Citation: Yucui Hou, Zhuosen He, Shuhang Ren, Weize Wu. Catalytic Oxidation of Biomass to Formic Acid under O2 with Homogeneous Catalysts[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221206. doi: 10.3866/PKU.WHXB202212065 shu

Catalytic Oxidation of Biomass to Formic Acid under O2 with Homogeneous Catalysts

  • Corresponding author: Weize Wu, wzwu@mail.buct.edu.cn
  • Received Date: 31 December 2022
    Revised Date: 11 February 2023
    Accepted Date: 13 February 2023
    Available Online: 24 February 2023

    Fund Project: the National Natural Science Foundation of China 22178017the National Natural Science Foundation of China 21706007the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of PRC BUCT

  • Formic acid (FA) is an important chemical for the production of leathers, medicines, preservatives, rubbers, textiles, and other materials. FA is also used as H2 and CO carriers, and as a fuel in fuel cells. Although most commonly synthesized from fossil fuels, FA can also be obtained from more sustainable sources, such as biomass (e.g., straw, husk, and sawdust). Oxygen and air are affordable and easily available oxidants used for the oxidation of biomass to FA. Because solid biomass is not soluble in water or organic solvents, homogeneous catalysts are preferred for the catalytic oxidation of biomass to FA by O2 in water. It has been demonstrated that homogeneous catalysts, such as vanadium-containing heteropoly acids (HPA), HPA+H2SO4, NaVO3+H2SO4, HPA-containing ionic liquids, VOSO4, NaVO3-FeCl3+H2SO4, and FeCl3+H2SO4, can convert complex biomass substrates to FA with high atom economy using O2 as the oxidant. The reported biomass substrates include model compounds, cellulose, wood, straw, and corncobs. The reaction conditions were summarized to compare the biomass conversions and FA yields. Vanadium-containing catalysts had the highest FA yield at mild conditions (T ≤ 170 ºC and P(O2) ≤ 3 MPa). Both the reaction rate and FA yield were improved by adding H2SO4. This high conversion can be explained by an electron transfer and oxygen transfer (ET-OT) mechanism, where high-valence transition metals (V5+ or Fe3+) oxidize biomass to FA and are reduced to low-valence species (V4+ or Fe2+). The catalysts are then regenerated by O2. This reaction occurs through C2―C3 and/or C3―C4 bond cleavages via retro-aldol condensation, followed by continued C―C bond cleavages to form FA. Using isotope-labeled D-glucose as substrate, we determined that oxidation occurs via successive C1―C2 bond cleavages; a V5+ catalyst reacts with C1―C2 to form a five-membered ring complex, without C―H bond cleavages, followed by oxidation from another V5+ species to form FA. The oxidation of solid cellulose occurs through hydrolysis (hydrolysis of cellulose to monosaccharides, and deep hydrolysis of monosaccharides to levulinic acid) and oxidation (monosaccharides to FA and levulinic acid to acetic acid) reactions. The catalytic oxidation of monosaccharides and deep hydrolysis steps are competitive, and the reaction rate of the latter increases faster with increasing temperature. However, catalytic oxidation was favored by higher P(O2). The addition of methanol, ethanol and DMSO to the reaction system, and in situ extraction of FA were performed to inhibit CO2 formation. FA was separated by extraction and the catalyst system was reused. A continuous process for producing FA from molasses was established using a three-phase liquid-liquid-gas system with a reaction volume of 2 L. Finally, the limitations and future requirements of this oxidation reaction are discussed: (1) improving separation or in situ conversion of FA; (2) improving homogeneous catalysts for both biomass hydrolysis and catalytic oxidation to FA; (3) studying the impact of ash in biomass, particularly after catalyst reuse; and (4) understanding the mechanism through which organic solvents such as methanol inhibit CO2 formation.
  • 加载中
    1. [1]

      Bang, S. S.; Johnston, D. Arch. Environ. Contam. Toxicol. 1998, 35, 580. doi: 10.1007/s002449900419  doi: 10.1007/s002449900419

    2. [2]

      Boddien, A.; Mellmann, D.; Gartner, F.; Jackstell, R.; Jungle, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333 (6050), 1733. doi: 10.1126/science.1206613  doi: 10.1126/science.1206613

