Semiconducting Polymers for Photosynthesis of H2O2: Spatial Separation and Synergistic Utilization of Photoredox Centers
- Corresponding author: Qitao Zhang, qitao-zhang@szu.edu.cn Chenliang Su, chmsuc@szu.edu.cn
Citation: Yao Xie, Qitao Zhang, Hongli Sun, Zhenyuan Teng, Chenliang Su. Semiconducting Polymers for Photosynthesis of H2O2: Spatial Separation and Synergistic Utilization of Photoredox Centers[J]. Acta Physico-Chimica Sinica, ;2023, 39(11): 230100. doi: 10.3866/PKU.WHXB202301001
Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. -I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Nat. Rev. Chem. 2019, 3 (7), 442. doi: 10.1038/s41570-019-0110-6
doi: 10.1038/s41570-019-0110-6
Hou, H.; Zeng, X.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59 (40), 17356. doi: 10.1002/anie.201911609
doi: 10.1002/anie.201911609
Cheng, H.; Cheng, J.; Wang, L.; Xu, H. Chem. Mater. 2022, 34 (10), 4259. doi: 10.1021/acs.chemmater.2c00936
doi: 10.1021/acs.chemmater.2c00936
Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. Angew. Chem. Int. Ed. 2006, 45 (42), 6962. doi: 10.1002/anie.200503779
doi: 10.1002/anie.200503779
(a) Wang, Y.; Waterhouse, G. I.; Shang, L.; Zhang, T. Adv. Energy Mater. 2021, 11 (15), 2003323. doi:
(b) Zeng, X.;Liu, Y.;Hu, X.;Zhang, X. GreenChem. 2021, 23 (4), 1466.doi:
(a) Fukuzumi, S. Joule 2017, 1 (4), 689. doi:
(b) Yamada, Y.;Yoneda, M.;Fukuzumi, S. EnergyEnviron.Sci. 2015, 8 (6), 1698.doi:
Tang, J.; Zhao, T.; Solanki, D.; Miao, X.; Zhou, W.; Hu, S. Joule 2021, 5 (6), 1432. doi: 10.1016/j.joule.2021.04.012
doi: 10.1016/j.joule.2021.04.012
(a) Cai, R.; Hashimoto, K.; Fujishima, A.; Kubota, Y. J. Electroanal. Chem. 1992, 326 (1–2), 345. doi:
(b) Baur, E.;Neuweiler, C. Helv.Chim.Acta 1927, 10 (1), 901. doi:
(a) Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T. Nature 2021, 598 (7880), 304. doi:
(b) Xue, Z.-H.;Luan, D.;Zhang, H.;Lou, X.W.D. Joule 2022, 6 (1), 92.doi:
(c) Hussain, M.Z.;Yang, Z.;Huang, Z.;Jia, Q.;Zhu, Y.;Xia, Y. Adv.Sci. 2021, 8 (14), 2100625.doi:
(d) Feng, C.;Wu, Z.P.;Huang, K.W.;Ye, J.;Zhang, H. Adv.Mater. 2022, 34 (23), 2200180.doi:
(e) Teng, Z.;Yang, H.;Zhang, Q.;Ohno, T. Chem.Res.Chin.Univ. 2022, 38 (5), 1207.doi:
Kondo, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Chem 2022, 8 (11) 2924. doi: 10.1016/j.chempr.2022.10.007
doi: 10.1016/j.chempr.2022.10.007
Yu, W.; Hu, C.; Bai, L.; Tian, N.; Zhang, Y.; Huang, H. Nano Energy 2022, 104 (A) 107906. doi: 10.1016/j.nanoen.2022.107906
doi: 10.1016/j.nanoen.2022.107906
(a) Xie, Y.; Li, Y.; Huang, Z.; Zhang, J.; Jia, X.; Wang, X. -S.; Ye, J. Appl. Catal. B-Environ. 2020, 265 (15), 118581. doi:
