Citation: Jialin Mou, Liuling Chen, Jun Fan, Lu Zeng, Xue Jiang, Yi Jiao, Jianli Wang, Yaoqiang Chen. Construction of a Highly Active Rh/CeO2-ZrO2-Al2O3 Catalyst Based on Rh Micro-Chemical State Regulation and Its Three-Way Catalytic Activity[J]. Acta Physico-Chimica Sinica, ;2023, 39(12): 230204. doi: 10.3866/PKU.WHXB202302041 shu

Construction of a Highly Active Rh/CeO2-ZrO2-Al2O3 Catalyst Based on Rh Micro-Chemical State Regulation and Its Three-Way Catalytic Activity

  • Corresponding author: Yi Jiao, jiaoyiscu@163.com
  • Received Date: 23 February 2023
    Revised Date: 5 April 2023
    Accepted Date: 6 April 2023
    Available Online: 12 April 2023

    Fund Project: the National Natural Science Foundation of China 22072097the National Natural Science Foundation of China 21902110

  • With the increasing number of automobile vehicles, the exhaust emitted poses a severe menace to the environment and human health, necessitating the purification of exhaust pollutants. Meanwhile, the high price of noble metals and their limited supply require a decrease in noble metal loading to reduce the costs of three-way catalysts (TWCs). Therefore, improving the utilization efficiency of noble metals and their catalytic behavior is critical for the development of next-generation TWCs with low noble metal loading. Herein, the Rh micro-chemical state was modulated using the liquid-phase reduction method combined with atmospheric heat treatment to enhance the catalytic behavior of Rh-based catalysts with low Rh loading. The catalyst was characterized using X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), CO chemisorption, X-ray photoelectron spectroscopy (XPS), the FTIR spectroscopy of chemisorbed CO (CO-FTIR), transmission electron microscopy (TEM), and in situ diffuse reflectance IR (in-situ DRIFTS) to illustrate the relationship between Rh micro-chemical state (including valence state ratio and dispersion) and catalytic activity. The as-prepared catalyst re-Rh/CeO2-ZrO2-Al2O3-H2 (re-Rh/CZA-H2) exhibited better catalytic activity and a wider air/fuel ratio (λ) operating window with T90 values 30–73 ℃ and 51–86 ℃ lower than those of the catalysts synthesized by liquid-phase reduction and traditional impregnation method, respectively. In addition, aged samples prepared by the combined scheme also exhibited excellent activity and stability, where the T50 and T90 values were lower than the fresh catalyst. Structure-activity relationship results demonstrated that the better catalytic activity of re-Rh/CZA-H2 could be attributed to the optimal valence state ratio and highly dispersed Rh species, which increased the number of effective active sites. The considerable stability was attributed to the stable structure of the CeO2-ZrO2-Al2O3 (CZA) support, improved dispersion, and the high contents of active Rh species, which exposed more active sites to promote reactant conversion. In addition, the synergistic effect between the metallic Rh and oxygen vacancies could facilitate the anchoring of Rh nanoparticles to inhibit Rh sintering. Therefore, adjusting the micro-chemical state of noble metals by the combinatorial scheme developed herein provides a novel route for improving the catalytic activity, high-temperature stability, and air/fuel operating window of these catalysts.
  • 加载中
    1. [1]

      Joshi, A. SAE Tech. Pap. 2022, 45, 1704. doi: 10.4271/2022-01-0540  doi: 10.4271/2022-01-0540

    2. [2]

      Kaspar, J.; Fornasiero, P.; Hickey, N. Catal. Today 2003, 77, 419. doi: 10.1016/s0920-5861(02)00384-x  doi: 10.1016/s0920-5861(02)00384-x

    3. [3]

      Getsoian, A.; Theis, J. R.; Paxton, W. A.; Lance, M. J.; Lambert, C. K. Nat. Catal. 2019, 2, 614. doi: 10.1038/s41929-019-0283-x  doi: 10.1038/s41929-019-0283-x

    4. [4]

      Goes, J. D. A.; Woo, J. W.; Olsson, L. Ind. Eng. Chem. Res. 2020, 59, 10790. doi: 10.1021/acs.iecr.0c00654  doi: 10.1021/acs.iecr.0c00654

