Citation: Zhuohao Jiao, Xinyuan Zhao, Jian Zhao, Yao Xie, Shengli Hou, Bin Zhao. [Co3]-Cluster Based Metal-Organic Framework Enables "Two Birds with One Stone" in Efficient Transformation of CO2 to Oxazolidinones[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 230101. doi: 10.3866/PKU.WHXB202301018 shu

[Co3]-Cluster Based Metal-Organic Framework Enables "Two Birds with One Stone" in Efficient Transformation of CO2 to Oxazolidinones

  • Corresponding author: Shengli Hou, housl@nankai.edu.cn Bin Zhao, zhaobin@nankai.edu.cn
  • Received Date: 11 January 2023
    Revised Date: 19 February 2023
    Accepted Date: 21 February 2023
    Available Online: 6 March 2023

    Fund Project: the National Natural Science Foundation of China 92161202the National Natural Science Foundation of China 22121005the National Natural Science Foundation of China 21971125the National Natural Science Foundation of China 22101138the National Natural Science Foundation of China 21625103the China Postdoctoral Science Foundation 2020T130319the 111 Project, China B12015

  • CO2, as a greenhouse gas, has excessive emissions that lead to many environmental problems and is a rich and cheap C1 resource. Effective utilization and transformation of CO2 has become an important means of achieving carbon neutrality. Oxazolidinones are important intermediates in pharmaceutical chemistry that can be synthesized by carboxylation cyclization of CO2 with propargyl amines or cycloaddition of CO2 with aziridines. Owing to CO2's high stability, these reactions typically require harsh conditions, such as high temperatures or pressures. It is desirable, but challenging, to find a catalyst that can catalyze these two types of reactions under relatively mild conditions. Metal-organic frameworks (MOFs) are an emerging class of heterogeneous catalysts that with great potential in the catalytic conversion of CO2 to value-added products because of their attractive features, such as abundant metal active sites, inherent porosity, and easy functionalities. Herein, a unique three-dimensional (3D) MOF, {(CH3NH2CH3)2[Co3(BCP)2]·6H2O·4DMF}n (1) (H4BCP: 5-(2,6-bis(4-carboxyphenyl)pyridin-4-yl) isophthalic acid; DMF: N,N'-dimethylformamide), was synthesized using carboxylic acid ligands and cobalt salts via a solvothermal method. According to structural analysis, [Co3] clusters as secondary building units (SBU) are bridged by BCP4− ligands, forming an anion framework with flu topology, and dimethylamine cations act as counter ions in the pores. The framework has rectangular channels of approximately 0.4 nm × 0.9 nm along the a-axis direction, exhibiting its porous property. Infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) characterizations proved the coordination interaction between the carboxyl groups in the ligands and the metal ions. The powder X-Ray diffraction (PXRD) test further confirmed the phase purity of the synthesized samples. PXRD and thermogravimetry (TG) analyses indicated that 1 possessed good solvent and thermal stabilities. The catalytic experiments revealed that 1 could effectively catalyze CO2 with aziridines or propargyl amines to prepare oxazolidinones. In the cycloaddition of CO2 with aziridines, 1 can facilitate the reaction under relatively mild conditions compared to other reported MOF-based catalysts. It shows excellent universality for substrates with various substitutions on the N atom or benzene ring. Investigation of the mechanism indicated that the coordination interaction of cobalt metal sites with the nitrogen atoms of aziridines can activate the substrates. For the carboxylative cyclization of CO2 with propargylic amines, this catalyst also has a broad substrate scope. Control experiments and nuclear magnetic resonance (NMR) tests suggest that Lewis acid metal sites are responsible for the high catalytic efficiency achieved by activating the alkyne groups. Moreover, 1 showed good reusability in both reactions. Compound 1 represents a new catalyst that enables "two birds with one stone" in the catalytic synthesis of oxazolidinones using CO2.
  • 加载中
    1. [1]

      Wang, H.; Xin, Z.; Li, Z. Top. Curr. Chem. 2017, 375, 49. doi: 10.1007/s41061-017-0137-4  doi: 10.1007/s41061-017-0137-4

    2. [2]

      Jin, H. D.; Xiong, L. K.; Zhang, X.; Lian, Y. B.; Chen, S.; Lu, Y. T.; Deng, Z.; Peng, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006017.  doi: 10.3866/PKU.WHXB202006017

    3. [3]