(b) Liu, W.;Song, C.;Kou, M.;Wang, Y.;Deng, Y.;Shimada, T.;Ye, L. Chem.Eng.J. 2021, 425 (1), 130615. doi:
(a) Wei, Z.; Liu, M.; Zhang, Z.; Yao, W.; Tan, H.; Zhu, Y. Energy Environ. Sci. 2018, 11 (9), 2581. doi:
(b) Zeng, X.;Liu, Y.;Kang, Y.;Li, Q.;Xia, Y.;Zhu, Y.;Hou, H.;Uddin, M.H.;Gengenbach, T.R.;Xia, D. ACSCatal. 2020, 10 (6), 3697.doi:
(c) Feng, C.;Tang, L.;Deng, Y.;Wang, J.;Luo, J.;Liu, Y.;Ouyang, X.;Yang, H.;Yu, J.;Wang, J. Adv.Fun.Mater. 2020, 30 (39), 2001922.doi:
(a) Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Appl. Catal. B-Environ. 2022, 317 (15), 121788. doi:
(b) He, B.;Wang, Z.;Xiao, P.;Chen, T.;Yu, J.;Zhang, L. Adv.Mater. 2022, 34 (38), 2203225.doi:
(c) Xu, Z.;Liang, J.;Wang, Y.;Dong, K.;Shi, X.;Liu, Q.;Luo, Y.; Li, T.;Jia, Y.;Asiri, A.M. ACSAppl.Mater.Interfaces 2021, 13 (28), 33182.doi:
(d) Luo, B.-D.;Xiong, X.-Q.;Xu, Y.-M. ActaPhys.-Chim.Sin. 2016, 32 (7), 1758.[罗邦德, 熊贤强, 许宜铭.物理化学学报, 2016, 32 (7), 1758.]doi:
(a) Wang, Y.; Wang, Y.; Zhao, J.; Chen, M.; Huang, X.; Xu, Y. Appl. Catal. B-Environ. 2021, 284 (5), 119691. doi:
(b) Ye, F.;Wang, T.;Quan, X.;Yu, H.;Chen, S. Chem.Eng.J. 2020, 389 (1), 123427.doi:
(c) Yoon, M.;Oh, Y.;Hong, S.;Lee, J.S.;Boppella, R.;Kim, S.H.;Mota, F.M.;Kim, S.O.;Kim, D.H. Appl.Catal.B-Environ. 2017, 206 (5), 263.doi:
(a) Zhao, F.; Shi, L. -Q.; Cui, J. -B.; Lin, Y. -H. Acta Phys. -Chim. Sin. 2016, 32 (8), 2069. [赵菲, 时林其, 崔佳宝, 林艳红. 物理化学学报, 2016, 32 (8), 2069.] doi:
(b) Wang, Y.-Y.;Zhou, G.-Q.;Zhang, L.;Liu, T.-Q. ActaPhys.-Chim.Sin. 2016, 32 (11), 2785.[王元有, 周国强, 张龙, 刘天晴. 物理化学学报, 2016, 32 (11), 2785.] doi:
(c) Meng, X.;Zong, P.;Wang, L.;Yang, F.;Hou, W.;Zhang, S.;Li, B.;Guo, Z.;Liu, S.;Zuo, G. Catal.Commun. 2020, 134 (10), 105860.doi:
(d) Yi, G.;Agarwal, G.;Zhang, Y. J.Phys.Chem.C 2019, 123 (31), 19230.doi:
(a) Zhu, T. -T.; Xu, S. -Z.; Ge, B. -Q.; Chen, Z. -X. Acta Phys. -Chim. Sin. 2016, 32 (12), 2871. [朱甜甜, 徐淑臻, 葛炳强, 陈忠秀. 物理化学学报, 2016, 32 (12), 2871.] doi:
(b) Lee, J.H.;Cho, H.;Park, S.O.;Hwang, J.M.;Hong, Y.;Sharma, P.;Jeon, W.C.;Cho, Y.;Yang, C.;Kwak, S.K. Appl.Catal.B-Environ. 2021, 284 (5), 119690.doi:
(c) Wang, C.;E, Y.;Fan, L.;Wang, Z.;Liu, H.;Li, Y.;Yang, S.;Li, Y. Adv.Mater. 2007, 19 (21), 3677.doi:
(d) Zhang, E.;Zhu, Q.;Huang, J.;Liu, J.;Tan, G.;Sun, C.;Li, T.;Liu, S.;Li, Y.;Wang, H. Appl.Catal.B-Environ. 2021, 293 (15), 120213.doi:
(a) Zheng, J.; Song, D.; Chen, H.; Xu, J.; Alharbi, N. S.; Hayat, T.; Zhang, M. Chin. Chem. Lett. 2020, 31 (5), 1109. doi:
(b) Li, G.;Chen, M.-Q.;Zhao, S.-X.;Li, P.-W.;Hu, J.;Sang, S.-B.;Hou, J.-J. ActaPhys.-Chim.Sin. 2016, 32 (12), 2905.[李刚, 陈敏强, 赵世雄, 李朋伟, 胡杰, 桑胜波, 侯静静.物理化学学报, 2016, 32 (12), 2905.]doi:
(a) Wu, X.; Tan, H. L.; Zhang, C.; Teng, Z.; Liu, Z.; Ng, Y. H.; Zhang, Q.; Su, C. Prog. Mate. Sci. 2023, 133, 101047. doi:
(b) Shi, X.;Zhang, Y.;Siahrostami, S.;Zheng, X. Adv.EnergyMater. 2018, 8 (23), 1801158.doi:
(c) Wei, L.-W.;Liu, S.-H.;Wang, H.P. ACSAppl.NanoMater. 2022, 5 (10), 15378.doi:
(d) Sun, X.;Chen, J.;Zhai, J.;Zhang, H.;Dong, S. J.Am.Chem.Soc. 2022, 144 (50), 23073.doi:
(a) Kosco, J.; Gonzalez-Carrero, S.; Howells, C. T.; Fei, T.; Dong, Y.; Sougrat, R.; Harrison, G. T.; Firdaus, Y.; Sheelamanthula, R.; Purushothaman, B. Nat. Energy 2022, 7 (4), 340. doi:
(b) Gu, J.;Peng, Y.;Zhou, T.;Ma, J.;Pang, H.;Yamauchi, Y. NanoRes.Energy 2022, 1 (1), 9120009.doi:
(a) Wang, L.; Zhang, Y.; Chen, L.; Xu, H.; Xiong, Y. Adv. Mater. 2018, 30 (48), 1801955. doi:
(b) Wang, Y.;Vogel, A.;Sachs, M.;Sprick, R.S.;Wilbraham, L.;Moniz, S.J.;Godin, R.;Zwijnenburg, M.A.;Durrant, J.R.;Cooper, A.I. Nat.Energy 2019, 4 (9), 746.doi:
(c) Ferguson, C.T.;Zhang, K.A. ACSCatal. 2021, 11 (15), 9547. doi:
Luo, W.; Li, Y.; Wang, J.; Liu, J.; Zhang, N.; Zhao, M.; Wu, J.; Zhou, W.; Wang, L. Nano Energy 2021, 87, 106168. doi: 10.1016/j.nanoen.2021.106168
doi: 10.1016/j.nanoen.2021.106168
(a) Zhang, T.; Schilling, W.; Khan, S. U.; Ching, H. V.; Lu, C.; Chen, J.; Jaworski, A.; Barcaro, G.; Monti, S.; De Wael, K. ACS Catal. 2021, 11 (22), 14087. doi:
(b) Zhang, P.;Tong, Y.;Liu, Y.;Vequizo, J.J.M.;Sun, H.;Yang, C.;Yamakata, A.;Fan, F.;Lin, W.;Wang, X. Angew.Chem. 2020, 132 (37), 16343.doi:
(c) Wu, S.;Yu, H.;Chen, S.;Quan, X. ACSCatal. 2020, 10 (24), 14380.doi:
(d) Shiraishi, Y.;Kanazawa, S.;Kofuji, Y.;Sakamoto, H.;Ichikawa, S.;Tanaka, S.;Hirai, T. Angew.Chem.Int.Ed. 2014, 53 (49), 13454. doi:
(e) Kofuji, Y.;Ohkita, S.;Shiraishi, Y.;Sakamoto, H.;Tanaka, S.;Ichikawa, S.;Hirai, T. ACSCatal. 2016, 6 (10), 7021. doi:
(a) Chen, X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. ACS Appl. Energy Mater. 2021, 4 (5), 4823. doi:
(b) Wang, Q.;Kong, X.Y.;Wang, Y.;Wang, L.;Huang, Y.;Li, H.;Ma, T.;Ye, L.ChemSusChem 2022, 15 (23), e202201514. doi:
Zhao, W.; Yan, P.; Li, B.; Bahri, M.; Liu, L.; Zhou, X.; Clowes, R.; Browning, N. D.; Wu, Y.; Ward, J. W.; et al. J. Am. Chem. Soc. 2022, 144 (22), 9902. doi: 10.1021/jacs.2c02666
doi: 10.1021/jacs.2c02666
Krishnaraj, C.; Sekhar Jena, H.; Bourda, L.; Laemont, A.; Pachfule, P.; Roeser, J. R. M.; Chandran, C. V.; Borgmans, S.; Rogge, S. M.; Leus, K. J. Am. Chem. Soc. 2020, 142 (47), 20107. doi: 10.1021/jacs.0c09684
doi: 10.1021/jacs.0c09684
