Application of Organosulfur Compounds in Lithium-Sulfur Batteries
- Corresponding author: Sun Zhenhua, zhsun@imr.ac.cn Li Feng, fli@imr.ac.cn
Citation: Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 230101. doi: 10.3866/PKU.WHXB202301019
Zheng, Q.; Jian, L.; Xu, Y.; Gao, S.; Liu, T.; Qu, C.; Chen, H.; Li, X. Bulletin of Chinese Academy of Sciences 2022, 37, 529.
doi: 10.16418/j.issn.1000-3045.20220311001
hou, Y.; Yang, F.; Yu, X.; Jiang, H. Electric Power 2022, 55, 1.
doi: 10.11930/j.issn.1004-9649.202203003
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nat. Mater. 2012, 11, 19. doi: 10.1038/nmat3191
doi: 10.1038/nmat3191
Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561
doi: 10.1002/adma.201800561
Manthiram, A.; Song, B.; Li, W. Energy Storage Mater. 2017, 6, 125. doi: 10.1016/j.ensm.2016.10.007
doi: 10.1016/j.ensm.2016.10.007
Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Adv. Energy Mater. 2018, 8, 1702028. doi: 10.1002/aenm.201702028
doi: 10.1002/aenm.201702028
Xiao, B.; Liu, H.; Liu, J.; Sun, Q.; Wang, B.; Kaliyappan, K.; Zhao, Y.; Banis, M. N.; Liu, Y.; Li, R.; et al. Adv. Mater. 2017, 29, 1703764. doi: 10.1002/adma.201703764
doi: 10.1002/adma.201703764
Liu, W.; Oh, P.; Liu, X.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem. Int. Ed. 2015, 54, 4440. doi: 10.1002/anie.201409262
doi: 10.1002/anie.201409262
Manthiram, A.; Fu, Y.; Chung, S.; Zu, C.; Su, Y. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v
doi: 10.1021/cr500062v
Yang, Y.; Zheng, G.; Cui, Y. Chem. Soc. Rev. 2013, 42, 3018. doi: 10.1039/c2cs35256g
doi: 10.1039/c2cs35256g
Liang, J.; Sun, Z.-H.; Li, F.; Cheng, H.-M. Energy Storage Mater. 2016, 2, 76. doi: 10.1016/j.ensm.2015.09.007
doi: 10.1016/j.ensm.2015.09.007
Larcher, D.; Tarascon, J.-M. Nat. Chem. 2015, 7, 19. doi: 10.1038/nchem.2085
doi: 10.1038/nchem.2085
Ji, X.; Nazar, L. F. J. Mater. Chem. 2010, 20, 9821. doi: 10.1039/b925751a
doi: 10.1039/b925751a
Li, Y.; Fan, J.; Zhang, J.; Yang, J.; Yuan, R.; Chang, J.; Zheng, M.; Dong, Q. ACS Nano 2017, 11, 11417. doi: 10.1021/acsnano.7b06061
doi: 10.1021/acsnano.7b06061
Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Chem. Soc. Rev. 2016, 45, 5605. doi: 10.1039/C5CS00410A
doi: 10.1039/C5CS00410A
Fang, R.; Zhao, S.; Sun, Z.; Wang, D.-W.; Cheng, H.-M.; Li, F. Adv. Mater. 2017, 29, 1606823. doi: 10.1002/adma.201606823
doi: 10.1002/adma.201606823
Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460
doi: 10.1038/nmat2460
Wang, L.; Li, X.; Zhang, Y.; Mao, W.; Li, Y.; Chu, P. K.; Kızılaslan, A.; Zheng, Z.; Huo, K. Chem. Eng. J. 2022, 446, 137050. doi: 10.1016/j.cej.2022.137050
doi: 10.1016/j.cej.2022.137050
Saroha, R.; Oh, J. H.; Lee, J. S.; Kang, Y. C.; Jeong, S. M.; Kang, D.-W.; Cho, C.; Cho, J. S. Chem. Eng. J. 2021, 426, 130805. doi: 10.1016/j.cej.2021.130805
doi: 10.1016/j.cej.2021.130805
Shaibani, M.; Akbari, A.; Sheath, P.; Easton, C. D.; Banerjee, P. C.; Konstas, K.; Fakhfouri, A.; Barghamadi, M.; Musameh, M. M.; Best, A. S.; et al. ACS Nano 2016, 10, 7768. doi: 10.1021/acsnano.6b03285
doi: 10.1021/acsnano.6b03285
Chen, K.; Sun, Z.; Fang, R.; Li, F.; Cheng, H. Acta Phys.-Chim. Sin. 2018, 34, 377.
