Catalytic Oxidation of Biomass to Formic Acid under O2 with Homogeneous Catalysts
- Corresponding author: Weize Wu, wzwu@mail.buct.edu.cn
 
	            Citation:
	            
		            Yucui Hou, Zhuosen He, Shuhang Ren, Weize Wu. Catalytic Oxidation of Biomass to Formic Acid under O2 with Homogeneous Catalysts[J]. Acta Physico-Chimica Sinica,
							;2023, 39(9): 221206.
						
							doi:
								10.3866/PKU.WHXB202212065
						
					
				
					
				
	        
	                
				Bang, S. S.; Johnston, D. Arch. Environ. Contam. Toxicol.  1998,  35, 580. doi: 10.1007/s002449900419
												 doi: 10.1007/s002449900419
											
										
				Boddien, A.; Mellmann, D.; Gartner, F.; Jackstell, R.; Jungle, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011,  333 (6050), 1733. doi: 10.1126/science.1206613
												 doi: 10.1126/science.1206613
											
										
				Himeda, Y. Eur. J. Inorg. Chem.  2007,  25, 3927. doi: 10.1002/ejic.200700494
												 doi: 10.1002/ejic.200700494
											
										
				Himeda, Y. Green Chem.  2009,  11, 2018. doi: 10.1039/B914442K
												 doi: 10.1039/B914442K
											
										
				Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc.  2009,  131, 14168. doi: 10.1021/ja903574e
												 doi: 10.1021/ja903574e
											
										
				Wang, Z.; Yan, J.; Ping, Y.; Wang, H.; Zheng, W.; Jiang, Q. Angew. Chem. Int. Ed.  2013,  52, 4406. doi: 10.1002/anie.201301009
												 doi: 10.1002/anie.201301009
											
										
				Zell, T.; Butschke, B.; Ben-David, Y.; Milstein, D. Chem. Eur. J.  2013,  19, 8068. doi: 10.1002/chem.201301383
												 doi: 10.1002/chem.201301383
											
										
				Ida, T.; Nishida, M.; Hori, Y. J. Phys. Chem. A 2019,  123, 9579. doi: 10.1021/acs.jpca.9b05994
												 doi: 10.1021/acs.jpca.9b05994
											
										
				Eppinger, J. R.; Huang, K. -W. ACS Energy Lett.  2017,  2, 188. doi: 10.1021/acsenergylett.6b00574
												 doi: 10.1021/acsenergylett.6b00574
											
										
				Gu, N.; Sun, S.; Cheng, J. Tetrahedron Lett.  2018,  59 (11), 1069. doi: 10.1016/j.tetlet.2018.02.006
												 doi: 10.1016/j.tetlet.2018.02.006
											
										
				Rees, N. V.; Compton, R. G. J. Solid State Electrochem.  2011,  15 (10), 2095. doi: 10.1007/s10008-011-1398-4
												 doi: 10.1007/s10008-011-1398-4
											
										
				Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. J. Power Sources 2002,  111, 83. doi: 10.1016/s1464-2859(03)00330-4
												 doi: 10.1016/s1464-2859(03)00330-4
											
										
				Weber, M.; Wang, J. T.; Wasmus, S.; Savinell, R. F. J. Electrochem. Soc.  1996,  143 (7), L158. doi: 10.1149/1.1836961
												 doi: 10.1149/1.1836961
											
										
				Formic acid market-growth, trends, covid-19 impact, and forecasts (2023–2028). 
				SunSirs: Commodity data, Formic acid. 
				Zhang, J. Z.; Sun, M.; Liu, X.; Han, Y. Catal. Today 2014,  233 (15), 77. doi: 10.1016/j.cattod.2013.12.010
												 doi: 10.1016/j.cattod.2013.12.010
											
										
				Zhang, M.; Zhou, Q. P.; Shen, Z.; Zhou, X. F.; Zhang, Y. L.; Chen, J. J. Anhui Agricult. Sci.  2012,  40 (1), 310.
										 