Li, L.; Xu, L.; Hu, Z.; Yu, J. C. Adv. Funct. Mater. 2021, 31 (52), 2106120. doi: 10.1002/adfm.202106120
doi: 10.1002/adfm.202106120
Wang, H.; Yang, C.; Chen, F.; Zheng, G.; Han, Q. A Angew. Chem. 2022, 134 (19), 202202328. doi: 10.1002/ange.202202328
doi: 10.1002/ange.202202328
(a) Isaka, Y.; Kondo, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Chem. Commun. 2018, 54 (67), 9270. doi:
(b) Isaka, Y.;Kondo, Y.;Kuwahara, Y.;Mori, K.;Yamashita, H. Catal.Sci.Technol. 2019, 9 (6), 1511.doi:
(c) Kawase, Y.;Isaka, Y.;Kuwahara, Y.;Mori, K.;Yamashita, H. Chem.Commun. 2019, 55 (47), 6743.doi:
(a) Liu, L.; Gao, M. -Y.; Yang, H.; Wang, X.; Li, X.; Cooper, A. I. J. Am. Chem. Soc. 2021, 143 (46), 19287. doi:
(b) Xu, L.;Liu, Y.;Li, L.;Hu, Z.;Yu, J.C. ACSCatal. 2021, 11 (23), 1448.doi:
Ye, Y. -X.; Pan, J.; Shen, Y.; Shen, M.; Yan, H.; He, J.; Yang, X.; Zhu, F.; Xu, J.; He, J. Proc. Natl. Acad. Sci. USA 2021, 118 (46), 2115666118. doi: 10.1073/pnas.2115666118
doi: 10.1073/pnas.2115666118
Cheng, H.; Lv, H.; Cheng, J.; Wang, L.; Wu, X.; Xu, H. Adv. Mater. 2022, 34 (7), 2107480. doi: 10.1002/adma.202107480
doi: 10.1002/adma.202107480
Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Nat. Mater. 2019, 18 (9), 985. doi: 10.1038/s41563-019-0398-0
doi: 10.1038/s41563-019-0398-0
Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2021, 143 (32), 12590. doi: 10.1021/jacs.1c04622
doi: 10.1021/jacs.1c04622
Tian, Q.; Jing, L.; Ye, S.; Liu, J.; Chen, R.; Price, C. A. H.; Fan, F.; Liu, J. Small 2021, 17 (49), 2103224. doi: 10.1002/smll.202103224
doi: 10.1002/smll.202103224
Shiraishi, Y.; Hagi, T.; Matsumoto, M.; Tanaka, S.; Ichikawa, S.; Hirai, T. Commun. Chem. 2020, 3 (1), 169. doi: 10.1038/s42004-020-00421-x
doi: 10.1038/s42004-020-00421-x
Yuan, L.; Zhang, C.; Wang, J.; Liu, C.; Yu, C. Nano Res. 2021, 14 (9), 3267. doi: 10.1007/s12274-021-3517-6
doi: 10.1007/s12274-021-3517-6
Chen, L.; Wang, L.; Wan, Y.; Zhang, Y.; Qi, Z.; Wu, X.; Xu, H. Adv. Mater. 2020, 32 (2), 1904433. doi: 10.1002/adma.201904433
doi: 10.1002/adma.201904433
Yu, X.; Viengkeo, B.; He, Q.; Zhao, X.; Huang, Q.; Li, P.; Huang, W.; Li, Y. Adv. Sustain. Syst. 2021, 5 (10), 2100184. doi: 10.1002/adsu.202100184
doi: 10.1002/adsu.202100184
(a) Wang, A.; Li, J.; Zhang, T. Nat. Rev. Chem. 2018, 2 (6), 65. doi:
(b) He, X.;Zhang, H.;Zhang, X.;Zhang, Y.;He, Q.;Chen, H.;Cheng, Y.;Peng, M.;Qin, X.;Ji, H. Nat.Commun. 2022, 13, 5721. doi:
(a) Hai, X.; Xi, S.; Mitchell, S.; Harrath, K.; Xu, H.; Akl, D. F.; Kong, D.; Li, J.; Li, Z.; Sun, T. Nat. Nanotechnol. 2022, 17 (2), 174. doi:
(b) Chen, C.;Ou, W.;Yam, K.M.;Xi, S.;Zhao, X.;Chen, S.;Li, J.;Lyu, P.;Ma, L.;Du, Y. Adv.Mater. 2021, 33 (35), 2008471. doi:
(c) Zhang, S.;Ao, X.;Huang, J.;Wei, B.;Zhai, Y.;Zhai, D.;Deng, W.;Su, C.;Wang, D.;Li, Y. NanoLett. 2021, 21 (22), 9691. doi:
Chu, C.; Zhu, Q.; Pan, Z.; Gupta, S.; Huang, D.; Du, Y.; Weon, S.; Wu, Y.; Muhich, C.; Stavitski, E. Proc. Natl. Acad. Sci. USA 2020, 117 (12), 6376. doi: 10.1073/pnas.1913403117
doi: 10.1073/pnas.1913403117
Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y. -R.; Liu, S.; Wang, C.; Yamakata, A.; Su, C. Nat. Catal. 2021, 4 (5), 374. doi: 10.1038/s41929-021-00605-1
doi: 10.1038/s41929-021-00605-1
Hai, X.; Zhao, X.; Guo, N.; Yao, C.; Chen, C.; Liu, W.; Du, Y.; Yan, H.; Li, J.; Chen, Z. ACS Catal. 2020, 10 (10), 5862. doi: 10.1021/acscatal.0c00936
doi: 10.1021/acscatal.0c00936
(a) Xu, X.; Sa, R.; Huang, W.; Sui, Y.; Chen, W.; Zhou, G.; Li, X.; Li, Y.; Zhong, H. ACS Catal. 2022, 12 (20), 12954. doi:
(b) Liu, W.;Xu, R.;Wang, Y.;Huang, N.;Shimada, T.;Ye, L. Int.J.HydrogenEnergy 2022, 47 (36), 16005. doi:
(a) Sun, J.; Wu, Y. Angew. Chem. Int. Ed. 2020, 59 (27), 10904. doi:
(b) Yu, F.;Wang, K.;Wang, C.;He, X.;Liao, Y.;Zhao, S.;Mao, H.;Li, X.;Ma, J. Chem.Res.Chin.Univ. 2020, 36 (6), 1332. doi:
(a) Kc, U.; Nasir, E. F.; Farooq, A. Appl. Phys. B 2015, 120 (2), 223. doi:
(b) Luppi, B.T.;Muralidharan, A.V.;Ostermann, N.;Cheong, I.T.;Ferguson, M.J.;Siewert, I.;Rivard, E. Angew.Chem.Int.Ed. 2022, 61 (4), 202114586.doi:
(a) Zhai, L.; Xie, Z.; Cui, C. -X.; Yang, X.; Xu, Q.; Ke, X.; Liu, M.; Qu, L. -B.; Chen, X.; Mi, L. Chem. Mater. 2022, 34 (11), 5232. doi:
(b) Lv, N.;Ma, T.;Qin, H.;Yang, Z.-R.;Wu, Y.;Li, D.;Tao, J.;Jiang, H.;Zhu, J. Sci.ChinaMater. 2022, 65, 2861. doi:
(a) Liu, M.; Liu, S.; Cui, C. X.; Miao, Q.; He, Y.; Li, X.; Xu, Q.; Zeng, G. Angew. Chem. Int. Ed. 2022, 61 (49), 202213522. doi:
(b) Chen, X.;Zhao, J.;Li, G.;Zhang, D.;Li, H. EnergyMater. 2022, 2 (1), 200001.doi:
(a) Yang, C.; Wan, S.; Zhu, B.; Yu, J.; Cao, S. Angew. Chem. 2022, 134 (39), 202208438. doi:
(b) Liu, C.;Li, Z.;Liu, H.;Dong, J.;Chi, Y.;Hu, C. ChemCatChem 2022, 14 (11), e202200021.doi:
(c) Qian, Z.;Wang, Z.J.;Zhang, K.A. Chem.Mater. 2021, 33 (6), 1909.doi:
Wu, C.; Teng, Z.; Yang, C.; Chen, F.; Yang, H. B.; Wang, L.; Xu, H.; Liu, B.; Zheng, G.; Han, Q. Adv. Mater. 2022, 34 (28), 2110266. doi: 10.1002/adma.202110266
doi: 10.1002/adma.202110266
Jourshabani, M.; Asrami, M. R.; Lee, B. -K. Appl. Catal. B-Environ. 2022, 302, 120839. doi: 10.1016/j.apcatb.2021.120839
doi: 10.1016/j.apcatb.2021.120839
Liu, X.; Qi, R.; Li, S.; Liu, W.; Yu, Y.; Wang, J.; Wu, S.; Ding, K.; Yu, Y. J. Am. Chem. Soc. 2022, 144 (51), 23396. doi: 10.1021/jacs.2c09369
