Citation: Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis[J]. Acta Physico-Chimica Sinica, ;2023, 39(4): 230102. doi: 10.3866/PKU.WHXB202301023 shu

Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis

  • Corresponding author: Tingting Yao, ttyao@dicp.ac.cn Can Li, canli@dicp.ac.cn
  • Received Date: 14 January 2023
    Revised Date: 5 February 2023
    Accepted Date: 7 February 2023
    Available Online: 10 February 2023

    Fund Project: the Fundamental Research Center of Artificial Photosynthesis, China FReCAPfinancially supported by the National Key R & D Program of China 2021YFB4000300National Natural Science Foundation of China 22088102Jointly Funded Project of NSFC U20B6002the Major Program of Liaoning Province, China 2022JH1/10400020

  • NiMo(O) catalysts show extremely low overpotential at high current density for the electrocatalytic hydrogen evolution reaction (HER). However, the real reason for the remarkable electrocatalytic activity is unclear. A new perspective for revealing the relation between the phase structures of the electrocatalysts and their electrocatalytic HER performance provides a deep insight into the nature of the HER. Herein, the dehydration and oxygenation of as-synthesized nickel molybdate hydrate (NiMoO4·nH2O) are discussed and confirmed to be critical for evolving the catalytic phase structures in the subsequent reduction treatment. The typical phase evolution processes of the electrocatalysts were investigated using thermogravimetric (TG) analysis and H2 temperature-programmed reduction (H2-TPR). The crystalline phases were identified through X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) analyses. The phases of the electrocatalysts during the electrochemical tests were confirmed by in situ electrochemical XRD characterization. Three typical crystalline phases, MoNi4, β-NiMoO4, and α-NiMoO4, corresponding to significantly different HER activities, were proposed. The β-NiMoO4 dominant electrocatalyst (NiMoO4-400air-H2) exhibited the worst performance for alkaline water reduction, and an improvement was observed for the α-NiMoO4 electrocatalyst (NiMoO4-500air-H2). The NiMoO4-300air-H2 electrode derived from NiMoO4·(nx)H2O exhibited the most active phase (MoNi4) and the best electrocatalytic HER performance. Moreover, the intrinsic electrocatalytic HER performance obtained from the electrochemical active surface area (ECSA) normalized activities exhibits the same tendency as the geometrically normalized ones. Varied adsorption capacities of the H2O, OH, and H intermediate species for water reduction on these typical phases are assumed to be responsible for the significantly different HER performance of the NiMoO4-(T)air-H2 electrodes through density functional theory analysis. Poor adsorption of H, OH radicals, and H2O on β-NiMoO4 impedes the water dissociation process, which may be the reason that it exhibits the worst electrocatalytic hydrogen evolution activity. Optimized adsorption abilities of H, OH, and H2O on α-NiMoO4 benefit the water reduction kinetics, leading to an enhanced electrocatalytic HER performance. MoNi4 forms the strongest interactions with H2O, H, and OH species, contributing to the best electrocatalytic hydrogen evolution activity. Further analysis of the energy barrier of the water-splitting reaction shows that these three crystalline phases exhibit different water dissociation ability, which is attributed to their varied adsorption capacities of the intermediate species for water reduction. Among them, MoNi4 and β-NiMoO4 exhibit the lowest and highest water dissociation barriers, respectively, in line with their electrocatalytic hydrogen evolution activities. The phase-dependent HER activity identified in this work can provide guidelines for rationally designing and adjusting the structures of active NiMo(O) electrocatalysts.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    2. [2]

      Zang, Y.; Niu, S.; Wu, Y.; Zheng, X.; Cai, J.; Ye, Y.; Xie, Y.; Liu, Y.; Zhou, J.; Zhu, J.; et al. Nat. Commun. 2019, 10, 1217. doi: 10.1038/s41467-019-09210-0  doi: 10.1038/s41467-019-09210-0

    3. [3]

      Li, M.; Zheng, X; Li, L.; Wei, Z. Acta Phys. -Chim. Sin. 2020, 37, 2007054.
       

    4. [4]

      Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Hao, L.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. -S. Adv. Mater. 2017, 29, 1703311. doi: 10.1002/adma.201703311  doi: 10.1002/adma.201703311

    5. [5]

      Jin, Y.; Yue, X.; Shu, C.; Huang, S.; Shen, P. K. J. Mater. Chem. A 2017, 5, 2508. doi: 10.1039/C6TA10802D  doi: 10.1039/C6TA10802D

    6. [6]

      Fang, M.; Gao, W.; Dong, G.; Xia, Z.; Yip, S.; Qin, Y.; Qu, Y.; Ho, J. C. Nano Energy 2016, 27, 247. doi: 10.1016/j.nanoen.2016.07.005  doi: 10.1016/j.nanoen.2016.07.005

    7. [7]

      Wang, Z. Y.; Chen, J. Y.; Song, E. H.; Wang, N.; Dong, J. C.; Zhang, X.; Ajayan, P. M.; Yao, W.; Wang, C. F.; Liu, J. J.; et al. Nat. Commun. 2021, 12, 5960. doi: 10.1038/s41467-021-26256-1  doi: 10.1038/s41467-021-26256-1

    8. [8]

      Zhang, Z.; Ma, X.; Tang, J. J. Mater. Chem. A 2018, 6, 12361. doi: 10.1039/C8TA03047B  doi: 10.1039/C8TA03047B

    9. [9]

      Eda, K.; Kato, Y.; Ohshiro, Y.; Sugitani, T.; Whittingham, M. S. J. Solid State Chem. 2010, 183, 1334. doi: 10.1016/j.jssc.2010.04.009  doi: 10.1016/j.jssc.2010.04.009