doi: 10.3866/PKU.WHXB201709001
Yu, M.; Zhou, S.; Wang, Z.; Wang Y.; Zhang, N.; Wang, S.; Zhao, J.; Qiu, J. Energy Storage Mater. 2019, 20, 98. doi: 10.1016/j.ensm.2018.11.028
doi: 10.1016/j.ensm.2018.11.028
Zheng, C.; Niu, S.; Lv, W.; Zhou, G.; Li, J.; Fan, S.; Deng, Y.; Pan, Z.; Li, B.; Kang, F.; Yang, Q.-H. Nano Energy 2017, 33, 306. doi: 10.1016/j.nanoen.2017.01.040
doi: 10.1016/j.nanoen.2017.01.040
Xiao, R.; Yang, S.; Yu, T.; Hu, T.; Zhang, X.; Xu, R.; Wang, Y.; Guo, X.; Sun, Z.; Li, F. Batteries Supercaps 2022, 5, e202100389. doi: 10.1002/batt.202100389
doi: 10.1002/batt.202100389
Cheng, Z.; Xiao, Z.; Pan, H.; Wang, S.; Wang, R. Adv. Energy Mater. 2018, 8, 1702337. doi: 10.1002/aenm.201702337
doi: 10.1002/aenm.201702337
Xiao, R.; Chen, K.; Zhang, X.; Hu, G.; Xie, J.; Rong, J.; Sun, Z.; Li, F. CrystEngComm 2020, 22, 1555. doi: 10.1039/C9CE01469A
doi: 10.1039/C9CE01469A
Sun, Z.; Zhang, J.; Yin, L.; Hu, G.; Fang, R.; Cheng, H.-M.; Li, F. Nat. Commun. 2017, 8, 14627. doi: 10.1038/ncomms14627
doi: 10.1038/ncomms14627
Yang, S.; Xiao, R.; Hu, T.; Fan, X.; Xu, R.; Sun, Z.; Zhong, B.; Guo, X.; Li, F. Nano Energy 2021, 90, 106584. doi: 10.1016/j.nanoen.2021.106584
doi: 10.1016/j.nanoen.2021.106584
Yu, M.; Zhou, S.; Wang, Z.; Pei, W.; Liu, X.; Liu, C.; Yan, C.; Meng, X.; Wang, S.; Zhao, J.; Qiu, J. Adv. Funct. Mater. 2019, 29, 1905986. doi: 10.1002/adfm.201905986
doi: 10.1002/adfm.201905986
Xiao, R.; Chen, K.; Zhang, X.; Yang, Z.; Hu, G.; Sun, Z.; Cheng, H.-M.; Li, F. J. Energy Chem. 2021, 54, 452. doi: 10.1016/j.jechem.2020.06.018
doi: 10.1016/j.jechem.2020.06.018
Xiao, R.; Yu, T.; Yang, S.; Chen, K.; Li, Z.; Liu, Z.; Hu, T.; Hu, G.; Li, J.; Cheng, H.-M.; Sun, Z.; Li, F. Energy Storage Mater. 2022, 51, 890. doi: 10.1016/j.ensm.2022.07.024
doi: 10.1016/j.ensm.2022.07.024
Yan, R.; Ma, T.; Cheng, M.; Tao, X.; Yang, Z.; Ran, F.; Li, S.; Yin, B.; Cheng, C.; Yang, W. Adv. Mater. 2021, 33, 2008784. doi: 10.1002/adma.202008784
doi: 10.1002/adma.202008784
Tong, Z.; Huang, L.; Liu, H.; Lei, W.; Zhang, H.; Zhang, S.; Jia, Q. Adv. Funct. Mater. 2021, 31, 2010455. doi: 10.1002/adfm.202010455
doi: 10.1002/adfm.202010455
Cheng, S.; Wang, J.; Duan, S.; Zhang, J.; Wang, Q.; Zhang, Y.; Li, L.; Liu, H.; Xiao, Q.; Lin, H. Chem. Eng. J. 2021, 417, 128172. doi: 10.1016/j.cej.2020.128172
doi: 10.1016/j.cej.2020.128172