doi: 10.1021/jacs.2c09369
(a) Dong, K.; Liang, J.; Ren, Y.; Wang, Y.; Xu, Z.; Yue, L.; Li, T.; Liu, Q.; Luo, Y.; Liu, Y. J. Mater. Chem. A 2021, 9 (46), 26019. doi:
(b) Brezny, A.C.;Nedzbala, H.S.;Mayer, J.M. Chem.Commun. 2021, 57 (10), 1202.doi:
(c) Zhao, X.;Yin, Q.;Mao, X.;Cheng, C.;Zhang, L.;Wang, L.;Liu, T.-F.;Li, Y.;Li, Y. Nat.Commun. 2022, 13 (1), 2721. doi:
(d) Yang, J.;Li, P.;Li, X.;Xie, L.;Wang, N.;Lei, H.;Zhang, C.;Zhang, W.;Lee, Y.M.;Zhang, W. Angew.Chem. 2022, 134 (34), e202208143.doi:
Nosaka, Y.; Nosaka, A. Introduction to Photocatalysis: From Basic Science to Applications; Royal Society of Chemistry: London, UK, 2019; pp. 1–272.
(a) Kaneko, M. Prog. Polym. Sci. 2001, 26 (7), 1101. doi:
(b) Qiu, C.;Sun, Y.;Xu, Y.;Zhang, B.;Zhang, X.;Yu, L.;Su, C. ChemSusChem 2021, 14 (16), 3344.doi:
(c) Ou, W.;Xu, Y.;Zhou, H.;Su, C. Sol.RRL 2021, 5 (2), 2000444. doi:
(a) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. -T.; Zhong, J.; Kang, Z. Science 2015, 347 (6225), 970. doi:
(b) Chen, X.;Shen, S.;Guo, L.;Mao, S.S. Chem.Rev. 2010, 110 (11), 6503.doi:
Teng, Z.; Cai, W.; Sim, W.; Zhang, Q.; Wang, C.; Su, C.; Ohno, T. Appl. Catal. B-Environ. 2021, 282, 119589. doi: 10.1016/j.apcatb.2020.119589
doi: 10.1016/j.apcatb.2020.119589
Teng, Z.; Cai, W.; Liu, S.; Wang, C.; Zhang, Q.; Appl. Catal. B-Environ. 2020, 271, 118917. doi: 10.1016/j.apcatb.2020.118917
doi: 10.1016/j.apcatb.2020.118917
Zeng, Z.; Quan, X.; Yu, H.; Chen, S.; Zhang, S. J. Catal. 2019, 375, 361. doi: 10.1016/j.jcat.2019.06.019
doi: 10.1016/j.jcat.2019.06.019
Zhao, Y.; Liu, Y.; Wang, Z.; Ma, Y.; Zhou, Y.; Shi, X.; Wu, Q.; Wang, X.; Shao, M.; Huang, H. Appl. Catal. B-Environ. 2021, 289, 120035. doi: 10.1016/j.apcatb.2021.120035
doi: 10.1016/j.apcatb.2021.120035
Xie, H.; Zheng, Y.; Guo, X.; Liu, Y.; Zhang, Z.; Zhao, J.; Zhang, W.; Wang, Y.; Huang, Y. ACS Sustain. Chem. Eng. 2021, 9 (19), 6788. doi: 10.1021/acssuschemeng.1c01012
doi: 10.1021/acssuschemeng.1c01012
Zhang, X.; Ma, P.; Wang, C.; Gan, L.; Chen, X.; Zhang, P.; Wang, Y.; Li, H.; Wang, L.; Zhou, X. Energy Environ. Sci. 2022, 15 (2), 830. doi: 10.1039/D1EE02369A
doi: 10.1039/D1EE02369A
Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. J. Am. Chem. Soc. 2016, 138 (31), 10019. doi: 10.1021/jacs.6b05806
doi: 10.1021/jacs.6b05806
Wu, Q.; Cao, J.; Wang, X.; Liu, Y.; Zhao, Y.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. Nat. Commun. 2021, 12 (1), 483. doi: 10.1038/s41467-020-20823-8
doi: 10.1038/s41467-020-20823-8
