhang, Z.; Lin, H.; Wang, X.; Fu, X. ACS Appl. Energy Mater. 2021, 4, 10172. doi: 10.1021/acsaem.1c02066
doi: 10.1021/acsaem.1c02066
Caretti, I.; Keulemans, M.; Verbruggen, S. W.; Lenaerts, S.; Van Doorslaer, S. Top. Catal. 2015, 58, 776. doi: 10.1007/s11244-015-0419-4
doi: 10.1007/s11244-015-0419-4
Zhang, T.; Lang, X.; Dong, A.; Wan, X.; Gao, S.; Wang, L.; Wang, L.; Wang, W. ACS Catal. 2020, 10, 7269. doi: 10.1021/acscatal.0c00703
doi: 10.1021/acscatal.0c00703
Liu, S.; Huang, S. Carbon 2017, 115, 11. doi: 10.1016/j.carbon.2016.12.094
doi: 10.1016/j.carbon.2016.12.094
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Bei Li , Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210