      Liu, X.; Zhang, S.; Song, Q. W.; Liu, X. F.; Ma, R.; He, L. N. Green Chem. 2016, 18, 2871. doi: 10.1039/C5GC02761F  doi: 10.1039/C5GC02761F

    4. [4]

      Jiang, X. L.; Jiao, Y. E.; Hou, S. L.; Geng, L. C.; Wang, H. Z.; Zhao, B. Angew. Chem. Int. Ed. 2021, 60, 20417. doi: 10.1002/anie.202106773  doi: 10.1002/anie.202106773

    5. [5]

      Wang, Y. Q.; Zhong, Z. X.; Liu, T. K.; Liu, G. L.; Hong, X. L. Acta Phys. -Chim. Sin. 2021, 37, 2007089.  doi: 10.3866/PKU.WHXB202007089

    6. [6]

      Yu, F.; Jing, X.; Wang, Y.; Sun, M.; Duan, C. Y. Angew. Chem. Int. Ed. 2021, 60, 23729. doi: 10.1002/anie.202108396  doi: 10.1002/anie.202108396

    7. [7]

      Zhao, M.; Huang, S.; Fu, Q.; Li, W.; Guo, R.; Yao, Q.; Wang, F.; Cui, P.; Tung, C. H.; Sun, D. Angew. Chem. Int. Ed. 2020, 59, 20031. doi: 10.1002/anie.202007122  doi: 10.1002/anie.202007122

    8. [8]

      Yang, W.; Wang, H. J.; Liu, R. R.; Wang, J. W.; Zhang, C.; Li, C.; Zhong, D. C.; Lu, T. B. Angew. Chem. Int. Ed. 2021, 60, 409. doi: 10.1002/anie.202011068  doi: 10.1002/anie.202011068

    9. [9]

      An, B.; Meng, Y.; Li, Z.; Hong, Y.; Wang, T.; Wang, S.; Lin, J.; Wang, C.; Wan, S.; Wang, Y.; et al. J. Catal. 2019, 373, 37. doi: 10.1016/j.jcat.2019.03.008  doi: 10.1016/j.jcat.2019.03.008

    10. [10]

      Fang, Z. B.; Liu, T. T.; Liu, J.; Jin, S.; Wu, X. P.; Gong, X. Q.; Wang, K.; Yin, Q.; Liu, T. F.; Cao, R.; et al. J. Am. Chem. Soc. 2020, 142, 12515. doi: 10.1021/jacs.0c05530  doi: 10.1021/jacs.0c05530

    11. [11]

      Jiao, L.; Zhu, J.; Zhang, Y.; Yang, W.; Zhou, S.; Li, A.; Xie, C.; Zheng, X.; Zhou, W.; Yu, S. H.; et al. J. Am. Chem. Soc. 2021, 143, 19417. doi: 10.1021/jacs.1c08050  doi: 10.1021/jacs.1c08050

    12. [12]

      Foti, C.; Piperno, A.; Scala, A.; Giuffre, O. Molecules 2021, 26, 4280. doi: 10.3390/molecules26144280  doi: 10.3390/molecules26144280

    13. [13]

      Aurelio, L.; Brownlee, R. T. C.; Hughes, A. B. Chem. Rev. 2004, 104, 5823. doi: 10.1021/cr030024z  doi: 10.1021/cr030024z

    14. [14]

      Zadsirjan, V.; Heravi, M. M. Curr. Org. Synth. 2018, 15, 3. doi: 10.2174/1570179414666170601115831  doi: 10.2174/1570179414666170601115831

    15. [15]

      Arshadi, S.; Banaei, A.; Ebrahimiasl, S.; Monfared, A.; Vessally, E. RSC Adv. 2019, 9, 19465. doi: 10.1039/C9RA00551J  doi: 10.1039/C9RA00551J

    16. [16]

      Jiang, H. F.; Ye, J. W.; Qi, C. R.; Huang, L. B. Tetrahedron Lett. 2010, 51, 928. doi: 10.1016/j.tetlet.2009.12.031  doi: 10.1016/j.tetlet.2009.12.031

    17. [17]

      Phung C; Pinhas A. R. Tetrahedron Lett. 2010, 51, 4552. doi: 10.1016/j.tetlet.2010.06.110  doi: 10.1016/j.tetlet.2010.06.110

    18. [18]

      Brunel, P.; Monot, J.; Kefalidis, C. E.; Maron, L.; Martin-Vaca, B.; Bourissou, D. ACS Catal. 2017, 7, 2652. doi: 10.1021/acscatal.7b00209  doi: 10.1021/acscatal.7b00209