Wang, M.; Song, Y.; Sun, Z.; Shao, Y.; Wei, C.; Xia, Z.; Tian, Z.; Liu, Z.; Sun, J. ACS Nano 2019, 13, 13235. doi: 10.1021/acsnano.9b06267
doi: 10.1021/acsnano.9b06267
Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Adv. Mater. 2021, 33, 2101204. doi: 10.1002/adma.202101204
doi: 10.1002/adma.202101204
Hu, Y.; Cheng, H.; Chen, H.; Dai, S.; Song, K.; Ma, X.; Liu, M.; Hu, H. J. Mater. Chem. A 2022, 10, 22896. doi: 10.1039/d2ta06500b
doi: 10.1039/d2ta06500b
Shadike, Z.; Tan, S.; Wang, Q.-C.; Lin, R.; Hu, E.; Qu, D.; Yang, X.-Q. Mater. Horiz. 2021, 8, 471. doi: 10.1039/D0MH01364A
doi: 10.1039/D0MH01364A
Zhou, X.; Liu, T.; Zhao, G.; Yang, X.; Guo, H. Energy Storage Mater. 2021, 40, 139. doi: 10.1016/j.ensm.2021.05.009
doi: 10.1016/j.ensm.2021.05.009
Hu, H.; Zhao, B.; Cheng, H.; Dai, S.; Kane, N.; Yu, Y.; Liu, M. Nano Energy 2019, 57, 635. doi: 10.1016/j.nanoen.2018.12.092
doi: 10.1016/j.nanoen.2018.12.092
Zhou, J.; Zhou, X.; Sun, Y.; Shen, X.; Qian, T.; Yan, C. J. Energy Chem. 2021, 56, 238. doi: 10.1016/j.jechem.2020.08.010
doi: 10.1016/j.jechem.2020.08.010
Zhang, X.; Chen, K.; Sun, Z.; Hu, G.; Xiao, R.; Cheng, H.-M.; Li, F. Energy Environ. Sci. 2020, 13, 1076. doi: 10.1039/C9EE03848E
doi: 10.1039/C9EE03848E
Chen, K.; Fang, R.; Lian, Z.; Zhang, X.; Tang, P.; Li, B.; He, K.; Wang, D.; Cheng, H.-M.; Sun, Z.; Li, F. Energy Storage Mater. 2021, 37, 224. doi: 10.1016/j.ensm.2021.02.012
doi: 10.1016/j.ensm.2021.02.012
Chen, S.; Dai, F.; Gordin, M. L.; Yu, Z.; Gao, Y.; Song, J.; Wang, D. Angew. Chem. Int. Ed. 2016, 55, 4231. doi: 10.1002/anie.201511830
doi: 10.1002/anie.201511830
Lian, J.; Guo, W.; Fu, Y. J. Am. Chem. Soc. 2021, 143, 11063. doi: 10.1021/jacs.1c04222
doi: 10.1021/jacs.1c04222
Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; et al. Nat. Chem. 2013, 5, 518. doi: 10.1038/nchem.1624
doi: 10.1038/nchem.1624
Griebel, J. J.; Glass, R. S.; Char, K.; Pyun, J. Prog. Polym. Sci. 2016, 58, 90. doi: 10.1016/j.progpolymsci.2016.04.003
doi: 10.1016/j.progpolymsci.2016.04.003
Simmonds, A. G.; Griebel, J. J.; Park, J.; Kim, K. R.; Chung, W. J.; Oleshko, V. P.; Kim, J.; Kim, E. T.; Glass, R. S.; Soles, C. L.; et al. ACS Macro Lett. 2014, 3, 229. doi: 10.1021/mz400649w
doi: 10.1021/mz400649w
Hoefling, A.; Nguyen, D. T.; Partovi-Azar, P.; Sebastiani, D.; Theato, P.; Song, S.-W.; Lee, Y. J. Chem. Mater. 2018, 30, 2915. doi: 10.1021/acs.chemmater.7b05105
