Citation: Junwen Lu, Shunan Zhang, Haozhi Zhou, Chaojie Huang, Lin Xia, Xiaofang Liu, Hu Luo, Hui Wang. Ir Single Atoms and Clusters Supported on α-MoC as Catalysts for Efficient Hydrogenation of CO2 to CO[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 230202. doi: 10.3866/PKU.WHXB202302021 shu

Ir Single Atoms and Clusters Supported on α-MoC as Catalysts for Efficient Hydrogenation of CO2 to CO

  • Corresponding author: Shunan Zhang, zhangshn2@shanghaitech.edu.cn Hui Wang, wanghh@sari.ac.cn
  • Received Date: 14 February 2023
    Revised Date: 20 March 2023
    Accepted Date: 21 March 2023
    Available Online: 24 March 2023

    Fund Project: the National Key Research and Development Program of China 2022YFA1504800the National Key Research and Development Program of China 2022YFA1504702the National Key Research and Development Program of China 2022YFB4101900the National Natural Science Foundation of China 22108289the National Natural Science Foundation of China 22279158the National Natural Science Foundation of China 21905291CNOOC Institute of Chemicals & Advanced Materials YJSCZX07956YJShanghai Institute of Cleantech Innovation E244831E01

  • The conversion of CO2 into CO via the reverse water gas shift (RWGS) reaction has recently attracted considerable attention owing to the increase in atmospheric CO2 emissions. However, metal-supported catalysts easily undergo sintering and become inactive at high temperatures. To fabricate highly active and stable catalysts, molybdenum carbide (MoxC), with properties similar to those of precious metals, has been extensively investigated. In particular, it has been demonstrated that face-centered cubic α-MoC can strongly interact with support metals, rendering it an attractive candidate as a catalyst for the RWGS reaction. Furthermore, it has been previously demonstrated that metallic Ir, with unique electronic properties and a low CO desorption barrier, is active for the RWGS at low temperatures (250–300 ℃). Accordingly, in this study, a system of Ir species and α-MoC was constructed using a solvent evaporation self-assembly method. The catalytic performance of the Ir/MoC catalysts for the RWGS reaction was considerably superior to that of pure α-MoC over a wide temperature range (200–500 ℃) owing to the synergistic effect of Ir and α-MoC. The optimal 0.5%Ir/MoC catalyst yielded a CO2 conversion of 48.4% at 500 ℃, 0.1 MPa, and 300000 mL·g−1·h−1, which was comparable to the equilibrium conversion (49.9%). The CO selectivity and space-time yield of CO over 0.5%Ir/MoC reached 94.0% and 423.1 μmol·g−1·s−1, respectively, which were higher than most of the previously reported values. Moreover, 0.5%Ir/MoC retained its catalytic properties over 100 h and demonstrated excellent stability at high temperatures. Several characterization methods were used to demonstrate that the Ir species supported on α-MoC substrates were highly dispersed. The strong metal-support interaction between Ir and α-MoC, which occurred via electron transfer, considerably improved the stability of the Ir/MoC catalysts. For the Ir/MoC catalysts with Ir loadings > 0.2% (mass fraction), Ir single atoms (Ir1) and clusters (Irn) coexisted to create Irn-Ir1-C-Mo synergistic sites between Ir and α-MoC. The number of Ir1 species and size of Irn species of 0.5%Ir/MoC were higher and smaller, respectively, than those of the other Ir/MoC catalysts. This conferred 0.5%Ir/MoC an optimal electron density, which contributed to the remarkable adsorption and activation of CO2 and H2 during the RWGS. In situ diffuse reflectance infrared Fourier transform spectroscopy experiments revealed that the RWGS reaction mechanism occurred via a formate pathway. Although the formation of Irn-Ir1-C-Mo synergistic sites did not affect the reaction mechanism, the generation and decomposition of formate intermediates were distinctly promoted. Therefore, the catalytic performance of Ir/MoC was effectively improved by the synergistic effect. This study provides a guide for designing efficient and stable catalysts for CO2 utilization.
  • 加载中
    1. [1]