    5. [5]

      Hu, Z.; Allen, F. M.; Wan, C. Z.; Heck, R. M.; Steger, J. J.; Lakis, R. E.; Lyman, C. E. J. Catal. 1998, 174, 13. doi: 10.1006/jcat.1997.1954  doi: 10.1006/jcat.1997.1954

    6. [6]

      Nagao, Y.; Nakahara, Y.; Sato, T.; Iwakura, H.; Takeshita, S.; Minami, S.; Yoshida, H.; Machida, M. ACS Catal. 2015, 5, 1986. doi: 10.1021/cs5020157  doi: 10.1021/cs5020157

    7. [7]

      Heo, I.; Yoon, D. Y.; Cho, B. K.; Nam, I. -S.; Choung, J. W.; Yoo, S. Appl. Catal. B 2012, 121, 75. doi: 10.1016/j.apcatb.2012.03.032  doi: 10.1016/j.apcatb.2012.03.032

    8. [8]

      Huang, F.; Zheng, Y.; Li, Z.; Xiao, Y.; Zheng, Y.; Cai, G.; Wei, K. Chem. Commun. 2011, 47, 5247. doi: 10.1039/c0cc05670g  doi: 10.1039/c0cc05670g

    9. [9]

      Morikawa, A.; Suzuki, T.; Kanazawa, T.; Kikuta, K.; Suda, A.; Shinjo, H. Appl. Catal. B 2008, 78, 210. doi: 10.1016/j.apcatb.2007.09.013  doi: 10.1016/j.apcatb.2007.09.013

    10. [10]

      Kim, G. J.; Kwon, D. W.; Hong, S. C. J. Phys. Chem. C 2016, 120, 17996. doi: 10.1021/acs.jpcc.6b02945  doi: 10.1021/acs.jpcc.6b02945

    11. [11]

      Jeong, H.; Shin, D.; Kim, B. -S.; Bae, J.; Shin, S.; Choe, C.; Han, J. W.; Lee, H. Angew. Chem. Int. Ed. 2020, 59, 20691. doi: 10.1002/anie.202009776  doi: 10.1002/anie.202009776

    12. [12]

      Ohyama, J.; Nishiyama, T.; Satsuma, A. ChemCatChem 2018, 10, 1651. doi: 10.1002/cctc.201701842  doi: 10.1002/cctc.201701842

    13. [13]

      Gonzalez-Velasco, J. R.; Gutierrez-Ortiz, M. A.; Marc, J. L.; Botas, J. A.; Gonzalez-Marcos, M. P.; Blanchard, G. Top. Catal. 2001, 16, 101. doi: 10.1023/a:1016639016156  doi: 10.1023/a:1016639016156

    14. [14]

      Zheng, T.; He, J.; Zhao, Y.; Xia, W.; He, J. J. Rare Earths 2014, 32, 97. doi: 10.1016/s1002-0721(14)60038-7  doi: 10.1016/s1002-0721(14)60038-7

    15. [15]

      van Deelen, T. W.; Mejia, C. H.; de Jong, K. P. Nat. Catal. 2019, 2, 955. doi: 10.1038/s41929-019-0364-x  doi: 10.1038/s41929-019-0364-x

    16. [16]

      Cao, Y.; Ran, R.; Wu, X.; Wu, X.; Wan, J.; Weng, D. Catal. Today 2017, 281, 490. doi: 10.1016/j.cattod.2016.07.001  doi: 10.1016/j.cattod.2016.07.001

    17. [17]

      Lee, J.; Ryou, Y.; Chan, X.; Kim, T. J.; Kim, D. H. J. Phys. Chem. C 2016, 120, 25870. doi: 10.1021/acs.jpcc.6b08656  doi: 10.1021/acs.jpcc.6b08656

    18. [18]

      Wang, T.; Guo, X.; Lin, S.; Zhou, R. J. Rare Earths 2019, 37, 706. doi: 10.1016/j.jre.2018.10.017  doi: 10.1016/j.jre.2018.10.017

    19. [19]