				Chen, X.; Liu, Y.; Wu, J. W. Mol. Catal.  2019,  483, 110716. doi: 10.1016/j.mcat.2019.110716
												 doi: 10.1016/j.mcat.2019.110716
											
										
				Teong, S. P.; Li, X. K.; Zhang, Y. G. Green Chem.  2019,  21, 5753. doi: 10.1039/c9gc02445j
												 doi: 10.1039/c9gc02445j
											
										
				Cheng, L. Y.; Liu, H.; Cui, Y. M.; Xue, N. H.; Ding, W. P. J. Energy Chem.  2014,  23, 43. doi: 10.1016/S2095-4956(14)60116-9
												 doi: 10.1016/S2095-4956(14)60116-9
											
										
				Jin, F. M.; Enomoto, H. Energy Environ. Sci.  2011,  4, 382. doi: 10.1039/c004268d
												 doi: 10.1039/c004268d
											
										
				Yan, X. Y.; Jin, F. M.; Tohji, K.; Kishita, A.; Enomoto, H. J. AIChE  J.  2010,  56, 2727. doi: 10.1002/aic.11833
												 doi: 10.1002/aic.11833
											
										
				Jin, F. M.; Yun, J.; Li, G. M.; Kishita, A.; Tohji, K.; Enomoto, H. Green Chem.  2008,  10, 612. doi: 10.1039/b802076k
												 doi: 10.1039/b802076k
											
										
				Wang, C.; Chen, X.; Qi, M.; Wu, J. N.; Gözaydın, G.; Yan, N.; Zhong, H.; Ming, J. F. Green Chem.  2019,  21, 6089. doi: 10.1039/c9gc02201e
												 doi: 10.1039/c9gc02201e
											
										
				Song, X.; Ding, N.; Zai, Y.; Zeng, X.; Sun, Y.; Tang, X.; Lei, T.; Lin, L. J. Taiwan Inst. Chem. Eng.  2019,  96, 315. doi: 10.1016/j.jtice.2018.11.025
												 doi: 10.1016/j.jtice.2018.11.025
											
										
				Takagaki, A.; Obata, W.; Ishihara, T. ChemistryOpen 2021,  10, 954. doi: 10.1002/open.202100074
												 doi: 10.1002/open.202100074
											
										
				Gao, X. Y.; Chen, X.; Zhang, J. G.; Guo, W. M.; Jin, F. M.; Yan, N. ACS Sustain. Chem. Eng.  2016,  4, 3912. doi: 10.1021/acssuschemeng.6b00767
												 doi: 10.1021/acssuschemeng.6b00767
											
										
				Liu, Q.; Zhou, D.; Li, Z.; Luo, W.; Guo, C. Chin. J. Chem.  2017,  35, 1063. doi: 10.1002/cjoc.201600465
												 doi: 10.1002/cjoc.201600465
											
										
				Shen, F.; Smith Jr, R. L.; Li, J.; Guo, H.; Zhang, X.; Qi, X. Green Chem.  2021,  23, 1536. doi: 10.1039/D0GC04263C
												 doi: 10.1039/D0GC04263C
											
										
				Wen, L. Y.; Min, E. Z. Petrochem. Technol.  2000,  29 (1), 49.
										 
				Lu, T.; Hou, Y. C.; Wu, W. Z.; Niu, M. G.; Wang, Y. P. Fuel Process. Technol.  2018,  171, 133. doi: 10.1016/j.fuproc.2017.11.010
												 doi: 10.1016/j.fuproc.2017.11.010
											
										
				Zhong, J.; Pérez-Ramírez, J.; Yan, N. Green Chem.  2021,  23, 18. doi: 10.1039/d0gc03190a
												 doi: 10.1039/d0gc03190a
											
										
				Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc.  2008,  130, 14474. doi: 10.1021/ja8063233
												 doi: 10.1021/ja8063233
											
										
				Wölfel, R.; Taccardi, N.; Bösmann, A.; Wasserscheid, P. Green Chem.  2011,  13, 2759. doi: 10.1039/c1gc15434f
												 doi: 10.1039/c1gc15434f
											
										
				Albert, J.; Wölfel, R.; Bosmann, A.; Wasserscheid, P. Energy Environ. Sci.  2012,  5, 7956. doi: 10.1039/c2ee21428h
												 doi: 10.1039/c2ee21428h
											
										
				Li, J.; Ding, D. J.; Deng, L.; Guo, Q. X.; Fu, Y. ChemSusChem 2012,  5, 1313. doi: 10.1002/cssc.201100466
												 doi: 10.1002/cssc.201100466
											
										
				Albert, J.; Lüders, D.; Bösmann, A.; Guldi, D. M.; Wasserscheid, P. Green Chem.  2014,  16, 226. doi: 10.1039/c3gc41320a
												 doi: 10.1039/c3gc41320a
											
