Citation: Lijun Zhang, Youlin Wu, Noritatsu Tsubaki, Zhiliang Jin. 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230205. doi: 10.3866/PKU.WHXB202302051 shu

2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution

  • Corresponding author: Noritatsu Tsubaki, tsubaki@eng.u-toyama.ac.jp Zhiliang Jin, zl-jin@nun.edu.cn
  • Received Date: 28 February 2023
    Revised Date: 7 April 2023
    Accepted Date: 10 April 2023
    Available Online: 17 April 2023

    Fund Project: the National Natural Science Foundation of China 22062001

  • Rapid intrinsic carrier recombination severely restricts the photocatalytic activity of CeO2-based catalytic materials. In this study, a heterogeneous interfacial engineering strategy is proposed to rationally perform interface modulation. A 2D/3D S-scheme heterojunction with strong electronic interactions was constructed. A composite photocatalyst was synthesized for the 3D Cu2O particles anchored at the edge of 2D CeO2. First-principles calculations (based on density functional theory) and the experimental results show that a strongly coupled S-scheme heterojunction electron transport interface is formed between CeO2 and Cu2O, resulting in efficient carrier separation and transfer. The photocatalytic hydrogen evolution activity of the composite catalyst is significantly improved in the system with triethanolamine as the sacrificial agent and is 48 times as that of CeO2. In addition, the resulting CeO2-Cu2O photocatalyst affords highly stable photocatalytic hydrogen activity. This provides a general technique for constructing unique interfaces in novel nanocomposite structures.
  • 加载中
    1. [1]

      Nishiyama, H. S.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; et al. Nature 2021, 598, 304. doi: 10.1038/s41586-021-03907-3  doi: 10.1038/s41586-021-03907-3

    2. [2]

      Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Nature 2020, 581, 411. doi: 10.1038/s41586-020-2278-9  doi: 10.1038/s41586-020-2278-9

    3. [3]

      Zhang, L. J.; Jiang, X. D.; Jin, Z. L.; Tsubaki, N. J. Mater. Chem. A 2022, 10, 10715. doi: 10.1039/D2TA00839D  doi: 10.1039/D2TA00839D

    4. [4]

      Cheng, C.; He, B.; Fan, J. J.; Cheng, B.; Cao, S. W.; Yu, J. G. Adv. Mater 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    5. [5]

      Xiao, L.; Zhang, Q.; Chen, P.; Chen, L.; Ding, F.; Tang, J.; Li, Y. J.; Au, C.; Yin, S. F. Appl. Catal. B: Environ. 2019, 248, 380. doi: 10.1016/j.apcatb.2019.02.012  doi: 10.1016/j.apcatb.2019.02.012

    6. [6]

      Li, X.; Yu, J. G.; Mietek, J.; Chen, X. B. Chem. Rev. 2019, 119, 3962. doi: 10.1021/acs.chemrev.8b00400  doi: 10.1021/acs.chemrev.8b00400

    7. [7]

      Wang, C. C.; Yan, R. Y.; Cai, M. J.; Liu, Y.P.; Li, S. J. Appl. Surf. Sci. 2023, 610, 155346. doi: 10.1016/j.apsusc.2022.155346  doi: 10.1016/j.apsusc.2022.155346

    8. [8]

      Yang, J.; Wu, X. H.; Mei, Z. H.; Zhou, S.; Su, Y. R.; Wang, G. H. Adv. Sustain. Syst. 2022, 6, 2200056. doi: 10.1002/adsu.202200056  doi: 10.1002/adsu.202200056

    9. [9]

      Zhang, L. J.; Wang, G. R.; Hao, X. Q.; Jin, Z. L.; Wang, Y. B. Chem. Eng. J. 2020, 395, 125113. doi: 10.1016/j.cej.2020.125113  doi: 10.1016/j.cej.2020.125113

    10. [10]

      Zhu, L. Y.; Ye, R. H.; Tang, P. S.; Xia, P. F. Aust. J. Chem. 2022, 75, 795. doi: 10.1071/CH22098  doi: 10.1071/CH22098