    3. [3]

      Himeda, Y. Eur. J. Inorg. Chem. 2007, 25, 3927. doi: 10.1002/ejic.200700494  doi: 10.1002/ejic.200700494

    4. [4]

      Himeda, Y. Green Chem. 2009, 11, 2018. doi: 10.1039/B914442K  doi: 10.1039/B914442K

    5. [5]

      Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168. doi: 10.1021/ja903574e  doi: 10.1021/ja903574e

    6. [6]

      Wang, Z.; Yan, J.; Ping, Y.; Wang, H.; Zheng, W.; Jiang, Q. Angew. Chem. Int. Ed. 2013, 52, 4406. doi: 10.1002/anie.201301009  doi: 10.1002/anie.201301009

    7. [7]

      Zell, T.; Butschke, B.; Ben-David, Y.; Milstein, D. Chem. Eur. J. 2013, 19, 8068. doi: 10.1002/chem.201301383  doi: 10.1002/chem.201301383

    8. [8]

      Ida, T.; Nishida, M.; Hori, Y. J. Phys. Chem. A 2019, 123, 9579. doi: 10.1021/acs.jpca.9b05994  doi: 10.1021/acs.jpca.9b05994

    9. [9]

      Eppinger, J. R.; Huang, K. -W. ACS Energy Lett. 2017, 2, 188. doi: 10.1021/acsenergylett.6b00574  doi: 10.1021/acsenergylett.6b00574

    10. [10]

      Gu, N.; Sun, S.; Cheng, J. Tetrahedron Lett. 2018, 59 (11), 1069. doi: 10.1016/j.tetlet.2018.02.006  doi: 10.1016/j.tetlet.2018.02.006

    11. [11]

      Rees, N. V.; Compton, R. G. J. Solid State Electrochem. 2011, 15 (10), 2095. doi: 10.1007/s10008-011-1398-4  doi: 10.1007/s10008-011-1398-4

    12. [12]

      Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. J. Power Sources 2002, 111, 83. doi: 10.1016/s1464-2859(03)00330-4  doi: 10.1016/s1464-2859(03)00330-4

    13. [13]

      Weber, M.; Wang, J. T.; Wasmus, S.; Savinell, R. F. J. Electrochem. Soc. 1996, 143 (7), L158. doi: 10.1149/1.1836961  doi: 10.1149/1.1836961

    14. [14]

      Formic acid market-growth, trends, covid-19 impact, and forecasts (2023–2028). https://www.mordorintelligence.com/industry-reports/formic-acid-market (accessed on Jan 23, 2023).

    15. [15]

      SunSirs: Commodity data, Formic acid. http://jiasuan.100ppi.com/ (accessed 23 January, 2023).

    16. [16]

      Zhang, J. Z.; Sun, M.; Liu, X.; Han, Y. Catal. Today 2014, 233 (15), 77. doi: 10.1016/j.cattod.2013.12.010  doi: 10.1016/j.cattod.2013.12.010

    17. [17]

      Zhang, M.; Zhou, Q. P.; Shen, Z.; Zhou, X. F.; Zhang, Y. L.; Chen, J. J. Anhui Agricult. Sci. 2012, 40 (1), 310.
       

    18. [18]

      Chen, X.; Liu, Y.; Wu, J. W. Mol. Catal. 2019, 483, 110716. doi: 10.1016/j.mcat.2019.110716  doi: 10.1016/j.mcat.2019.110716

    19. [19]

      Teong, S. P.; Li, X. K.; Zhang, Y. G. Green Chem. 2019, 21, 5753. doi: 10.1039/c9gc02445j  doi: 10.1039/c9gc02445j

    20. [20]

      Cheng, L. Y.; Liu, H.; Cui, Y. M.; Xue, N. H.; Ding, W. P. J. Energy Chem. 2014, 23, 43. doi: 10.1016/S2095-4956(14)60116-9  doi: 10.1016/S2095-4956(14)60116-9

    21. [21]

      Jin, F. M.; Enomoto, H. Energy Environ. Sci. 2011, 4, 382. doi: 10.1039/c004268d  doi: 10.1039/c004268d

    22. [22]