      Su, X.; Yang, X.; Zhao, B.; Huang, Y. J. Energy Chem. 2017, 26 (5), 854. doi: 10.1016/j.jechem.2017.07.006  doi: 10.1016/j.jechem.2017.07.006

    2. [2]

      Chu, W.; Wang, L. -N.; Chernavskii, P. A.; Khodakov, A. Y. Angew. Chem. Int. Ed. 2008, 47 (27), 5052. doi: 10.1002/anie.200800657  doi: 10.1002/anie.200800657

    3. [3]

      Zhang, D.; Luo, J.; Wang, J.; Xiao, X.; Liu, Y.; Qi, W.; Su, D. S.; Chu, W. Chin. J. Catal. 2018, 39 (1), 157. doi: 10.1016/S1872-2067(17)62967-X  doi: 10.1016/S1872-2067(17)62967-X

    4. [4]

      Varvoutis, G.; Lykaki, M.; Papista, E.; Carabineiro, S. A. C.; Psarras, A. C.; Marnellos, G. E.; Konsolakis, M. J. CO2 Util. 2021, 44, 101408. doi: 10.1016/j.jcou.2020.101408  doi: 10.1016/j.jcou.2020.101408

    5. [5]

      Loiland, J. A.; Wulfers, M. J.; Marinkovic, N. S.; Lobo, R. F. Catal. Sci. Technol. 2016, 6 (14), 5267. doi: 10.1039/C5CY02111A  doi: 10.1039/C5CY02111A

    6. [6]

      Lu, B.; Kawamoto, K. J. Environ. Chem. Eng. 2013, 1 (3), 300. doi: 10.1016/j.jece.2013.05.008  doi: 10.1016/j.jece.2013.05.008

    7. [7]

      Vovchok, D.; Zhang, C.; Hwang, S.; Jiao, L.; Zhang, F.; Liu, Z.; Senanayake, S. D.; Rodriguez, J. A. ACS Catal. 2020, 10 (17), 10216. doi: 10.1021/acscatal.0c01584  doi: 10.1021/acscatal.0c01584

    8. [8]

      Jung, H.S.; Zafar, F.; Wang, X.; Nguyen, T. X.; Hong, C. H.; Hur, Y. G.; Choung, J. W.; Park, M. -J.; Bae, J. W. ACS Catal. 2021, 11 (22), 14210. doi: 10.1021/acscatal.1c04451  doi: 10.1021/acscatal.1c04451

    9. [9]

      Liu, H. -X.; Li, S. -Q.; Wang, W. -W.; Yu, W. -Z.; Zhang, W. -J.; Ma, C.; Jia, C. J. Nat. Commun. 2022, 13 (1), 867. doi: 10.1038/s41467-022-28476-5  doi: 10.1038/s41467-022-28476-5

    10. [10]

      Morse, J. R.; Juneau, M.; Baldwin, J. W.; Porosoff, M. D.; Willauer, H. D. J. CO2 Util. 2020, 35, 38. doi: 10.1016/j.jcou.2019.08.024  doi: 10.1016/j.jcou.2019.08.024

    11. [11]

      Rodriguez, J. A.; Evans, J.; Feria, L.; Vidal, A. B.; Liu, P.; Nakamura, K.; Illas, F. J. Catal. 2013, 307, 162. doi: 10.1016/j.jcat.2013.07.023  doi: 10.1016/j.jcat.2013.07.023

    12. [12]

      Porosoff, M. D.; Yan, B.; Chen, J. G. Energ Environ. Sci. 2016, 9 (1), 62. doi: 10.1039/C5EE02657A  doi: 10.1039/C5EE02657A

    13. [13]

      Li, J.; Liu, L.; Liu, Y.; Li, M.; Zhu, Y.; Liu, H.; Kou, Y.; Zhang, J.; Han, Y.; Ma, D. Energ Environ. Sci. 2014, 7 (1), 393. doi: 10.1039/C3EE41945B  doi: 10.1039/C3EE41945B

    14. [14]