    11. [11]

      Li, Y. X.; He, R. C.; Han, P.; Hou, B. P.; Peng, S. Q.; Ouyang, C. Appl. Catal. B: Environ. 2020, 279, 119379. doi: 10.1016/j.apcatb.2020.119379  doi: 10.1016/j.apcatb.2020.119379

    12. [12]

      Zhang, L. J.; Jin, Z. L.; Tsubaki, N. Chem. Eng. J. 2022, 438, 135238. doi: 10.1016/j.cej.2022.135238  doi: 10.1016/j.cej.2022.135238

    13. [13]

      Sharma, D.; Satsangi, V. R.; Shrivastav, R.; Waghmare, U. V.; Dass, S. Int. J. Hydrog. Energy 2016, 41, 18339. doi: 10.1016/j.ijhydene.2016.08.079  doi: 10.1016/j.ijhydene.2016.08.079

    14. [14]

      Wetchakun, N.; Chaiwichain, S.; Inceesungvorn, B.; Pingmuang, K.; Phanichphant, S.; Minett, A. I.; Chen, J. ACS Appl. Mater. Interface 2012, 4, 3718. doi: 10.1021/am300812n  doi: 10.1021/am300812n

    15. [15]

      Pu, Y.; Luo, Y. D.; Wei, X. Q.; Sun, J. F.; Li, L. L.; Zou, W. X.; Dong, L. Appl. Catal. B: Environ. 2019, 254, 580. doi: 10.1016/j.apcatb.2019.04.093  doi: 10.1016/j.apcatb.2019.04.093

    16. [16]

      Khan, M. M.; Ansari, S. A.; Pradhan, D.; Han, D. H.; Lee, J.; Cho, M. H. Ind. Eng. Chem. Res. 2014, 53, 9754. doi: 10.1021/ie500986n  doi: 10.1021/ie500986n

    17. [17]

      Xie, S. L.; Wang, Z. L.; Cheng, F. L.; Zhang, P.; Mai, W. J.; Tong, Y. X. Nano Energy 2017, 34, 313. doi: 10.1016/j.nanoen.2017.02.029  doi: 10.1016/j.nanoen.2017.02.029

    18. [18]

      Pang, J. J.; Li, W. T.; Cao, Z. H.; Xu, J. J.; Li, X.; Zhang, X. K. Appl. Surf. Sci. 2018, 439, 420. doi: 10.1016/j.apsusc.2018.01.055  doi: 10.1016/j.apsusc.2018.01.055

    19. [19]

      Chae, B. W.; Amna, T.; Hassan, M. S.; Deyab, S.; Khil, M. S. Adv. Powder Technol. 2017, 28, 230. doi: 10.1016/j.apt.2016.09.010  doi: 10.1016/j.apt.2016.09.010

    20. [20]

      Cai, M. G.; Liu, Y. P.; Wang, C. C.; Lin, W.; Li, S. J. Sep. Purif. Technol. 2023, 304, 122401. doi: 10.1016/j.seppur.2022.122401  doi: 10.1016/j.seppur.2022.122401

    21. [21]

      Liu, S. C.; Wang, K.; Yang, M. X.; Jin, Z. L. Acta Phys. -Chim. Sin. 2022, 38, 2109023.  doi: 10.3866/PKU.WHXB202109023

    22. [22]

      Shen, C. H.; Chen, Y.; Xu, X. J.; Li, X. Y.; Wen, X. J.; Liu, Z. T.; Xing, R.; Guo, H.; Fei, Z. H. J. Hazard. Mater. 2021, 416, 126217. doi: 10.1016/j.jhazmat.2021.126217  doi: 10.1016/j.jhazmat.2021.126217

    23. [23]

      Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Nat. Mater. 2011, 10, 456. doi: 10.1038/nmat3017  doi: 10.1038/nmat3017

    24. [24]

      Li, S. J.; Cai, M. J.; Wang, C. C.; Liu, Y. P. Adv. Fiber. Mater. 2023, doi: 10.1007/s42765-022-00253-5  doi: 10.1007/s42765-022-00253-5