      Chen, Y.; Fan, J.; Deng, J.; Jiang, X.; Jiao, Y.; Chen, Y. J. Energy Inst. 2020, 93, 2325. doi: 10.1016/j.joei.2020.07.005  doi: 10.1016/j.joei.2020.07.005

    20. [20]

      Jiang, X.; Fan, J.; Xiang, S.; Mou, J.; Yao, P.; Jiao, Y.; Wang, J.; Chen, Y. Appl. Surf. Sci. 2022, 578, 151915. doi: 10.1016/j.apsusc.2021.151915  doi: 10.1016/j.apsusc.2021.151915

    21. [21]

      Yao, P.; Huang, Y.; Jiao, Y.; Xu, H.; Wang, J.; Chen, Y. Fuel. 2023, 334, 126782. doi: 10.1016/j.fuel.2022.126782  doi: 10.1016/j.fuel.2022.126782

    22. [22]

      Fan, J.; Chen, L.; Li, S.; Mou, J.; Zeng, L.; Jiao, Y.; Wang, J.; Chen, Y. J. Catal. 2023, 418, 90. doi: 10.1016/j.jcat.2023.01.009  doi: 10.1016/j.jcat.2023.01.009

    23. [23]

      He, D.; Ding, X.; Li, S.; Liang, Y.; Liu, Y.; Zhao, M.; Wang, J.; Chen, Y. ACS Appl. Mater. Interfaces 2022, 14, 20875. doi: 10.1021/acsami.2c01371  doi: 10.1021/acsami.2c01371

    24. [24]

      Theis, J. R.; Getsoian, A.; Lambert, C. SAE Int. J. Fuels Lubr. 2017, 10, 583. doi: 10.4271/2017-01-0918  doi: 10.4271/2017-01-0918

    25. [25]

      Yoon, D. Y.; Kim, Y. J.; Lim, J. H.; Cho, B. K.; Hong, S. B.; Nam, I. -S.; Choung, J. W. J. Catal. 2015, 330, 71. doi: 10.1016/j.jcat.2015.07.013  doi: 10.1016/j.jcat.2015.07.013

    26. [26]

      Wu, J.; O'Neill, A. E.; Li, C. -H.; Jinschek, J. R.; Cavataio, G. Appl. Catal. B 2021, 280, 119450. doi: 10.1016/j.apcatb.2020.119450  doi: 10.1016/j.apcatb.2020.119450

    27. [27]

      Xi, Y.; Ottinger, N.; Liu, Z. G. SAE Int. J. Eng. 2018, 11, 1331. doi: 10.4271/2018-01-1270  doi: 10.4271/2018-01-1270

    28. [28]

      Yang, X.; Yang, L.; Lin, S.; Zhou, R. J. Hazard. Mater. 2015, 285, 182. doi: 10.1016/j.jhazmat.2014.10.062  doi: 10.1016/j.jhazmat.2014.10.062

    29. [29]

      Kaspar, J.; Fornasiero, P.; Baiducci, G.; Di Monte, R.; Hickey, N.; Sergo, V. Inorg. Chim. Acta 2003, 349, 217. doi: 10.1016/s0020-1693(03)00034-3  doi: 10.1016/s0020-1693(03)00034-3

    30. [30]

      Yao, M. H.; Baird, R. J.; Kunz, F. W.; Hoost, T. E. J. Catal. 1997, 166, 67. doi: 10.1006/jcat.1997.1504  doi: 10.1006/jcat.1997.1504

    31. [31]

      Papavasiliou, A.; Tsetsekou, A.; Matsouka, V.; Konsolakis, M.; Yentekakis, I. V.; Boukos, N. Appl. Catal. B 2009, 90, 162. doi: 10.1016/j.apcatb.2009.03.006  doi: 10.1016/j.apcatb.2009.03.006

    32. [32]

      Lan, L.; Chen, S.; Cao, Y.; Gong, M.; Chen, Y. Catal. Sci. Technol. 2015, 5, 4488. doi: 10.1039/c5cy00612k  doi: 10.1039/c5cy00612k

    33. [33]