      Yan, X. Y.; Jin, F. M.; Tohji, K.; Kishita, A.; Enomoto, H. J. AIChE J. 2010, 56, 2727. doi: 10.1002/aic.11833  doi: 10.1002/aic.11833

    23. [23]

      Jin, F. M.; Yun, J.; Li, G. M.; Kishita, A.; Tohji, K.; Enomoto, H. Green Chem. 2008, 10, 612. doi: 10.1039/b802076k  doi: 10.1039/b802076k

    24. [24]

      Wang, C.; Chen, X.; Qi, M.; Wu, J. N.; Gözaydın, G.; Yan, N.; Zhong, H.; Ming, J. F. Green Chem. 2019, 21, 6089. doi: 10.1039/c9gc02201e  doi: 10.1039/c9gc02201e

    25. [25]

      Song, X.; Ding, N.; Zai, Y.; Zeng, X.; Sun, Y.; Tang, X.; Lei, T.; Lin, L. J. Taiwan Inst. Chem. Eng. 2019, 96, 315. doi: 10.1016/j.jtice.2018.11.025  doi: 10.1016/j.jtice.2018.11.025

    26. [26]

      Takagaki, A.; Obata, W.; Ishihara, T. ChemistryOpen 2021, 10, 954. doi: 10.1002/open.202100074  doi: 10.1002/open.202100074

    27. [27]

      Gao, X. Y.; Chen, X.; Zhang, J. G.; Guo, W. M.; Jin, F. M.; Yan, N. ACS Sustain. Chem. Eng. 2016, 4, 3912. doi: 10.1021/acssuschemeng.6b00767  doi: 10.1021/acssuschemeng.6b00767

    28. [28]

      Liu, Q.; Zhou, D.; Li, Z.; Luo, W.; Guo, C. Chin. J. Chem. 2017, 35, 1063. doi: 10.1002/cjoc.201600465  doi: 10.1002/cjoc.201600465

    29. [29]

      Shen, F.; Smith Jr, R. L.; Li, J.; Guo, H.; Zhang, X.; Qi, X. Green Chem. 2021, 23, 1536. doi: 10.1039/D0GC04263C  doi: 10.1039/D0GC04263C

    30. [30]

      Wen, L. Y.; Min, E. Z. Petrochem. Technol. 2000, 29 (1), 49.
       

    31. [31]

      Lu, T.; Hou, Y. C.; Wu, W. Z.; Niu, M. G.; Wang, Y. P. Fuel Process. Technol. 2018, 171, 133. doi: 10.1016/j.fuproc.2017.11.010  doi: 10.1016/j.fuproc.2017.11.010

    32. [32]

      Zhong, J.; Pérez-Ramírez, J.; Yan, N. Green Chem. 2021, 23, 18. doi: 10.1039/d0gc03190a  doi: 10.1039/d0gc03190a

    33. [33]

      Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc. 2008, 130, 14474. doi: 10.1021/ja8063233  doi: 10.1021/ja8063233

    34. [34]

      Wölfel, R.; Taccardi, N.; Bösmann, A.; Wasserscheid, P. Green Chem. 2011, 13, 2759. doi: 10.1039/c1gc15434f  doi: 10.1039/c1gc15434f

    35. [35]

      Albert, J.; Wölfel, R.; Bosmann, A.; Wasserscheid, P. Energy Environ. Sci. 2012, 5, 7956. doi: 10.1039/c2ee21428h  doi: 10.1039/c2ee21428h

    36. [36]

      Li, J.; Ding, D. J.; Deng, L.; Guo, Q. X.; Fu, Y. ChemSusChem 2012, 5, 1313. doi: 10.1002/cssc.201100466  doi: 10.1002/cssc.201100466

    37. [37]

      Albert, J.; Lüders, D.; Bösmann, A.; Guldi, D. M.; Wasserscheid, P. Green Chem. 2014, 16, 226. doi: 10.1039/c3gc41320a  doi: 10.1039/c3gc41320a

    38. [38]

      Kozhevnikov, I. V.; Matveev, K. I. Appl. Catal. 1983, 5, 135. doi: 10.1016/0166-9834(83)80128-6  doi: 10.1016/0166-9834(83)80128-6

    39. [39]