Kou, M.; Wang, Y.; Xu, Y.; Ye, L.; Huang, Y.; Jia, B.; Li, H.; Ren, J.; Deng, Y.; Chen, J. Angew. Chem. Int. Ed. 2022, 61 (19), e202200413. doi: 10.1002/anie.202200413
doi: 10.1002/anie.202200413
(a) Vassilev, S. V.; Baxter, D.; Andersen, L. K.; Vassileva, C. G. Fuel 2010, 89 (5), 913. doi:
(b) Deivayanai, V.;Yaashikaa, P.;Kumar, P.S.;Rangasamy, G. BioresourceTechnol. 2022, 128166. doi:
Isaka, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. T Angew. Chem. 2019, 131 (16), 5456. doi: 10.1002/ange.201901961
doi: 10.1002/ange.201901961
Wang, S.; Cai, B.; Tian, H. Angew. Chem. Int. Ed. 2022, 61 (23), e202202733. doi: 10.1002/anie.202202733
doi: 10.1002/anie.202202733
(a) Ifkovits, Z. P.; Evans, J. M.; Meier, M. C.; Papadantonakis, K. M.; Lewis, N. S. Energy Environ. Sci. 2021, 14 (9), 4740. doi:
(b) Zhang, B.;Zheng, Y.;Ma, T.;Yang, C.;Peng, Y.;Zhou, Z.;Zhou, M.;Li, S.;Wang, Y.;Cheng, C. Adv.Mater. 2021, 33 (17), 2006042. doi:
(c) Yu, Z.Y.;Duan, Y.;Feng, X.Y.;Yu, X.;Gao, M.R.;Yu, S.H. Adv.Mater. 2021, 33 (31), 2007100. doi:
(d) Ye, S.;Shi, W.;Liu, Y.;Li, D.;Yin, H.;Chi, H.;Luo, Y.;Ta, N.;Fan, F.;Wang, X. J.Am.Chem.Soc. 2021, 143 (32), 12499. doi:
(e) Wang, H.;Cheng, H.;Lv, H.;Xu, H.;Wu, X.;Yang, J. J.Phys.Chem.Lett. 2022, 13 (17), 3949.doi:
(a) Wu, Z.; Li, X.; Zhao, Y.; Li, Y.; Wei, K.; Shi, H.; Zhang, T.; Huang, H.; Liu, Y.; Kang, Z. ACS Appl. Mater. Interfaces 2021, 13 (50), 60561. doi:
(b) Wang, L.;Cao, S.;Guo, K.;Wu, Z.;Ma, Z.;Piao, L. Chin.J.Catal. 2019, 40 (3), 470.doi:
Fuku, K.; Sayama, K. Chem. Commun. 2016, 52 (31), 5406. doi: 10.1039/C6CC01605G
doi: 10.1039/C6CC01605G
Xue, F.; Si, Y.; Cheng, C.; Fu, W.; Chen, X.; Shen, S.; Wang, L.; Liu, M. Nano Energy 2022, 103, 107799. doi: 10.1016/j.nanoen.2022.107799
doi: 10.1016/j.nanoen.2022.107799
Fu, Y.; Liu, C. A.; Zhang, M.; Zhu, C.; Li, H.; Wang, H.; Song, Y.; Huang, H.; Liu, Y.; Kang, Z. Adv. Energy Mater. 2018, 8 (34), 1802525. doi: 10.1002/aenm.201802525
doi: 10.1002/aenm.201802525
Liu, Y.; Zhao, Y.; Sun, Y.; Cao, J.; Wang, H.; Wang, X.; Huang, H.; Shao, M.; Liu, Y.; Kang, Z. Appl. Catal. B-Environ. 2020, 270, 118875. doi: 10.1016/j.apcatb.2020.118875
doi: 10.1016/j.apcatb.2020.118875
Zhao, C.; Jiang, Z.; Liu, Y.; Zhou, Y.; Yin, P.; Ke, Y.; Deng, H. J. Am. Chem. Soc. 2022, 144 (51), 23560. doi: 10.1021/jacs.2c10687
doi: 10.1021/jacs.2c10687
Chang, J. -N.; Li, Q.; Shi, J. -W.; Zhang, M.; Zhang, L.; Li, S.; Chen, Y.; Li, S. -L.; Lan, Y. -Q. Angew. Chem. Int. Ed. 2023, 62 (9), e202218868. doi: 10.1002/anie.202218868
doi: 10.1002/anie.202218868
Cussler, E. L.; Cussler, E. L. Diffusion: Mass Transfer in fluid systems; Cambridge university press: Cambridge, 2009; pp. 1-631.