      Alcala, R.; DeLaRiva, A.; Peterson, E. J.; Benavidez, A.; Garcia-Vargas, C. E.; Jiang, D.; Pereira-Hernandez, X. I.; Brongersma, H. H.; ter Veen, R.; Stanek, J.; et al. Appl. Catal. B 2021, 284, 119722. doi: 10.1016/j.apcatb.2020.119722  doi: 10.1016/j.apcatb.2020.119722

    34. [34]

      Jones, J.; Xiong, H.; DeLaRiva, A. T.; Peterson, E. J.; Hien, P.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernandez, X. I. P.; et al. Science. 2016, 353, 150. doi: 10.1126/science.aaf8800  doi: 10.1126/science.aaf8800

    35. [35]

      Deng, J.; Li, Z.; Li, S.; Yin, X.; Li, M.; Wang, J.; Chen, Y.; Chen, Y. Appl. Catal. A 2022, 646, 118831. doi: 10.1016/j.apcata.2022.118831  doi: 10.1016/j.apcata.2022.118831

    36. [36]

      Zhao, B.; Ran, R.; Cao, Y.; Wu, X.; Weng, D.; Fan, J.; Wu, X. Appl. Surf. Sci. 2014, 308, 230. doi: 10.1016/j.apsusc.2014.04.140  doi: 10.1016/j.apsusc.2014.04.140

    37. [37]

      Zhan, Z.; Song, L.; Liu, X.; Jiao, J.; Li, J.; He, H. J. Environ. Sci. 2014, 26, 683. doi: 10.1016/s1001-0742(13)60444-1  doi: 10.1016/s1001-0742(13)60444-1

    38. [38]

      Guo, J.; Wu, D.; Zhang, L.; Gong, M.; Zhao, M.; Chen, Y. J. Alloys Compd. 2008, 460, 485. doi: 10.1016/j.jallcom.2007.05.088  doi: 10.1016/j.jallcom.2007.05.088

    39. [39]

      Shen, M.; Lv, L.; Wang, J.; Zhu, J.; Huang, Y.; Wang, J. Chem. Eng. J. 2014, 255, 40. doi: 10.1016/j.cej.2014.06.058  doi: 10.1016/j.cej.2014.06.058

    40. [40]

      Machida, M.; Uchida, Y.; Ishikawa, Y.; Hinokuma, S.; Yoshida, H.; Ohyama, J.; Nagao, Y.; Endo, Y.; Iwashina, K.; Nakahara, Y. J. Phys. Chem. C 2019, 123, 24584. doi: 10.1021/acs.jpcc.9b06657  doi: 10.1021/acs.jpcc.9b06657

    41. [41]

      Pu, Z. Y.; Liu, X. S.; Jia, A. P.; Xie, Y. L.; Lu, J. Q.; Luo, M. F. J. Phys. Chem. C 2008, 112, 15045. doi: 10.1021/jp805389k  doi: 10.1021/jp805389k

    42. [42]

      Yu, X.; Li, J.; Wei, Y.; Zhao, Z.; Liu, J.; Jin, B.; Duan, A.; Jiang, G. Ind. Eng. Chem. Res. 2014, 53, 9653. doi: 10.1021/ie500666m  doi: 10.1021/ie500666m

    43. [43]

      Wang, W.; He, J.; Qiu, J.; Zhao, Y.; Li, M.; Yin, X.; Li, S.; Wang, J.; Chen, Y. J. Alloy. Compd. 2021, 879, 160476. doi: 10.1016/j.jallcom.2021.160476  doi: 10.1016/j.jallcom.2021.160476

    44. [44]

      WengSieh, Z.; Gronsky, R.; Bell, A. T. J. Catal. 1997, 170, 62. doi: 10.1006/jcat.1997.1738  doi: 10.1006/jcat.1997.1738

    45. [45]

      Lassi, U.; Polvinen, R.; Suhonen, S.; Kallinen, K.; Savimaki, A.; Harkonen, M.; Valden, M.; Keiski, R. L. Appl. Catal. A 2004, 263, 241. doi: 10.1016/j.apcata.2003.12.024  doi: 10.1016/j.apcata.2003.12.024

    46. [46]