      Reichert, J.; Albert, J. ACS Sustain. Chem. Eng. 2017, 5, 7383. doi: 10.1021/acssuschemeng.7b01723.  doi: 10.1021/acssuschemeng.7b01723

    40. [40]

      Lu, T.; Niu, M. G.; Hou, Y. C.; Wu, W. Z.; Ren, S. H.; Yang, F. Green Chem. 2016, 18, 4725. doi: 10.1039/c6gc01271j  doi: 10.1039/c6gc01271j

    41. [41]

      Voß, D.; Pickel, H.; Albert, J. ACS Sustain. Chem. Eng. 2019, 7, 9754. doi: 10.1021/acssuschemeng.8b05095  doi: 10.1021/acssuschemeng.8b05095

    42. [42]

      Xu, J. L.; Zhang, H. Y.; Zhao, Y. F.; Yang, Z. Z.; Yu, B.; Xu, H. J.; Liu, Z. M. Green Chem. 2014, 16, 4931. doi: 10.1039/C4GC01252F  doi: 10.1039/C4GC01252F

    43. [43]

      Li, K. X.; Bai, L. L.; Amaniampong, P. N.; Jia, X. L.; Lee, J. -M.; Yang, Y. H. ChemSusChem 2014, 7, 2670. doi: 10.1002/cssc.201402157  doi: 10.1002/cssc.201402157

    44. [44]

      Bukowski, A.; Esau, D.; Said, A. A. R.; Brandt-Talbot, A.; Albert, J. ChemPlusChem 2020, 85, 373. doi: 10.1002/cplu.202000025  doi: 10.1002/cplu.202000025

    45. [45]

      Bukowski, A.; Schnepf, K.; Wesinger, S.; Brandt-Talbot, A.; Albert, J. ACS Sustain. Chem. Eng. 2022, 10, 8474. doi: 10.1021/acssuschemeng.2c01550  doi: 10.1021/acssuschemeng.2c01550

    46. [46]

      Niu, M. G.; Hou, Y. C.; Ren, S. H.; Wu, W. Z.; Marsh, K. N. Green Chem. 2015, 17, 453. doi: 10.1039/c4gc01440e  doi: 10.1039/c4gc01440e

    47. [47]

      Shen, F.; Li, Y.; Qin, X.; Guo, H.; Li, J.; Yang, J.; Ding, Y. Renewable Energy 2022, 185, 139. doi: 10.1016/j.renene.2021.12.043  doi: 10.1016/j.renene.2021.12.043

    48. [48]

      Gromov, N. V.; Medvedeva, T. B.; Lukoyanov, I. A.; Panchenko, V. N.; Timofeeva, M. N.; Taran, O. P.; Parmon, V. N. Catalysts 2022, 12, 1252. doi: 10.3390/catal12101252  doi: 10.3390/catal12101252

    49. [49]

      Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L. Q. Chem. Rev. 2004, 104, 849. doi: 10.1002/chin.200420288  doi: 10.1002/chin.200420288

    50. [50]

      Sadoc, A.; Messaoudi, S.; Furet, E.; Gautier, R.; Fur, E. L.; Pollès, L. l.; Pivan, J. -Y. Inorg. Chem. 2007, 46, 4835. doi: 10.1021/ic0614519  doi: 10.1021/ic0614519

    51. [51]

      Wang, W. H.; Niu, M. G.; Hou, Y. C.; Wu, W. Z.; Liu, Z. Y.; Liu, Q. Y.; Ren, S. H.; Marsh, K. N. Green Chem. 2014, 16, 2614. doi: 10.1039/c4gc00145a  doi: 10.1039/c4gc00145a

    52. [52]

      Lu, T.; Hou, Y. C.; Wu, W. Z.; Niu, M. G.; Li, W.; Ren, S. H. Fuel Process. Technol. 2018, 173, 197. doi: 10.1016/j.fuproc.2018.02.001  doi: 10.1016/j.fuproc.2018.02.001

    53. [53]

      Müller, N.; Romero, R.; Grandón, H. c.; Segura, C. Energy Fuels 2016, 30, 10417. doi: 10.1021/acs.energyfuels.6b01345  doi: 10.1021/acs.energyfuels.6b01345

    54. [54]