(a) Xiong, X.; Wang, Z.; Zhang, Y.; Li, Z.; Shi, R.; Zhang, T. Appl. Catal. B-Environ. 2020, 264, 118518. doi:
(b) Sheng, X.;Liu, Z.;Zeng, R.;Chen, L.;Feng, X.;Jiang, L. J.Am.Chem.Soc. 2017, 139 (36), 12402.doi:
Huang, H.; Zhang, Q.; Shi, R.; Su, C.; Wang, Y.; Zhao, J.; Zhang, T. Appl. Catal. B-Environ. 2022, 317, 121731. doi: 10.1016/j.apcatb.2022.121731
doi: 10.1016/j.apcatb.2022.121731
Xu, Z.; Gong, S.; Ji, W.; Zhang, S.; Bao, Z.; Zhao, Z.; Wei, Z.; Zhong, X.; Hu, Z. -T.; Wang, J. Chem. Eng. J. 2022, 46 (2), 137009. doi: 10.1016/j.cej.2022.137009
doi: 10.1016/j.cej.2022.137009
Xu, J.; Zheng, X.; Feng, Z.; Lu, Z.; Zhang, Z.; Huang, W.; Li, Y.; Vuckovic, D.; Li, Y.; Dai, S. O Nat. Sustain. 2021, 4 (3), 233. doi: 10.1038/s41893-020-00635-w
doi: 10.1038/s41893-020-00635-w
Wang, W.; Xie, H.; Li, G.; Li, J.; Wong, P. K.; An, T. ACS EST Water 2021, 1 (6), 1483. doi: 10.1021/acsestwater.1c00048
doi: 10.1021/acsestwater.1c00048
Ma, J.; Peng, X.; Zhou, Z.; Yang, H.; Wu, K.; Fang, Z.; Han, D.; Fang, Y.; Liu, S.; Shen, Y. Angew. Chem. Int. Ed. 2022, 61 (43), e202210856. doi: 10.1002/anie.202210856
doi: 10.1002/anie.202210856
An, B.; Li, Z.; Wang, Z.; Zeng, X.; Han, X.; Cheng, Y.; Sheveleva, A. M.; Zhang, Z.; Tuna, F.; McInnes, E. J. Nat. Mater. 2022, 21 (8), 932. doi: 10.1038/s41563-022-01279-1
doi: 10.1038/s41563-022-01279-1
(a) Fan, W.; Zhang, B.; Wang, X.; Ma, W.; Li, D.; Wang, Z.; Dupuis, M.; Shi, J.; Liao, S.; Li, C. Energy Environ. Sci. 2020, 13 (1), 238. doi:
(b) Meng, L.;Li, L. NanoRes.Energy 2022, 1 (2), e9120020. doi:
(c) Xue, H.;Gong, H.;Yamauchi, Y.;Sasaki, T.;Ma, R. NanoRes.Energy 2022, 1 (1), e9120007.doi:
(a) Dai, Y.; Xiong, Y. Nano Res. Energy 2022, 1 (1), e9120006. doi:
(b) Li, L.;ulHasan, I.M.;He, R.;Peng, L.;Xu, N.;Niazi, N.K.;Zhang, J.-N.;Qiao, J. NanoRes.Energy 2022, 1 (2), e9120015. doi:
(a) Zhang, S.; Wang, L.; Fu, X. Sci. Sin. Chim. 2023, 53 (1), 3. doi:
(b) Wei, Z.; Wang, J.; Guo, S.; Tan, S. C. Nano Res. Energy 2022, 1 (2), e9120014. doi:
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Xin Li , Xuan Ding , Junkun Zhou , Hui Shi , Zhenxi Dai , Jiayi Liu , Yongcun Ma , Penghui Shao , Liming Yang , Xubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Yuanzhe Lu , Yuanqin Zhu , Linfeng Zhong , Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Yuhao Ma , Yufei Zhou , Mingchuan Yu , Cheng Fang , Shaoxia Yang , Junfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027