doi: 10.1021/acs.chemmater.7b05105
Hu, G.; Sun, Z.; Shi, C.; Fang, R.; Chen, J.; Hou, P.; Liu, C.; Cheng, H.-M.; Li, F. Adv. Mater. 2017, 29, 1603835. doi: 10.1002/adma.201603835
doi: 10.1002/adma.201603835
Dong, F.; Peng, C.; Xu, H.; Zheng, Y.; Yao, H.; Yang, J.; Zheng, S. ACS Nano 2021, 15, 20287. doi: 10.1021/acsnano.1c08449
doi: 10.1021/acsnano.1c08449
Sun, Z.; Xiao, M.; Wang, S.; Han, D.; Song, S.; Chen, G.; Meng, Y. J. Mater. Chem. A 2014, 2, 9280. doi: 10.1039/c4ta00779d
doi: 10.1039/c4ta00779d
Liu, X.; Xu, N.; Qian, T.; Liu, J.; Shen, X.; Yan, C. Small 2017, 13, 1702104. doi: 10.1002/smll.201702104
doi: 10.1002/smll.201702104
Zeng, S. Li, L.; Xie, L.; Zhao, D.; Zhou, N.; Wang, N.; Chen, S. Carbon 2017, 122, 106. doi: 10.1016/j.carbon.2017.06.036
doi: 10.1016/j.carbon.2017.06.036
Bhargav, A.; Chang, C.-H.; Fu, Y.; Manthiram, A. ACS Appl. Mater. Inter. 2019, 11, 6136. doi: 10.1021/acsami.8b21395
doi: 10.1021/acsami.8b21395
Zhou, H.; Yu, F.; Wei, M.; Su, Y.; Ma, Y.; Wang, D.; Shen, Q. Chem. Commun. 2019, 55, 3729. doi: 10.1039/C8CC09972C
doi: 10.1039/C8CC09972C
Evers, S.; Nazar, L. F. Acc. Chem. Res. 2013, 46, 1135. doi: 10.1021/ar3001348
doi: 10.1021/ar3001348
Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Angew. Chem. Int. Ed. 2013, 52, 13186. doi: 10.1002/anie.201304762
doi: 10.1002/anie.201304762
Hu, H.; Hu, Y.; Cheng, H.; Dai, S.; Song, K.; Liu, M. J. Power Sources 2021, 491, 229617. doi: 10.1016/j.jpowsour.2021.229617
doi: 10.1016/j.jpowsour.2021.229617
Je, S. H.; Hwang, T. H.; Talapaneni, S. N.; Buyukcakir, O.; Kim, H. J.; Yu, J.-S.; Woo, S.-G.; Jang, M. C.; Son, B. K.; Coskun, A.; et al. ACS Energy Lett. 2016, 1, 566. doi: 10.1021/acsenergylett.6b00245
doi: 10.1021/acsenergylett.6b00245
Je, S. H.; Kim, H. J.; Kim, J.; Choi, J. W.; Coskun, A. Adv. Funct. Mater. 2017, 27, 1703947. doi: 10.1002/adfm.201703947
doi: 10.1002/adfm.201703947
Zhou, J.; Qian, T.; Xu, N.; Wang, M.; Ni, X.; Liu, X.; Shen, X.; Yan, C. Adv. Mater. 2017, 29, 1701294. doi: 10.1002/adma.201701294
doi: 10.1002/adma.201701294
Gomez, I.; Mantione, D.; Leonet, O.; Blazquez, J. A.; Mecerreyes, D. ChemElectroChem 2018, 5, 260. doi: 10.1002/celc.201700882
doi: 10.1002/celc.201700882
Sang, P.; Song, J.; Guo, W.; Fu, Y. Chem. Eng. J. 2021, 415, 129043. doi: 10.1016/j.cej.2021.129043
doi: 10.1016/j.cej.2021.129043