      Ma, Y.; Guo, Z.; Jiang, Q.; Wu, K. -H.; Gong, H.; Liu, Y. J. Energy Chem. 2020, 50, 37. doi: 10.1016/j.jechem.2020.03.012  doi: 10.1016/j.jechem.2020.03.012

    15. [15]

      Zhang, X.; Zhu, X.; Lin, L.; Yao, S.; Zhang, M.; Liu, X.; Wang, X.; Li, Y. -W.; Shi, C.; Ma, D. ACS Catal. 2016, 7 (1), 912. doi: 10.1021/acscatal.6b02991  doi: 10.1021/acscatal.6b02991

    16. [16]

      Li, S.; Cao, R.; Xu, M.; Deng, Y.; Lin, L.; Yao, S.; Liang, X.; Peng, M.; Gao, Z.; Ge, Y. Nat. Sci. Rev. 2021, 9 (1), 2095. doi: 10.1093/nsr/nwab026  doi: 10.1093/nsr/nwab026

    17. [17]

      Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y. -W. Nature 2017, 544 (7648), 80. doi: 10.1038/nature21672  doi: 10.1038/nature21672

    18. [18]

      Ge, Y.; Qin, X.; Li, A.; Deng, Y.; Lin, L.; Zhang, M.; Yu, Q.; Li, S.; Peng, M.; Xu, Y. J. Am. Chem. Soc. 2021, 143 (2), 628. doi: 10.1021/jacs.0c11285  doi: 10.1021/jacs.0c11285

    19. [19]

      Fan, X.; Liu, C.; Wu, M.; Gao, B.; Zheng, L.; Zhang, Y.; Zhang, H.; Gao, Q.; Cao, X.; Tang, Y. Appl. Catal. B 2022, 318, 121867. doi: 10.1016/j.apcatb.2022.121867  doi: 10.1016/j.apcatb.2022.121867

    20. [20]

      Reddy, K. P.; Dama, S.; Mhamane, N. B.; Ghosalya, M. K.; Raja, T.; Satyanarayana, C. V.; Gopinath, C. S. Dalton Trans. 2019, 48 (32), 12199. doi: 10.1039/C9DT01774G  doi: 10.1039/C9DT01774G

    21. [21]

      Gao, J.; Wu, Y.; Jia, C.; Zhong, Z.; Gao, F.; Yang, Y.; Liu, B. Catal. Commun. 2016, 84, 147. doi: 10.1016/j.catcom.2016.06.026  doi: 10.1016/j.catcom.2016.06.026

    22. [22]

      Ma, D. Acta Phys. -Chim. Sin. 2019, 35 (8), 794.  doi: 10.3866/PKU.WHXB201810033

    23. [23]

      Deng, Y.; Ge, Y.; Xu, M.; Yu, Q.; Xiao, D.; Yao, S.; Ma, D. Acc. Chem. Res. 2019, 52 (12), 3372. doi: 10.1021/acs.accounts.9b00182  doi: 10.1021/acs.accounts.9b00182

    24. [24]

      Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B. Science 2017, 357 (6349), 389. doi: 10.1126/science.aah4321  doi: 10.1126/science.aah4321

    25. [25]

      Lin, L.; Yao, S.; Gao, R.; Liang, X.; Yu, Q.; Deng, Y.; Liu, J.; Peng, M.; Jiang, Z.; Li, S. Nat. Nanotechnol. 2019, 14 (4), 354. doi: 10.1038/s41565-019-0366-5  doi: 10.1038/s41565-019-0366-5

    26. [26]

      Wu, K. Acta Phys. -Chim. Sin. 2017, 33 (6), 1073.  doi: 10.3866/PKU.WHXB201704122

    27. [27]

      Jin, C.; Wang, B.; Zhou, Y.; Yang, F.; Guo, P.; Liu, Z.; Shen, W. Chem. Commun. 2022, 58 (52), 7313. doi: 10.1039/D2CC02478K  doi: 10.1039/D2CC02478K

    28. [28]

      Guo, Y.; Wang, M.; Zhu, Q.; Xiao, D.; Ma, D. Nat. Catal. 2022, 5 (9), 766. doi: 10.1038/s41929-022-00839-7  doi: 10.1038/s41929-022-00839-7