    25. [25]

      Jiang, J. W.; Lim, Y. S.; Park, S.; Kim, S. H.; Yoon, S. G.; Piao, L. H. Nanoscale 2017, 9, 3873. doi: 10.1039/C6NR09934C  doi: 10.1039/C6NR09934C

    26. [26]

      Xu, H. L.; Wang, W. Z.; Zhu, W. J. Phys. Chem. B 2006, 110, 13829. doi: 10.1021/jp061934y  doi: 10.1021/jp061934y

    27. [27]

      Li, Q.; Xu, P.; Zhang, B.; Tsai, H. H.; Zheng, S. J.; Wu, G.; Wang, H. L. J. Phys. Chem. C 2013, 117, 13872. doi: 10.1021/jp403655y  doi: 10.1021/jp403655y

    28. [28]

      Ahmed, A.; Gajbhiye, N. S.; Joshi, A. G. Mater. Chem. Phys. 2011, 129, 740. doi: 10.1016/j.matchemphys.2011.04.042  doi: 10.1016/j.matchemphys.2011.04.042

    29. [29]

      Gong, H. M.; Li, Y. J.; Li, H.; Y.; Jin, Z. L. Langmuir 2022, 38, 2117. doi: 10.1021/acs.langmuir.1c03198  doi: 10.1021/acs.langmuir.1c03198

    30. [30]

      Zhang, L. J.; Jin, Z. L. Nanoscale 2021, 13, 1340. doi: 10.1039/D0NR07821B  doi: 10.1039/D0NR07821B

    31. [31]

      Li, S. J.; Wang, C. C.; Liu, Y. P.; Liu, Y. Z.; Cai, M. J.; Zhao, W.; Duan, X. G. Chem. Eng. J. 2023, 455, 140943. doi: 10.1016/j.cej.2022.140943  doi: 10.1016/j.cej.2022.140943

    32. [32]

      Wang, X. P.; Li, T.; Zhu, P. F; Jin, Z. L. Dalton Trans. 2022, 51, 2912. doi: 10.1039/D1DT03605J  doi: 10.1039/D1DT03605J

    33. [33]

      Qi, Y.; Ye, J. W.; Zhang, S. Q.; Tian, Q. Z.; Xu, N.; Tian, P.; Ning, G. L. J. Alloy. Compd. 2019, 782, 780. doi: 10.1016/j.jallcom.2018.12.111  doi: 10.1016/j.jallcom.2018.12.111

    34. [34]

      French, M.; Schwartz, R.; Stolz, H.; Redmer, R. J. Phys. Condes. Matter 2009, 21, 015502. doi: 10.1088/0953-8984/21/1/015502  doi: 10.1088/0953-8984/21/1/015502

    35. [35]

      Han, G. W.; Xu, F. Y.; Cheng, B.; Li, Y. J.; Yu, J. G.; Zhang, L. Y. Acta Phys. -Chim. Sin. 2022, 38, 2112037.  doi: 10.3866/PKU.WHXB202112037

    36. [36]

      Wang, G. R.; Quan, Y. K.; Yang, K. C.; Jin, Z. L. J. Mater. Sci. Technol. 2022, 121, 28. doi: 10.1016/j.jmst.2021.11.073  doi: 10.1016/j.jmst.2021.11.073

    37. [37]

      Li, S. J.; Cai, M. J.; Liu, Y. P.; Wang, C. C.; Lv, K. L.; Chen, X. B. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/S1872-2067(22)64106-8  doi: 10.1016/S1872-2067(22)64106-8

    38. [38]

      Shi, H. L.; Pan, H.; Zhang, Y. W.; Yakobson, B. I. Phys. Rev. B 2013, 87, 155304. doi: 10.1103/PhysRevB.87.155304  doi: 10.1103/PhysRevB.87.155304

    39. [39]

      Hensel, J.; Wang, G. M.; Li, Y.; Zhang, J. Z. Nano Lett. 2010, 10, 478. doi: 10.1021/nl903217w  doi: 10.1021/nl903217w