      Tang, Z.; Deng, W.; Wang, Y.; Zhu, E.; Wan, X.; Zhang, Q.; Wang, Y. ChemSusChem 2014, 7, 1557. doi: 10.1002/cssc.v7.6/issuetoc  doi: 10.1002/cssc.v7.6/issuetoc

    55. [55]

      Yang, F.; Hou, Y. C.; Niu, M. G.; Wu, W. Z.; Liu, Z. Y. Fuel 2017, 202, 129. doi: 10.1016/j.fuel.2017.04.023  doi: 10.1016/j.fuel.2017.04.023

    56. [56]

      Hou, Y. C.; Lin, Z. Q.; Niu, M. G.; Ren, S. H.; Wu, W. Z. ACS Omega 2018, 3, 14910. doi: 10.1021/acsomega.8b01409  doi: 10.1021/acsomega.8b01409

    57. [57]

      Albert, J.; Mendt, M.; Mozer, M.; Voß, D. Appl. Catal. A-Gen. 2019, 570, 262. doi: 10.1016/j.apcata.2018.10.030  doi: 10.1016/j.apcata.2018.10.030

    58. [58]

      Yang, W. S.; Du, X.; Liu, W.; Wang, Z. W.; Dai, H. Q.; Deng, Y. L. Ind. Eng. Chem. Res. 2019, 58, 22996. doi: 10.1021/acs.iecr.9b05311  doi: 10.1021/acs.iecr.9b05311

    59. [59]

      Lu, T.; Hou, Y. C.; Wu, W. Z.; Niu, M. G.; Ren, S. H.; Lin, Z. Q.; Ramani, V. K. Fuel 2018, 216, 572. doi: 10.1016/j.fuel.2017.12.044  doi: 10.1016/j.fuel.2017.12.044

    60. [60]

      Ponce, S.; Trabold, M.; Drochner, A.; Albert, J.; Etzold, B. J. M. Chem. Eng. J. 2019, 369, 443. doi: 10.1016/j.cej.2019.03.103  doi: 10.1016/j.cej.2019.03.103

    61. [61]

      Poller, M. J.; Bönisch, S.; Bertleff, B.; Raabe, J. C.; Görling, A.; Albert, J. Chem. Eng. Sci. 2022, 264, 118143. doi: 10.1016/j.ces.2022.118143  doi: 10.1016/j.ces.2022.118143

    62. [62]

      Zhou, H.; Jing, Y. X.; Wang, Y. Q. Acta Phys. -Chim. Sin. 2022, 38, 2203016.  doi: 10.3866/PKU.WHXB202203016

    63. [63]

      Wang, W.; Wang, Y.; Zhan, Z.; Tan, T.; Deng, W.; Zhang, Q.; Wang, Y. Acta Phys. -Chim. Sin. 2022, 38, 2205032.  doi: 10.3866/PKU.WHXB2022205032

    64. [64]

      Hao, R.; Guan, W. X.; Liu, F.; Zhang, L. L.; Wang, A. Q. Acta Phys. -Chim. Sin. 2022, 38 (10), 2205027.  doi: 10.3866/PKU.WHXB202205027

    65. [65]

      Bikash Sarma, B.; Neumann, R. Nat. Commun. 2014, 5, 4621. doi: 10.1038/ncomms5621  doi: 10.1038/ncomms5621

    66. [66]

      Niu, M. G.; Hou, Y. C.; Wu, W. Z.; Ren, S. H.; Yang, R. Phys. Chem. Chem. Phys. 2018, 20, 17942. doi: 10.1039/c8cp02352b  doi: 10.1039/c8cp02352b

    67. [67]

      Niu, M. G.; Hou, Y. C.; Ren, S. H.; Wang, W. H.; Zheng, Q. T.; Wu, W. Z. Green Chem. 2015, 17, 335. doi: 10.1039/c4gc00970c  doi: 10.1039/c4gc00970c

    68. [68]

      Reichert, J.; Brunner, B.; Jess, A.; Wasserscheid, P.; Albert, J. Energy Environ. Sci. 2015, 8, 2985. doi: 10.1039/c5ee01706h  doi: 10.1039/c5ee01706h

    69. [69]