										
				Kozhevnikov, I. V.; Matveev, K. I. Appl. Catal.  1983,  5, 135. doi: 10.1016/0166-9834(83)80128-6
												 doi: 10.1016/0166-9834(83)80128-6
											
										
				Reichert, J.; Albert, J. ACS Sustain. Chem. Eng.  2017,  5, 7383. doi: 10.1021/acssuschemeng.7b01723.
												 doi: 10.1021/acssuschemeng.7b01723
											
										
				Lu, T.; Niu, M. G.; Hou, Y. C.; Wu, W. Z.; Ren, S. H.; Yang, F. Green Chem.  2016,  18, 4725. doi: 10.1039/c6gc01271j
												 doi: 10.1039/c6gc01271j
											
										
				Voß, D.; Pickel, H.; Albert, J. ACS Sustain. Chem. Eng.  2019,  7, 9754. doi: 10.1021/acssuschemeng.8b05095
												 doi: 10.1021/acssuschemeng.8b05095
											
										
				Xu, J. L.; Zhang, H. Y.; Zhao, Y. F.; Yang, Z. Z.; Yu, B.; Xu, H. J.; Liu, Z. M. Green Chem.  2014,  16, 4931. doi: 10.1039/C4GC01252F
												 doi: 10.1039/C4GC01252F
											
										
				Li, K. X.; Bai, L. L.; Amaniampong, P. N.; Jia, X. L.; Lee, J. -M.; Yang, Y. H. ChemSusChem 2014,  7, 2670. doi: 10.1002/cssc.201402157
												 doi: 10.1002/cssc.201402157
											
										
				Bukowski, A.; Esau, D.; Said, A. A. R.; Brandt-Talbot, A.; Albert, J. ChemPlusChem 2020,  85, 373. doi: 10.1002/cplu.202000025
												 doi: 10.1002/cplu.202000025
											
										
				Bukowski, A.; Schnepf, K.; Wesinger, S.; Brandt-Talbot, A.; Albert, J. ACS Sustain. Chem. Eng.  2022,  10, 8474. doi: 10.1021/acssuschemeng.2c01550
												 doi: 10.1021/acssuschemeng.2c01550
											
										
				Niu, M. G.; Hou, Y. C.; Ren, S. H.; Wu, W. Z.; Marsh, K. N. Green Chem.  2015,  17, 453. doi: 10.1039/c4gc01440e
												 doi: 10.1039/c4gc01440e
											
										
				Shen, F.; Li, Y.; Qin, X.; Guo, H.; Li, J.; Yang, J.; Ding, Y. Renewable Energy 2022,  185, 139. doi: 10.1016/j.renene.2021.12.043
												 doi: 10.1016/j.renene.2021.12.043
											
										
				Gromov, N. V.; Medvedeva, T. B.; Lukoyanov, I. A.; Panchenko, V. N.; Timofeeva, M. N.; Taran, O. P.; Parmon, V. N. Catalysts 2022,  12, 1252. doi: 10.3390/catal12101252
												 doi: 10.3390/catal12101252
											
										
				Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L. Q. Chem. Rev.  2004,  104, 849. doi: 10.1002/chin.200420288
												 doi: 10.1002/chin.200420288
											
										
				Sadoc, A.; Messaoudi, S.; Furet, E.; Gautier, R.; Fur, E. L.; Pollès, L. l.; Pivan, J. -Y. Inorg. Chem.  2007,  46, 4835. doi: 10.1021/ic0614519
												 doi: 10.1021/ic0614519
											
										
				Wang, W. H.; Niu, M. G.; Hou, Y. C.; Wu, W. Z.; Liu, Z. Y.; Liu, Q. Y.; Ren, S. H.; Marsh, K. N. Green Chem.  2014,  16, 2614. doi: 10.1039/c4gc00145a
												 doi: 10.1039/c4gc00145a
											
										
				Lu, T.; Hou, Y. C.; Wu, W. Z.; Niu, M. G.; Li, W.; Ren, S. H. Fuel Process. Technol.  2018,  173, 197. doi: 10.1016/j.fuproc.2018.02.001
												 doi: 10.1016/j.fuproc.2018.02.001
											
										
				Müller, N.; Romero, R.; Grandón, H. c.; Segura, C. Energy Fuels 2016,  30, 10417. doi: 10.1021/acs.energyfuels.6b01345
												 doi: 10.1021/acs.energyfuels.6b01345
											