    29. [29]

      Chen, X.; Su, X.; Su, H. -Y.; Liu, X.; Miao, S.; Zhao, Y.; Sun, K.; Huang, Y.; Zhang, T. ACS Catal. 2017, 7 (7), 4613. doi: 10.1021/acscatal.7b00903  doi: 10.1021/acscatal.7b00903

    30. [30]

      Perumal, S.; Lim, T.; Seenivasan, S.; Seo, J. Appl. Surf. Sci. 2022, 604, 154553. doi: 10.1016/j.apsusc.2022.154553  doi: 10.1016/j.apsusc.2022.154553

    31. [31]

      Zhang, Y.; Zhang, Z.; Yang, X.; Wang, R.; Duan, H.; Shen, Z.; Li, L.; Su, Y.; Yang, R.; Zhang, Y. Green Chem. 2020, 22 (20), 6855. doi: 10.1039/D0GC02302G  doi: 10.1039/D0GC02302G

    32. [32]

      Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C. Angew. Chem. Int. Ed. 2017, 56 (36), 10761. doi: 10.1002/anie.201705002  doi: 10.1002/anie.201705002

    33. [33]

      Lin, L.; Yu, Q.; Peng, M.; Li, A.; Yao, S.; Tian, S.; Liu, X.; Li, A.; Jiang, Z.; Gao, R. J. Am. Chem. Soc. 2021, 143 (1), 309. doi: 10.1021/jacs.0c10776  doi: 10.1021/jacs.0c10776

    34. [34]

      Zuo, J.; Na, W.; Zhang, P.; Yang, X.; Wen, J.; Zheng, M.; Wang, H. Mol. Catal. 2022, 526, 112357. doi: 10.1016/j.mcat.2022.112357  doi: 10.1016/j.mcat.2022.112357

    35. [35]

      Pahija, E.; Panaritis, C.; Gusarov, S.; Shadbahr, J.; Bensebaa, F.; Patience, G.; Boffito, D. C. ACS Catal. 2022, 12 (12), 6887. doi: 10.1021/acscatal.2c01099  doi: 10.1021/acscatal.2c01099

    36. [36]

      Zhang, Q.; Pastor-Pérez, L.; Jin, W.; Gu, S.; Reina, T. R. Appl. Catal. B. 2019, 244, 889. doi: 10.1016/j.apcatb.2018.12.023  doi: 10.1016/j.apcatb.2018.12.023

    37. [37]

      Wang, L. -X.; Guan, E.; Wang, Z.; Wang, L.; Gong, Z.; Cui, Y.; Yang, Z.; Wang, C.; Zhang, J.; Meng, X. ACS Catal. 2020, 10 (16), 9261. doi: 10.1021/acscatal.0c00907  doi: 10.1021/acscatal.0c00907

    38. [38]

      Xu, J.; Gong, X.; Hu, R.; Liu, Z. -W.; Liu, Z. -T. Mol. Catal. 2021, 516, 111954. doi: 10.1016/j.mcat.2021.111954  doi: 10.1016/j.mcat.2021.111954

    39. [39]

      Ma, Y.; Ren, Y.; Zhou, Y.; Liu, W.; Baaziz, W.; Ersen, O.; Cuong, P.; Greiner, M.; Chu, W.; Wang, A. Angew. Chem. Int. Ed. 2020, 59 (48), 21613. doi: 10.1002/anie.202007707  doi: 10.1002/anie.202007707

    40. [40]

      Gu, F.; Zheng, L.; Wei, H.; Mi, W.; Zhang, C.; Su, Q.; Zhu, W.; Lin, W. Appl. Surf. Sci. 2022, 606, 155008. doi: 10.1016/j.apsusc.2022.155008  doi: 10.1016/j.apsusc.2022.155008

    41. [41]

      Tang, Y.; Yang, Z.; Guo, C.; Han, H.; Jiang, Y.; Wang, Z.; Liu, J.; Wu, L.; Wang, F. J. Mater. Chem. A 2022, 10 (22), 12157. doi: 10.1039/D2TA00933A  doi: 10.1039/D2TA00933A