Shen, K.; Mei, H.; Li, B.; Ding, J.; Yang, S. Adv. Energy Mater. 2018, 8, 1701527. doi: 10.1002/aenm.201701527
doi: 10.1002/aenm.201701527
Zhang, T.; Hu, F.; Shao, W.; Liu, S.; Peng, H.; Song, Z.; Song, C.; Li, N.; Jian, X. ACS Nano 2021, 15, 15027. doi: 10.1021/acsnano.1c05330
doi: 10.1021/acsnano.1c05330
Yan, W.; Yan, K.-Y.; Kuang, G.-C.; Jin, Z. Chem. Eng. J. 2021, 424, 130316. doi: 10.1016/j.cej.2021.130316
doi: 10.1016/j.cej.2021.130316
Sang, P.; Si, Y.; Fu, Y. Chem. Commun. 2019, 55, 4857. doi: 10.1039/C9CC01495K
doi: 10.1039/C9CC01495K
Li, X.; Yuan, L.; Liu, D.; Li, Z.; Chen, J.; Yuan, K.; Xiang, J.; Huang, Y. Energy Storage Mater. 2020, 26, 570. doi: 10.1016/j.ensm.2019.11.030
doi: 10.1016/j.ensm.2019.11.030
Xu, N.; Qian, T.; Liu, X.; Liu, J.; Chen, Y.; Yan, C. Nano Lett. 2017, 17, 538. doi: 10.1021/acs.nanolett.6b04610
doi: 10.1021/acs.nanolett.6b04610
Talapaneni, S. N.; Hwang, T. H.; Je, S. H.; Buyukcakir, O.; Choi, J. W.; Coskun, A. Angew. Chem. Int. Ed. 2016, 55, 3106. doi: 10.1002/anie.201511553
doi: 10.1002/anie.201511553
Wu, F.; Chen, S.; Srot, V.; Huang, Y.; Sinha, S. K.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Mater. 2018, 30, 1706643. doi: 10.1002/adma.201706643
doi: 10.1002/adma.201706643
Wang, J.; Yang, J.; Xie, J.; Xu, N. Adv. Mater. 2002, 14, 963. doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
Yu, X.; Xie, J.; Yang, J.; Huang, H.; Wang, K.; Wen, Z. J. Electroanal. Chem. 2004, 573, 121. doi: 10.1016/j.jelechem.2004.07.004
doi: 10.1016/j.jelechem.2004.07.004
Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, A.; Buchmeiser, M. R. Chem. Mater. 2011, 23, 5024. doi: 10.1021/cm202467u
doi: 10.1021/cm202467u
Wei, S.; Ma, L.; Hendrickson, K. E.; Tu, Z.; Archer, L. A. J. Am. Chem. Soc. 2015, 137, 12143. doi: 10.1021/jacs.5b08113
doi: 10.1021/jacs.5b08113
Weret, M. A.; Jeffrey Kuo, C.-F.; Zeleke, T. S.; Beyene, T. T.; Tsai, M.-C.; Huang, C.-J.; Berhe, G. B.; Su, W.-N.; Hwang, B.-J. Energy Storage Mater. 2020, 26, 483. doi: 10.1016/j.ensm.2019.11.022
doi: 10.1016/j.ensm.2019.11.022
Wang, W.; Cao, Z.; Elia, G. A.; Wu, Y.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A.-H.; Cavallo, L.; Li, L.-J.; Ming, J. ACS Energy Lett. 2018, 3, 2899. doi: 10.1021/acsenergylett.8b01945
doi: 10.1021/acsenergylett.8b01945
Zhao, X.; Wang, C.; Li, Z.; Hu, X.; Abdul Razzaq, A.; Deng, Z. J. Mater. Chem. A 2021, 9, 19282. doi: 10.1039/D1TA03300J
doi: 10.1039/D1TA03300J