      Wang, S.; Sun, M.; Huang, M.; Cheng, T.; Wang, J.; Yuan, S.; Chen, Y. Mol. Catal. 2017, 433, 162. doi: 10.1016/j.mcat.2017.01.015  doi: 10.1016/j.mcat.2017.01.015

    47. [47]

      Lan, L.; Wang, J. F.; Chen, S. H.; Li, D. C.; Li, H. M.; Liu, D. Y.; Wang, W.; Chen, Y. Q. J. Ind. Eng. Chem. 2019, 71, 127. doi: 10.1016/j.jiec.2018.11.014  doi: 10.1016/j.jiec.2018.11.014

    48. [48]

      Wang, T.; Li, Y.; Zhou, R. -X. Environ. Sci. Pollut. Res. 2020, 27, 30352. doi: 10.1007/s11356-020-08569-8  doi: 10.1007/s11356-020-08569-8

    49. [49]

      Cao, Y.; Ran, R.; Wu, X.; Zhao, B.; Weng, D. J. Environ. Sci. (China) 2017, 52, 197. doi: 10.1016/j.jes.2016.04.017  doi: 10.1016/j.jes.2016.04.017

    50. [50]

      Wan, J.; Lin, J.; Guo, X.; Wang, T.; Zhou, R. Chem. Eng. J. 2019, 368, 719. doi: 10.1016/j.cej.2019.03.016  doi: 10.1016/j.cej.2019.03.016

    51. [51]

      Huang, T.; Shen, M.; Cheng, G.; Wang, Y.; Wang, J.; Li, W.; Oh, S. H.; Qi, G.; Yang, M.; Wang, J. J. Rare Earths 2021, 39, 797. doi: 10.1016/j.jre.2020.04.003  doi: 10.1016/j.jre.2020.04.003

    52. [52]

      Gayen, A.; Priolkar, K. R.; Sarode, R.; Jayaram, V.; Hegde, M. S.; Subbanna, G. N.; Emura, S. Chem. Mater. 2004, 16, 2317. doi: 10.1021/cm040126l  doi: 10.1021/cm040126l

    53. [53]

      Varga, E.; Pusztai, P.; Oszko, A.; Baan, K.; Erdohelyi, A.; Konya, Z.; Kiss, J. Langmuir 2016, 32, 2761. doi: 10.1021/acs.langmuir.5b04482  doi: 10.1021/acs.langmuir.5b04482

    54. [54]

      Lang, R.; Li, T.; Matsumura, D.; Miao, S.; Ren, Y.; Cui, Y. -T.; Tan, Y.; Qiao, B.; Li, L.; Wang, A.; et al. Angew. Chem. Int. Ed. 2016, 55, 16054. doi: 10.1002/anie.201607885  doi: 10.1002/anie.201607885

    55. [55]

      Schwartz, V.; Campos, A.; Egbebi, A.; Spivey, J. J.; Overbury, S. H. ACS Catal. 2011, 1, 1298. doi: 10.1021/cs200281g  doi: 10.1021/cs200281g

    56. [56]

      Mizuno, T. Int. J. Hydrog. Energy 2003, 28, 1393. doi: 10.1016/s0360-3199(03)00042-9  doi: 10.1016/s0360-3199(03)00042-9

    57. [57]

      Kurnatowska, M.; Kepinski, L. Mater. Res. Bull. 2013, 48, 852. doi: 10.1016/j.materresbull.2012.11.076  doi: 10.1016/j.materresbull.2012.11.076

    58. [58]

      Dutta, G.; Waghmare, U. V.; Baidya, T.; Hegde, M. S. Chem. Mater. 2007, 19, 6430. doi: 10.1021/cm071330m  doi: 10.1021/cm071330m

    59. [59]

      Gänzler, A. M.; Casapu, M.; Maurer, F.; Störmer, H.; Gerthsen, D.; Ferré, G.; Vernoux, P.; Bornmann, B.; Frahm, R.; Murzin, V.; et al. ACS Catal. 2018, 8, 4800. doi: 10.1021/acscatal.8b00330  doi: 10.1021/acscatal.8b00330