    42. [42]

      Yang, Q.; Sun, K.; Xu, Y.; Ding, Z.; Hou, R. Appl. Catal. A-Gen. 2022, 630, 118455. doi: 10.1016/j.apcata.2021.118455  doi: 10.1016/j.apcata.2021.118455

    43. [43]

      Chen, J. G. Chem. Rev. 1996, 96 (4), 1477. doi: 10.1021/cr950232u  doi: 10.1021/cr950232u

    44. [44]

      Xia, Z.; Zhang, H.; Shen, K.; Qu, Y.; Jiang, Z. Phys. B Condens. Matter. 2018, 542, 12. doi: 10.1016/j.physb.2018.04.039  doi: 10.1016/j.physb.2018.04.039

    45. [45]

      Ravel, B.; Newville, M. J. Synchrot. Radiat. 2005, 12 (4), 537. doi: 10.1107/S0909049505012719  doi: 10.1107/S0909049505012719

    46. [46]

      Wang, S. -G.; Liao, X. -Y.; Cao, D. -B.; Huo, C. -F.; Li, Y. -W.; Wang, J.; Jiao, H. J. Phys. Chem. 2007, 111 (45), 16934. doi: 10.1021/jp074570y  doi: 10.1021/jp074570y

    47. [47]

      Liu, H. -X.; Li, J. -Y.; Qin, X.; Ma, C.; Wang, W. -W.; Xu, K.; Yan, H.; Xiao, D.; Jia, C. -J.; Fu, Q. Nat. Commun. 2022, 13 (1), 5800. doi: 10.1038/s41467-022-33308-7  doi: 10.1038/s41467-022-33308-7

    48. [48]

      Alvarez-Galvan, C.; Lustemberg, P. G.; Oropeza, F. E.; Bachiller-Baeza, B.; Dapena Ospina, M.; Herranz, M.; Cebollada, J.; Collado, L.; Campos-Martin, J. M.; de la Peña-O'Shea, V. A. ACS Appl. Mater. Interfaces 2022, 14 (45), 50739. doi: 10.1021/acsami.2c11248  doi: 10.1021/acsami.2c11248

    49. [49]

      Zhang, Y.; Liang, L.; Chen, Z.; Wen, J.; Zhong, W.; Zou, S.; Fu, M.; Chen, L.; Ye, D. Appl. Surf. Sci. 2020, 516, 146035. doi: 10.1016/j.apsusc.2020.146035  doi: 10.1016/j.apsusc.2020.146035

    50. [50]

      Zhang, X.; Liu, Y.; Zhang, M.; Yu, T.; Chen, B.; Xu, Y.; Crocker, M.; Zhu, X.; Zhu, Y.; Wang, R. Chem 2020, 6 (12), 3312. doi: 10.1016/j.chempr.2020.09.016  doi: 10.1016/j.chempr.2020.09.016

    51. [51]

      Xu, D.; Ding, M.; Hong, X.; Liu, G. ACS Catal. 2020, 10 (24), 14516. doi: 10.1021/acscatal.0c03575  doi: 10.1021/acscatal.0c03575

    52. [52]

      Zheng, H.; Liao, W.; Ding, J.; Xu, F.; Jia, A.; Huang, W.; Zhang, Z. ACS Catal. 2022, 12 (24), 15451. doi: 10.1021/acscatal.2c04437  doi: 10.1021/acscatal.2c04437

    53. [53]

      Bobadilla, L. F.; Santos, J. L.; Ivanova, S.; Odriozola, J. A.; Urakawa, A. ACS Catal. 2018, 8 (8), 7455. doi: 10.1021/acscatal.8b02121  doi: 10.1021/acscatal.8b02121

  • 加载中
    1. [1]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    2. [2]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    3. [3]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    4. [4]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    5. [5]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    6. [6]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    7. [7]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    11. [11]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    12. [12]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    13. [13]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    14. [14]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    15. [15]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    16. [16]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    17. [17]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    18. [18]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    19. [19]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    20. [20]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393

Metrics
  • PDF Downloads(7)
  • Abstract views(1064)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return