Razzaq, A. A.; Yuan, X.; Chen, Y.; Hu, J.; Mu, Q.; Ma, Y.; Zhao, X.; Miao, L.; Ahn, J. H.; Peng, Y.; et al. J. Mater. Chem. A 2020, 8, 1298. doi: 10.1039/c9ta11390h
doi: 10.1039/c9ta11390h
Abdul Razzaq, A.; Chen, G.; Zhao, X.; Yuan, X.; Hu, J.; Li, Z.; Chen, Y.; Xu, J.; Shah, R.; Zhong, J.; et al. J. Energy Chem. 2021, 61, 170. doi: 10.1016/j.jechem.2021.01.012
doi: 10.1016/j.jechem.2021.01.012
Wang, T.; Zhang, Q.; Zhong, J.; Chen, M.; Deng, H.; Cao, J.; Wang, L.; Peng, L.; Zhu, J.; Lu, B. Adv. Energy Mater. 2021, 11, 2100448. doi: 10.1002/aenm.202100448
doi: 10.1002/aenm.202100448
He, B.; Rao, Z.; Cheng, Z.; Liu, D.; He, D.; Chen, J.; Miao, Z.; Yuan, L.; Li, Z.; Huang, Y. Adv. Energy Mater. 2021, 11, 2003690. doi: 10.1002/aenm.202003690
doi: 10.1002/aenm.202003690
Wang, X.; Qian, Y.; Wang, L.; Yang, H.; Li, H.; Zhao, Y.; Liu, T. Adv. Funct. Mater. 2019, 29, 1902929. doi: 10.1002/adfm.201902929
doi: 10.1002/adfm.201902929
Chen, X.; Peng, L.; Wang, L.; Yang, J.; Hao, Z.; Xiang, J.; Yuan, K.; Huang, Y.; Shan, B.; Yuan, L.; et al. Nat. Commun. 2019, 10, 1021. doi: 10.1038/s41467-019-08818-6
doi: 10.1038/s41467-019-08818-6
Yang, H.; Qiao, Y.; Chang, Z.; He, P.; Zhou, H. Angew. Chem. Int. Ed. 2021, 60, 17726. doi: 10.1002/anie.202106788
doi: 10.1002/anie.202106788
Zhang, Y.; Sun, Y.; Peng, L.; Yang, J.; Jia, H.; Zhang, Z.; Shan, B.; Xie, J. Energy Storage Mater. 2019, 21, 287. doi: 10.1016/j.ensm.2018.12.010
doi: 10.1016/j.ensm.2018.12.010
Yin, L.; Wang, J.; Lin, F.; Yang, J.; Nuli, Y. Energy Environ. Sci. 2012, 5, 6966. doi: 10.1039/c2ee03495f
doi: 10.1039/c2ee03495f
Abdul Razzaq, A.; Yao, Y.; Shah, R.; Qi, P.; Miao, L.; Chen, M.; Zhao, X.; Peng, Y.; Deng, Z. Energy Storage Mater. 2019, 16, 194. doi: 10.1016/j.ensm.2018.05.006
doi: 10.1016/j.ensm.2018.05.006
Preefer, M. B.; Oschmann, B.; Hawker, C. J.; Seshadri, R.; Wudl, F. Angew. Chem. 2017, 129, 15314. doi: 10.1002/ange.201708746
doi: 10.1002/ange.201708746
Zhang, X.; Hu, G.; Chen, K.; Shen, L.; Xiao, R.; Tang, P.; Yan, C.; Cheng, H.-M.; Sun, Z.; Li, F. Energy Storage Mater. 2021, 45, 1144. doi: 10.1016/j.ensm.2021.11.014
doi: 10.1016/j.ensm.2021.11.014
Zhang, X.; Chen, K.; Tang, P.; Xiao, R.; Xu, R.; Yu, T.; Hu, G.; Cheng, H.-M.; Sun, Z.; Li, F. J. Mater. Chem. A 2022, 10, 23562. doi: 10.1039/D2TA07251C
doi: 10.1039/D2TA07251C