      Maerten, S.; Kumpidet, C.; Voß, D.; Bukowski, A.; Wasserscheid, P.; Albert, J. Green Chem. 2020, 22, 4311. doi: 10.1039/d0gc01169j  doi: 10.1039/d0gc01169j

    70. [70]

      Wesinger, S.; Mendt, M.; Albert, J. ChemCatChem 2021, 13, 3662. doi: 10.1002/cctc.202100632  doi: 10.1002/cctc.202100632

    71. [71]

      Guo, Y. -J.; Li, S. -J.; Sun, Y. -L.; Wang, L.; Zhang, W. -M.; Zhang, P.; Lan, Y.; Li, Y. Green Chem. 2021, 23, 7041. doi: 10.1039/d1gc02265b  doi: 10.1039/d1gc02265b

    72. [72]

      Zhang, P.; Guo, Y. -J.; Chen, J. B.; Zhao, Y. -R.; Chang, J.; Junge, H.; Beller, M.; Li, Y. Nat. Cat. 2018, 1, 332. doi: 10.1038/s41929-018-0062-0  doi: 10.1038/s41929-018-0062-0

    73. [73]

      Deuss, P. J.; Barta, K.; de Vries, J. G. Catal. Sci. Technol. 2014, 4, 1174. doi: 10.1039/c3cy01058a  doi: 10.1039/c3cy01058a

    74. [74]

      Mehdi, H.; Fábos, V.; Tuba, R.; Bodor, A.; Mika, L. T.; Horváth, I. T. Top Catal. 2008, 48, 49. doi: 10.1007/s11244-008-9047-6  doi: 10.1007/s11244-008-9047-6

    75. [75]

      Albert, J.; Wasserscheid, P. Green Chem. 2015, 17, 5164. doi: 10.1039/c5gc01474c  doi: 10.1039/c5gc01474c

    76. [76]

      Gromov, N. V.; Medvedeva, T. B.; Sorokina, K. N.; Samoylova, Y. V.; Rodikova, Y. A.; Parmon, V. N. ACS Sustain. Chem. Eng. 2020, 8, 18947. doi: 10.1021/acssuschemeng.0c06364  doi: 10.1021/acssuschemeng.0c06364

    77. [77]

      Voß, D.; Kahl, M.; Albert, J. ACS Sustain. Chem. Eng. 2020, 8, 10444. doi: 10.1021/acssuschemeng.0c02426  doi: 10.1021/acssuschemeng.0c02426

    78. [78]

      Niu, M. G.; Hou, Y. C.; Ren, S. H.; Wu, W. Z. Chin. Sci. Bull. 2015, 60 (16), 1434. doi: 10.1360/N972014-01247  doi: 10.1360/N972014-01247

    79. [79]

      Caiti, M.; Padovan, D.; Hammond, C. ACS Catal. 2019, 9, 9188. doi: 10.1021/acscatal.9b01977  doi: 10.1021/acscatal.9b01977

    80. [80]

      Zou, L.; Zhang, Q.; Huang, Y.; Luo, X.; Liang, Z. Ind. Eng. Chem. Res. 2019, 58, 22984. doi: 10.1021/acs.iecr.9b05308  doi: 10.1021/acs.iecr.9b05308

    81. [81]

      Xu, L.; Nie, R. F.; Xu, H. F.; Chen, X. J.; Li, Y. C.; Lu, X. Y. Ind. Eng. Chem. Res. 2020, 59 (7), 2754. doi: 10.1021/acs.iecr.9b05726  doi: 10.1021/acs.iecr.9b05726

    82. [82]

      Al-Naji, M.; Popova, M.; Chen, Z.; Wilde, N.; Glaser, R. ACS Sustain. Chem. Eng. 2020, 8, 393. doi: 10.1021/acssuschemeng.9b05546  doi: 10.1021/acssuschemeng.9b05546

    83. [83]

      Gromov, N. V.; Taran, O. P.; Delidovich, I. V.; Pestunov, A. V.; Rodikova, Y. A.; Yatsenko, D. A.; Zhizhina, E. G.; Parmon, V. N. Catal. Today 2016, 278, 74. doi: 10.1016/j.cattod.2016.03.030  doi: 10.1016/j.cattod.2016.03.030

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(14)
  • Abstract views(777)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return