    40. [40]

      Sayed, M.; Yu, J. G.; Liu, G.; Jaroniec, M. Chem. Rev. 2022, 122, 10484. doi: 10.1021/acs.chemrev.1c00473  doi: 10.1021/acs.chemrev.1c00473

    41. [41]

      Jiang, Y. F.; Yuan, C. Z.; Xie, X.; Zhou, X.; Jiang, N.; Wang, X.; Imran, M.; Xu, A.W. ACS Appl. Mater. Interface 2017, 9, 9756. doi: 10.1021/acsami.7b00293  doi: 10.1021/acsami.7b00293

    42. [42]

      Hu, S. C.; Zhou, F.; Wang, L. Z.; Zhang, J. L. Catal. Commun. 2011, 12, 794. doi: 10.1016/j.catcom.2011.01.027  doi: 10.1016/j.catcom.2011.01.027

    43. [43]

      He, C.; Yu, Y. K.; Chen, C. W.; Yue, L.; Qiao, N.; Shen, Q.; Chen, J. S.; Hao, Z. P. RSC Adv. 2013, 3, 19639. doi: 10.1039/C3RA42566E  doi: 10.1039/C3RA42566E

    44. [44]

      Wang, Y. P.; Hao, X. Q.; Zhang, L. J.; Li, Y. B.; Jin, Z. L. Energy Fuel 2020, 34, 2599. doi: 10.1021/acs.energyfuels.9b04386  doi: 10.1021/acs.energyfuels.9b04386

    45. [45]

      Chen, J.; Shen, S. H.; Guo, P. H.; Wang, M.; Wu, P.; Wang, X. X.; Guo, L. J. Appl. Catal. B: Environ. 2014, 152, 335. doi: 10.1016/j.apcatb.2014.01.047  doi: 10.1016/j.apcatb.2014.01.047

    46. [46]

      Chen, J.; Shen, S. H.; Wua, P.; Guo, L. J. Green Chem. 2015, 17, 509. doi: 10.1039/C4GC01683A  doi: 10.1039/C4GC01683A

    47. [47]

      Liu, H.; Su, P.; Jin, Z. L.; Guo, Q. J. Dalton Trans. 2020, 49, 13393. doi: 10.1039/D0DT02753G  doi: 10.1039/D0DT02753G

    48. [48]

      Jin, Z. L.; Zhang, L. J. Mater. Sci. Technol. 2020, 49, 144. doi: 10.1016/j.jmst.2020.02.025  doi: 10.1016/j.jmst.2020.02.025

    49. [49]

      Zhang, L. J.; Wu, Y. L.; Li, J. K.; Jin, Z. L.; Li, Y. J.; Tsubaki, N. Mater. Today Phys. 2022, 27, 100767. doi: 10.1016/j.mtphys.2022.100767  doi: 10.1016/j.mtphys.2022.100767

    50. [50]

      Zhang, L. J.; Hao, X. Q.; Wang, Y. P.; Jina, Z. L.; Ma, Q. X. Chem. Eng. J. 2020, 391, 123545. doi: 10.1016/j.cej.2019.123545  doi: 10.1016/j.cej.2019.123545

    51. [51]

      Wu, X. H.; Chen, G. Q.; Wang, J.; Li, J. M.; Wang, G. H. Acta Phys. -Chim. Sin. 2023, 39, 2212016.  doi: 10.3866/PKU.WHXB202212016

    52. [52]

      Li, J. K.; Li, M.; Li, Y. L.; Guo, X.; Jin, Z. L. Sep. Purif. Technol. 2022, 288, 120588. doi: 10.1016/j.seppur.2022.120588  doi: 10.1016/j.seppur.2022.120588

    53. [53]

      Pan, J. W.; Zhang, G. X.; Guan, Z. J.; Zhao, Q. Y.; Li, G. Q.; Yang, J. J.; Li, Q. Y.; Zou. Z. G. J. Energy. Chem. 2021, 58, 408. doi: 10.1016/j.jechem.2020.10.030  doi: 10.1016/j.jechem.2020.10.030