Liang, Y.; Tao, Z.; Chen, J. Adv. Energy Mater. 2012, 2, 742. doi: 10.1002/aenm.201100795
doi: 10.1002/aenm.201100795
Guo, W.; Wawrzyniakowski, Z. D.; Cerda, M. M.; Bhargav, A.; Pluth, M. D.; Ma, Y.; Fu, Y. Chem. Eur. J. 2017, 23, 16941. doi: 10.1002/chem.201703895
doi: 10.1002/chem.201703895
Wu, M.; Cui, Y.; Bhargav, A.; Losovyj, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu, Y. Angew. Chem. 2016, 128, 10181. doi: 10.1002/ange.201603897
doi: 10.1002/ange.201603897
Li, F.; Si, Y.; Liu, B.; Li, Z.; Fu, Y. Adv. Funct. Mater. 2019, 29, 1902223. doi: 10.1002/adfm.201902223
doi: 10.1002/adfm.201902223
Cui, Y.; Ackerson, J. D.; Ma, Y.; Bhargav, A.; Karty, J. A.; Guo, W.; Zhu, L.; Fu, Y. Adv. Funct. Mater. 2018, 28, 1801791. doi: 10.1002/adfm.201801791
doi: 10.1002/adfm.201801791
Lv, X.; Guo, W.; Song, J.; Fu, Y. Small 2022, 18, 2105071. doi: 10.1002/smll.202105071
doi: 10.1002/smll.202105071
Wang, D.; Si, Y.; Guo, W.; Fu, Y. Adv. Sci. 2020, 7, 1902646. doi: 10.1002/advs.201902646
doi: 10.1002/advs.201902646
Wang, D.-Y.; Si, Y.; Guo, W.; Fu, Y. Nat. Commun. 2021, 12, 3220. doi: 10.1038/s41467-021-23521-1
doi: 10.1038/s41467-021-23521-1
Zhao, J.; Si, Y.; Han, Z.; Li, J.; Guo, W.; Fu, Y. Angew. Chem. Int. Ed. 2020, 59, 2654. doi: 10.1002/anie.201913243
doi: 10.1002/anie.201913243
Xie, J.; Song, Y.; Li, B.; Peng, H.; Huang, J.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 22150. doi: 10.1002/anie.202008911
doi: 10.1002/anie.202008911
Li, G.; Gao, Y.; He, X.; Huang, Q.; Chen, S.; Kim, S. H.; Wang, D. Nat. Commun. 2017, 8, 850. doi: 10.1038/s41467-017-00974-x
doi: 10.1038/s41467-017-00974-x
Guo, W.; Zhang, W.; Si, Y.; Wang, D.; Fu, Y.; Manthiram, A. Nat. Commun. 2021, 12, 3031. doi: 10.1038/s41467-021-23155-3
doi: 10.1038/s41467-021-23155-3
Johansson, P. Polymer 2001, 42, 4367. doi: 10.1016/S0032-3861(00)00731-X
doi: 10.1016/S0032-3861(00)00731-X
Sarapas, J. M.; Tew, G. N. Macromolecules 2016, 49, 1154. doi: 10.1021/acs.macromol.5b02513
doi: 10.1021/acs.macromol.5b02513
Wang, H.; Wang, Q.; Cao, X.; He, Y.; Wu, K.; Yang, J.; Zhou, H.; Liu, W.; Sun, X. Adv. Mater. 2020, 32, 2001259. doi: 10.1002/adma.202001259
doi: 10.1002/adma.202001259
Xu, R.; Xu, S.; Wang, F.; Xiao, R.; Tang, P.; Zhang, X.; Bai, S.; Sun, Z.; Li, F. Small Structures 2023, 4, 2200206. doi: 10.1002/sstr.202200206
doi: 10.1002/sstr.202200206
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020