    60. [60]

      Alayoglu, S.; An, K.; Melaet, G.; Chen, S.; Bernardi, F.; Wang, L. W.; Lindeman, A. E.; Musselwhite, N.; Guo, J.; Liu, Z.; et al. J. Phys. Chem. C 2013, 117, 26608. doi: 10.1021/jp407280e  doi: 10.1021/jp407280e

    61. [61]

      Cao, L.; Pan, L.; Ni, C.; Yuan, Z.; Wang, S. Fuel Process. Technol. 2010, 91, 306. doi: 10.1016/j.fuproc.2009.11.001  doi: 10.1016/j.fuproc.2009.11.001

    62. [62]

      Morikawa, A.; Tanabe, T.; Hatanaka, M.; Takahashi, N.; Sato, A.; Kuno, O.; Suzuki, H.; Shinjoh, H. Appl. Catal. A 2015, 493, 33. doi: 10.1016/j.apcata.2015.01.003  doi: 10.1016/j.apcata.2015.01.003

    63. [63]

      Azambre, B.; Atribak, I.; Bueno-Lopez, A.; Garcia-Garcia, A. J. Phys. Chem. C 2010, 114, 13300. doi: 10.1021/jp102949r  doi: 10.1021/jp102949r

    64. [64]

      Kawabata, H.; Koda, Y.; Sumida, H.; Shigetsu, M.; Takami, A.; Inumaru, K. Catal. Sci. Technol. 2015, 5, 584. doi: 10.1039/c4cy01032a  doi: 10.1039/c4cy01032a

    65. [65]

      Wang, Y.; Ge, C.; Zhan, L.; Li, C.; Qiao, W.; Ling, L. Ind. Eng. Chem. Res. 2012, 51, 11667. doi: 10.1021/ie300555f  doi: 10.1021/ie300555f

    66. [66]

      Dujardin, C.; Mamede, A. S.; Payen, E.; Sombret, B.; Huvenne, J. P.; Granger, P. Top. Catal. 2004, 30-1, 347. doi: 10.1023/B:TOCA.0000029773.89206.0f  doi: 10.1023/B:TOCA.0000029773.89206.0f

    67. [67]

      Haneda, M.; Shinoda, K.; Nagane, A.; Houshito, O.; Takagi, H.; Nakahara, Y.; Hiroe, K.; Fujitani, T.; Hamada, H. J. Catal. 2008, 259, 223. doi: 10.1016/j.jcat.2008.08.007  doi: 10.1016/j.jcat.2008.08.007

    68. [68]

      Chauvin, C.; Saussey, J.; Lavalley, J. C.; Idriss, H.; Hindermann, J. P.; Kiennemann, A.; Chaumette, P.; Courty, P. J. Catal. 1990, 121, 56. doi: 10.1016/0021-9517(90)90216-7  doi: 10.1016/0021-9517(90)90216-7

    69. [69]

      Sutton, C. C. R.; da Silva, G.; Franks, G. V. Chem. Eur. J. 2015, 21, 6801. doi: 10.1002/chem.201406516  doi: 10.1002/chem.201406516

    70. [70]

      Ueda, K.; Tsuji, M.; Ohyama, J.; Satsuma, A. ACS Catal. 2019, 9, 2866. doi: 10.1021/acscatal.9b00526  doi: 10.1021/acscatal.9b00526

    71. [71]

      Machida, M.; Eidome, T.; Minami, S.; Buwono, H. P.; Hinokuma, S.; Nagao, Y.; Nakahara, Y. J. Phys. Chem. C. 2015, 119, 11653. doi: 10.1021/acs.jpcc.5b01846  doi: 10.1021/acs.jpcc.5b01846

  • 加载中
    1. [1]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    2. [2]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    3. [3]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    4. [4]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    5. [5]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    6. [6]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    7. [7]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    8. [8]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    9. [9]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    10. [10]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    11. [11]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    12. [12]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    13. [13]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    14. [14]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    15. [15]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    16. [16]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    17. [17]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    18. [18]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    19. [19]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    20. [20]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

Metrics
  • PDF Downloads(8)
  • Abstract views(981)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return