    19. [19]

      Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, S. Y. Chem. Soc. Rev. 2014, 43, 6011. doi: 10.1039/C4CS00094C  doi: 10.1039/C4CS00094C

    20. [20]

      Li, F. L.; Shao, Q.; Huang, X.; Lang, J. P. Angew. Chem. Int. Ed. 2018, 57, 1888. doi: 10.1002/anie.201711376  doi: 10.1002/anie.201711376

    21. [21]

      Zhang, Y.; Dong, L. Z.; Li, S.; Huang, X.; Chang, J. N.; Wang, J. H.; Zhou, J.; Li, S. L.; Lan, Y. Q. Nat. Commun. 2021, 12, 6390. doi: 10.1038/s41467-021-26724-8  doi: 10.1038/s41467-021-26724-8

    22. [22]

      Shao, P.; Zhou, W.; Hong, Q. L.; Yi, L.; Zheng, L.; Wang, W.; Zhang, H. X.; Zhang, H.; Zhang, J. Angew. Chem. Int. Ed. 2021, 60, 16687. doi: 10.1002/anie.202106004  doi: 10.1002/anie.202106004

    23. [23]

      Ding, M.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783. doi: 10.1039/C8CS00829A  doi: 10.1039/C8CS00829A

    24. [24]

      Sun, L. B.; Liu, X. Q.; Zhou, H. C. Chem. Soc. Rev. 2015, 44, 5092. doi: 10.1039/C5CS00090D  doi: 10.1039/C5CS00090D

    25. [25]

      Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Adv. Mater. 2018, 30, 1870280. doi: 10.1002/adma.201870280  doi: 10.1002/adma.201870280

    26. [26]

      Islamoglu, T.; Goswami, S.; Li, S.; Howarth, A. J.; Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2017, 50, 805. doi: 10.1021/acs.accounts.6b00577  doi: 10.1021/acs.accounts.6b00577

    27. [27]

      Lü, C. X.; Zhan, G. P.; Chen, K.; Liu, Z. K.; Wu, C. D. Appl. Catal. B 2020, 279, 119350. doi: 10.1016/j.apcatb.2020.119350  doi: 10.1016/j.apcatb.2020.119350

    28. [28]

      Yang, Q.; Liu, W.; Wang, B.; Zhang, W.; Zeng, X.; Zhang, C.; Qin, Y.; Sun, X.; Wu, T.; Liu, J.; et al. Nat. Commun. 2017, 8, 14429. doi: 10.1038/ncomms14429  doi: 10.1038/ncomms14429

    29. [29]

      Yu, F.; Jing, X.; Wang, Y.; Sun, M.; Duan, C. Angew. Chem. Int. Ed. 2021, 60, 24849. doi: 10.1002/anie.202108892  doi: 10.1002/anie.202108892

    30. [30]

      Shi, Y.; Zhao, J.; Xu, H.; Hou, S. L.; Zhao, B. Sci. China Chem. 2021, 64, 1316. doi: 10.1007/s11426-021-1006-9  doi: 10.1007/s11426-021-1006-9

    31. [31]

      Zhang, G. Y.; Yang, H. M.; Fei, H. H. ACS Catal. 2018, 8, 2519. doi: 10.1021/acscatal.7b04189  doi: 10.1021/acscatal.7b04189

    32. [32]

      Wang, H. H.; Hou, L.; Li, Y. Z.; Jiang, C. Y.; Wang, Y. Y.; Zhu, Z. ACS Appl. Mater. Interface 2017, 9, 17969. doi: 10.1021/acsami.7b03835  doi: 10.1021/acsami.7b03835

    33. [33]

      Zha, Q.; Yuan, F.; Qin, G.; Ni, Y. Inorg. Chem. 2020, 59, 1295. doi: 10.1021/acs.inorgchem.9b03011  doi: 10.1021/acs.inorgchem.9b03011

    34. [34]

      Chen, H.; Shen, K.; Mao, W.; Chen, J.; Li, Y. ACS Catal. 2018, 8, 1417. doi: 10.1021/acscatal.7b03270  doi: 10.1021/acscatal.7b03270

    35. [35]

      Hao, L.; Xia, Q.; Zhang, Q.; Masa, J.; Sun, Z. Chin. J. Catal. 2021, 42, 1903. doi: 10.1016/S1872-2067(21)63841-X  doi: 10.1016/S1872-2067(21)63841-X

    36. [36]