										
				Tang, Z.; Deng, W.; Wang, Y.; Zhu, E.; Wan, X.; Zhang, Q.; Wang, Y. ChemSusChem 2014,  7, 1557. doi: 10.1002/cssc.v7.6/issuetoc
												 doi: 10.1002/cssc.v7.6/issuetoc
											
										
				Yang, F.; Hou, Y. C.; Niu, M. G.; Wu, W. Z.; Liu, Z. Y.  Fuel 2017,  202, 129. doi: 10.1016/j.fuel.2017.04.023
												 doi: 10.1016/j.fuel.2017.04.023
											
										
				Hou, Y. C.; Lin, Z. Q.; Niu, M. G.; Ren, S. H.; Wu, W. Z. ACS Omega 2018,  3, 14910. doi: 10.1021/acsomega.8b01409
												 doi: 10.1021/acsomega.8b01409
											
										
				Albert, J.; Mendt, M.; Mozer, M.; Voß, D. Appl. Catal. A-Gen.  2019,  570, 262. doi: 10.1016/j.apcata.2018.10.030
												 doi: 10.1016/j.apcata.2018.10.030
											
										
				Yang, W. S.; Du, X.; Liu, W.; Wang, Z. W.; Dai, H. Q.; Deng, Y. L. Ind. Eng. Chem. Res.  2019,  58, 22996. doi: 10.1021/acs.iecr.9b05311
												 doi: 10.1021/acs.iecr.9b05311
											
										
				Lu, T.; Hou, Y. C.; Wu, W. Z.; Niu, M. G.; Ren, S. H.; Lin, Z. Q.; Ramani, V. K. Fuel 2018,  216, 572. doi: 10.1016/j.fuel.2017.12.044
												 doi: 10.1016/j.fuel.2017.12.044
											
										
				Ponce, S.; Trabold, M.; Drochner, A.; Albert, J.; Etzold, B. J. M. Chem. Eng. J.  2019,  369, 443. doi: 10.1016/j.cej.2019.03.103
												 doi: 10.1016/j.cej.2019.03.103
											
										
				Poller, M. J.; Bönisch, S.; Bertleff, B.; Raabe, J. C.; Görling, A.; Albert, J. Chem. Eng. Sci.  2022,  264, 118143. doi: 10.1016/j.ces.2022.118143
												 doi: 10.1016/j.ces.2022.118143
											
										
				Zhou, H.; Jing, Y. X.; Wang, Y. Q. Acta Phys. -Chim. Sin.  2022,  38, 2203016.
												 doi: 10.3866/PKU.WHXB202203016
											
										
				Wang, W.; Wang, Y.; Zhan, Z.; Tan, T.; Deng, W.; Zhang, Q.; Wang, Y. Acta Phys. -Chim. Sin.  2022,  38, 2205032.
												 doi: 10.3866/PKU.WHXB2022205032
											
										
				Hao, R.; Guan, W. X.; Liu, F.; Zhang, L. L.; Wang, A. Q. Acta  Phys. -Chim. Sin.  2022,  38 (10), 2205027.
												 doi: 10.3866/PKU.WHXB202205027
											
										
				Bikash Sarma, B.; Neumann, R. Nat. Commun.  2014,  5, 4621. doi: 10.1038/ncomms5621
												 doi: 10.1038/ncomms5621
											
										
				Niu, M. G.; Hou, Y. C.; Wu, W. Z.; Ren, S. H.; Yang, R. Phys. Chem. Chem. Phys.  2018,  20, 17942. doi: 10.1039/c8cp02352b
												 doi: 10.1039/c8cp02352b
											
										
				Niu, M. G.; Hou, Y. C.; Ren, S. H.; Wang, W. H.; Zheng, Q. T.; Wu, W. Z. Green Chem.  2015,  17, 335. doi: 10.1039/c4gc00970c
												 doi: 10.1039/c4gc00970c
											
										
				Reichert, J.; Brunner, B.; Jess, A.; Wasserscheid, P.; Albert, J. Energy Environ. Sci.  2015,  8, 2985. doi: 10.1039/c5ee01706h
												 doi: 10.1039/c5ee01706h
											
										
				Maerten, S.; Kumpidet, C.; Voß, D.; Bukowski, A.; Wasserscheid, P.; Albert, J. Green Chem.  2020,  22, 4311. doi: 10.1039/d0gc01169j
												 doi: 10.1039/d0gc01169j
											