    10. [10]

      Peng, S.; Li, L.; Wu, H. B.; Madhavi, S.; Lou, X. W. Adv. Energy Mater. 2015, 5, 1401172. doi: 10.1002/aenm.201401172  doi: 10.1002/aenm.201401172

    11. [11]

      Naik, K. K.; Ratha, S.; Rout, C. S. ChemistrySelect 2016, 1, 5187. doi: 10.1002/slct.201600795  doi: 10.1002/slct.201600795

    12. [12]

      Lyu, Y.; Zheng, J.; Xiao, Z.; Zhao, S.; Jiang, S. P.; Wang, S. Small 2020, 16, 1906867. doi: 10.1002/smll.201906867  doi: 10.1002/smll.201906867

    13. [13]

      Ghosh, D.; Giri, S.; Das, C. K. Nanoscale 2013, 5, 10428. doi: 10.1039/C3NR02444J  doi: 10.1039/C3NR02444J

    14. [14]

      Dürr, R. N.; Maltoni, P.; Tian, H.; Jousselme, B.; Hammarström, L.; Edvinsson, T. ACS Nano 2021, 15, 13504. doi: 10.1021/acsnano.1c04126  doi: 10.1021/acsnano.1c04126

    15. [15]

      Haetge, J.; Djerdj, I.; Brezesinski, T. Chem. Commun. 2012, 48, 6726. doi: 10.1039/C2CC31570J  doi: 10.1039/C2CC31570J

    16. [16]

      Abdel-Dayem, H. M. Ind. Eng. Chem. Res. 2007, 46, 2466. doi: 10.1021/ie0613467  doi: 10.1021/ie0613467

    17. [17]

      Zhang, Z.; Wang, H.; Ma, M.; Liu, H.; Zhang, Z.; Zhou, W.; Liu, H. Chem. Eng. J. 2021, 420, 127686. doi: 10.1016/j.cej.2020.127686  doi: 10.1016/j.cej.2020.127686

    18. [18]

      Dufresne, P.; Payen, E.; Grimblot, J.; Bonnelle, J. P. J. Phys. Chem. 1981, 85, 2344. doi: 10.1021/j150616a010  doi: 10.1021/j150616a010

    19. [19]

      Coats, A. W.; Redfern, J. P. Analyst 1963, 88, 906. doi: 10.1039/AN9638800906  doi: 10.1039/AN9638800906

    20. [20]

      Klimova, T. E.; Valencia, D.; Mendoza-Nieto, J. A.; Hernández-Hipólito, P. J. Catal. 2013, 304, 29. doi: 10.1016/j.jcat.2013.03.027  doi: 10.1016/j.jcat.2013.03.027

    21. [21]

      Hildal, K.; Perepezko, J. H. Chapter 19-Metals and Alloys. In Handbook of Thermal Analysis and Calorimetry; Vyazovkin, S., Koga, N., Schick, C., Eds. Elsevier Science B. V. : Amsterdam, Netherlands, 2018; Vol. 6, pp. 781–828.

    22. [22]

      Knyazheva, O. A.; Baklanova, O. N.; Lavrenov, A. V.; Buluchevskii, E. A.; Gulyaeva, T. I.; Leont'eva, N. N.; Drozdov, V. A.; Likholobov, V. A.; Vasilevich, A. V. Catal. Ind. 2012, 4, 179. doi: 10.1134/S2070050412030051  doi: 10.1134/S2070050412030051

    23. [23]

      Gao, Q.; Zhang, Y.; Zhou, K.; Wu, H.; Guo, J.; Zhang, L.; Duan, A.; Zhao, Z.; Zhang, F.; Zhou, Y. RSC Adv. 2018, 8, 28879. doi: 10.1039/C8RA05675G  doi: 10.1039/C8RA05675G

    24. [24]

      Rodriguez, J. A.; Hanson, J. C.; Frenkel, A. I.; Kim, J. Y.; Pérez, M. J. Am. Chem. Soc. 2002, 124, 346. doi: 10.1021/ja0121080  doi: 10.1021/ja0121080

    25. [25]

      Rodriguez, J. A.; Chaturvedi, S.; Hanson, J. C.; Brito, J. L. J. Phys. Chem. B 1999, 103, 770. doi: 10.1021/jp983115m  doi: 10.1021/jp983115m

    26. [26]

      Ratha, S.; Samantara, A. K.; Singha, K. K.; Gangan, A. S.; Chakraborty, B.; Jena, B. K.; Rout, C. S. ACS Appl. Mater. Interfaces 2017, 9, 9640. doi: 10.1021/acsami.6b16250  doi: 10.1021/acsami.6b16250

    27. [27]

      Rodriguez, J. A.; Hanson, J. C.; Chaturvedi, S.; Maiti, A.; Brito, J. L. J. Chem. Phys. 2000, 112, 935. doi: 10.1063/1.480619  doi: 10.1063/1.480619

    28. [28]

      Kim, K. S.; Baitinger, W. E.; Amy, J. W.; Winograd, N. J. Electron. Spectrosc. Relat. Phenom. 1974, 5, 351. doi: 10.1016/0368-2048(74)85023-1  doi: 10.1016/0368-2048(74)85023-1

  • 加载中
    1. [1]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    3. [3]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    4. [4]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    5. [5]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    6. [6]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    7. [7]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    8. [8]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    9. [9]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    10. [10]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    11. [11]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    12. [12]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    13. [13]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    14. [14]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    15. [15]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    16. [16]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    17. [17]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    20. [20]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

Metrics
  • PDF Downloads(8)
  • Abstract views(145)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return