      Zhou, Z. H.; Chen, K. H.; He, L. N. Chin. J. Chem. 2019, 37, 1223. doi: 10.1002/cjoc.201900346  doi: 10.1002/cjoc.201900346

    37. [37]

      Carrasco, S.; Sanz-Marco, A.; Martin-Matute, B. Organometallics 2019, 38, 3429. doi: 10.1021/acs.organomet.9b00273  doi: 10.1021/acs.organomet.9b00273

    38. [38]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard J. A. K.; Pushmann, H. J. Appl. Crystallogr. 2009, 42, 339. doi: 10.1107/S0021889808042726  doi: 10.1107/S0021889808042726

    39. [39]

      Sheldrick, G. M. Acta Crystallogr. Sect. A: Fundam. Crystallogr. 2008, 64, 112. doi: 10.1107/S0108767307043930  doi: 10.1107/S0108767307043930

    40. [40]

      Hou, S. L.; Dong, J.; Jiang, X. L.; Jiao, Z. H.; Zhao, B. Angew. Chem. Int. Ed. 2019, 58, 577. doi: 10.1002/anie.201811506  doi: 10.1002/anie.201811506

    41. [41]

      Xiao, Y.; Qi, Y.; Wang, X.; Wang, X.; Zhang, F.; Li, C. Adv. Mater. 2018, 30, e1803401. doi: 10.1002/adma.201803401  doi: 10.1002/adma.201803401

    42. [42]

      Zhu, Z. H.; Liang, Z. L.; Hou, S. L.; Xie, Y.; Ma, Y.; Zhang, Y.; Zhao, B. J. Energy Chem. 2021, 63, 328. doi: 10.1016/j.jechem.2021.09.009  doi: 10.1016/j.jechem.2021.09.009

    43. [43]

      Ye, G.; Luo, P.; Zhao, Y.; Qiu, G.; Hu, Y.; Preis, S.; Wei, C. Chemosphere 2020, 253, 126767. doi: 10.1016/j.chemosphere.2020.126767  doi: 10.1016/j.chemosphere.2020.126767

    44. [44]

      Hu, X.; Hu, H.; Li, C.; Li, T.; Lou, X.; Chen, Q.; Hu, B. J. Solid State Chem. 2016, 242, 71. doi: 10.1016/j.jssc.2016.07.021  doi: 10.1016/j.jssc.2016.07.021

    45. [45]

      Wang, X.; Gao, W. Y.; Niu, Z.; Wojtas, L.; Perman, J. A.; Chen, Y. S.; Li, Z.; Aguila, B.; Ma, S. Q. Chem. Commun. 2018, 54, 1170. doi: 10.1039/C7CC08844B  doi: 10.1039/C7CC08844B

    46. [46]

      Cao, C. S.; Xia, S. M.; Song, Z. J.; Xu, H.; Shi, Y.; He, L. N. Cheng, P; Zhao, B. Angew. Chem. Int. Ed. 2020, 59, 8586. doi: 10.1002/anie.201914596  doi: 10.1002/anie.201914596

    47. [47]

      Du, Y.; Wu, Y.; Liu, A. H.; He, L. N. J. Org. Chem. 2008, 73, 4709. doi: 10.1021/jo800269v  doi: 10.1021/jo800269v

    48. [48]

      Wang, M. Y.; Song, Q. W.; Ma, R.; Xie, J. N.; He, L. N. Green Chem. 2016, 18, 282. doi: 10.1039/C5GC02311D  doi: 10.1039/C5GC02311D

    49. [49]

      Zhou, Z. H.; Xia, S. M.; Huang, S. Y.; Huang, Y. Z.; Chen, K. H.; He, L. N. J. CO2 Util. 2019, 34, 404. doi: 10.1016/j.jcou.2019.07.027  doi: 10.1016/j.jcou.2019.07.027

    50. [50]

      Gu, A. L.; Wang, W. T.; Cheng, X. Y.; Hu, T. D.; Wu, Z. L. Inorg. Chem. 2021, 60, 13425. doi: 10.1021/acs.inorgchem.1c0177  doi: 10.1021/acs.inorgchem.1c0177

  • 加载中
    1. [1]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    2. [2]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    3. [3]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    4. [4]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    5. [5]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    6. [6]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    7. [7]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    8. [8]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    9. [9]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    10. [10]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    11. [11]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    14. [14]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    15. [15]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    16. [16]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    17. [17]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    18. [18]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

Metrics
  • PDF Downloads(5)
  • Abstract views(909)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return