										
				Wesinger, S.; Mendt, M.; Albert, J. ChemCatChem 2021,  13, 3662. doi: 10.1002/cctc.202100632
												 doi: 10.1002/cctc.202100632
											
										
				Guo, Y. -J.; Li, S. -J.; Sun, Y. -L.; Wang, L.; Zhang, W. -M.; Zhang, P.; Lan, Y.; Li, Y. Green Chem.  2021,  23, 7041. doi: 10.1039/d1gc02265b
												 doi: 10.1039/d1gc02265b
											
										
				Zhang, P.; Guo, Y. -J.; Chen, J. B.; Zhao, Y. -R.; Chang, J.; Junge, H.; Beller, M.; Li, Y. Nat. Cat.  2018,  1, 332. doi: 10.1038/s41929-018-0062-0
												 doi: 10.1038/s41929-018-0062-0
											
										
				Deuss, P. J.; Barta, K.; de Vries, J. G. Catal. Sci. Technol.  2014,  4, 1174. doi: 10.1039/c3cy01058a
												 doi: 10.1039/c3cy01058a
											
										
				Mehdi, H.; Fábos, V.; Tuba, R.; Bodor, A.; Mika, L. T.; Horváth, I. T. Top Catal.  2008,  48, 49. doi: 10.1007/s11244-008-9047-6
												 doi: 10.1007/s11244-008-9047-6
											
										
				Albert, J.; Wasserscheid, P. Green Chem.  2015,  17, 5164. doi: 10.1039/c5gc01474c
												 doi: 10.1039/c5gc01474c
											
										
				Gromov, N. V.; Medvedeva, T. B.; Sorokina, K. N.; Samoylova, Y. V.; Rodikova, Y. A.; Parmon, V. N. ACS Sustain. Chem. Eng.  2020,  8, 18947. doi: 10.1021/acssuschemeng.0c06364
												 doi: 10.1021/acssuschemeng.0c06364
											
										
				Voß, D.; Kahl, M.; Albert, J. ACS Sustain. Chem. Eng.  2020,  8, 10444. doi: 10.1021/acssuschemeng.0c02426
												 doi: 10.1021/acssuschemeng.0c02426
											
										
				Niu, M. G.; Hou, Y. C.; Ren, S. H.; Wu, W. Z. Chin. Sci. Bull.  2015,  60 (16), 1434. doi: 10.1360/N972014-01247
												 doi: 10.1360/N972014-01247
											
										
				Caiti, M.; Padovan, D.; Hammond, C. ACS Catal.  2019,  9, 9188. doi: 10.1021/acscatal.9b01977
												 doi: 10.1021/acscatal.9b01977
											
										
				Zou, L.; Zhang, Q.; Huang, Y.; Luo, X.; Liang, Z. Ind. Eng. Chem. Res.  2019,  58, 22984. doi: 10.1021/acs.iecr.9b05308
												 doi: 10.1021/acs.iecr.9b05308
											
										
				Xu, L.; Nie, R. F.; Xu, H. F.; Chen, X. J.; Li, Y. C.; Lu, X. Y. Ind. Eng. Chem. Res.  2020,  59 (7), 2754. doi: 10.1021/acs.iecr.9b05726
												 doi: 10.1021/acs.iecr.9b05726
											
										
				Al-Naji, M.; Popova, M.; Chen, Z.; Wilde, N.; Glaser, R. ACS Sustain. Chem. Eng.  2020,  8, 393. doi: 10.1021/acssuschemeng.9b05546
												 doi: 10.1021/acssuschemeng.9b05546
											
										
				Gromov, N. V.; Taran, O. P.; Delidovich, I. V.; Pestunov, A. V.; Rodikova, Y. A.; Yatsenko, D. A.; Zhizhina, E. G.; Parmon, V. N. Catal. Today 2016,  278, 74. doi: 10.1016/j.cattod.2016.03.030
												 doi: 10.1016/j.cattod.2016.03.030
											
										
						
						
						
	                Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
Zhonghan Xu , Yuejia Li , Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075
Qianqian ZHU , Lihui XU , Hong PAN , Chengjian YAO , Hong ZHAO , Nan MA , Xiaolin SHI , Zihan SHEN , Weijun ZHANG , Zhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
Yuying JIANG , Jia LUO , Zhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
Jiali Lei , Juan Wang , Wenhui Zhang , Guohong Wang , Zihui Liang , Jinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104