    54. [54]

      Zhang, L. J.; Jin, Z. L.; Tsubaki, N. ACS Appl. Mater. Interface 2021, 13, 18507. doi: 10.1021/acsami.1c14987  doi: 10.1021/acsami.1c14987

    55. [55]

      Bie, C. B.; Yu, H. G.; Cheng, B.; Ho, W. K.; Fan, J. J.; Yu, J. G. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521  doi: 10.1002/adma.202003521

    56. [56]

      Yan, T.; Wang, Y. P.; Cao, Y.; Liu, H.; Jin, Z. L. Appl. Catal. A: Gen. 2022, 630, 118457. doi: 10.1016/j.apcata.2021.118457  doi: 10.1016/j.apcata.2021.118457

    57. [57]

      Zhang, L. J.; Jin, Z. L.; Tsubaki, N. Nanoscale 2021, 13, 50996. doi: 10.1039/D1NR05452J  doi: 10.1039/D1NR05452J

    58. [58]

      Dong, Y. J.; Hu, Q. Y.; Li, B. A.; Li, X. H.; Chen, M. X.; Zhang, M. Y.; Feng, F.; Ding, Y. Appl. Catal. B: Environ. 2022, 304, 120998. doi: 10.1016/j.apcatb.2021.120998  doi: 10.1016/j.apcatb.2021.120998

    59. [59]

      Yan, X.; Jin, Z. L. Chem. Eng. J. 2021, 420, 127682. doi: 10.1016/j.cej.2020.127682  doi: 10.1016/j.cej.2020.127682

    60. [60]

      Liu, Y.; Hu, H. Q.; Jin, Z. L. Acta Phys. -Chim. Sin. 2021, 37, 2008030.  doi: 10.3866/PKU.WHXB202008030

    61. [61]

      Wu, Y. L.; Li, Y. J.; Zhang, L. J.; Jin, Z. L. ChemCatChem 2022, 14, e202101656. doi: 10.1002/cctc.202101656  doi: 10.1002/cctc.202101656

    62. [62]

      Hezam, A.; Namratha, K.; Drmosh, Q. A.; Ponnamma, D.; Wang, J. W.; Prasad, S.; Momin Ahamed, M.; Cheng, C.; Byrappa, K. ACS Appl. Nano Mater. 2020, 3, 138. doi: 10.1021/acsanm.9b01833  doi: 10.1021/acsanm.9b01833

    63. [63]

      Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Angew. Chem. Int. Edit. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    64. [64]

      Guo, F.; Shi, W. L.; Wang, H. B.; Han, M. M.; Li, H.; Huang, H.; Liu, Y.; Kang, Z. H. Catal. Sci. Technol. 2017, 7, 3325. doi: 10.1039/C7CY00960G  doi: 10.1039/C7CY00960G

    65. [65]

      Liang, Z. Z.; Shen, P. C.; Zhang, P.; Li, Y. J.; Li, N.; Li, X. Chin. J. Catal. 2022, 43, 2581. doi: 10.1016/S1872-2067(22)64130-5  doi: 10.1016/S1872-2067(22)64130-5

    66. [66]

      Jiang, Z. C.; Zhang, L. Y.; Yu, J. G. J. Chin. Ceramic Soc. 2023, 51, 73. doi: 10.14062/j.issn.0454-5648.20220459  doi: 10.14062/j.issn.0454-5648.20220459

    67. [67]

      Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    68. [68]

      Wu, X. H.; Ma, H. Q.; Wang, K.; Wang, J.; Wang, G. H.; Yu, H. G. J. Colloid Interface Sci. 2023, 633, 817. doi: 10.1016/j.jcis.2022.11.143  doi: 10.1016/j.jcis.2022.11.143

  • 加载中
    1. [1]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    2. [2]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    6. [6]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    7. [7]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    8. [8]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    9. [9]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    13. [13]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

Metrics
  • PDF Downloads(18)
  • Abstract views(1396)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return