Recent Advances in Dry Reforming of Methane via Photothermocatalysis
- Corresponding author: Liangshu Zhong, zhongls@sari.ac.cn
Citation: Zhanjun He, Min Huang, Tiejun Lin, Liangshu Zhong. Recent Advances in Dry Reforming of Methane via Photothermocatalysis[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221206. doi: 10.3866/PKU.WHXB202212060
Noor, Z. Z.; Yusuf, R. O.; Abba, A. H.; Abu Hassan, M. A.; Din, M. F. M. Renew. Sustain. Energy Rev. 2013, 20, 378. doi: 10.1016/j.rser.2012.11.050
doi: 10.1016/j.rser.2012.11.050
Yusuf, R. O.; Noor, Z. Z.; Abba, A. H.; Abu Hassan, M. A.; Din, M. F. M. Renew. Sustain. Energy Rev. 2012, 16, 5059. doi: 10.1016/j.rser.2012.04.008
doi: 10.1016/j.rser.2012.04.008
Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R.; et al. Science 2016, 351, 1065. doi: 10.1126/science.aaf1835
doi: 10.1126/science.aaf1835
Zhong, L. S.; Yu, F.; An, Y. L.; Zhao, Y. H.; Sun, Y. H.; Li, Z. J.; Lin, T. J.; Lin, Y. J.; Qi, X. Z.; Dai, Y. Y.; et al. Nature 2016, 538, 84. doi: 10.1038/nature19786
doi: 10.1038/nature19786
Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. doi: 10.1038/417507a
doi: 10.1038/417507a
Kroll, V. C. H.; Swaan, H. M.; Mirodatos, C. J. Catal. 1996, 161, 409. doi: 10.1006/jcat.1996.0199
doi: 10.1006/jcat.1996.0199
He, C.; Wu, S.; Wang, L.; Zhang, J. J. Photochem. Photobiol. C 2022, 51, 100468. doi: 10.1016/j.jphotochemrev.2021.100468
doi: 10.1016/j.jphotochemrev.2021.100468
Li, M.; Sun, Z.; Hu, Y. H. Chem. Eng. J. 2022, 428, 131222. doi: 10.1016/j.cej.2021.131222
doi: 10.1016/j.cej.2021.131222
Wu, S.; Li, Y.; Hu, Q.; Wu, J.; Zhang, Q. ACS Sustain. Chem. Eng. 2021, 9, 11635. doi: 10.1021/acssuschemeng.1c03692
doi: 10.1021/acssuschemeng.1c03692
Wang, C.; Su, Y.; Tavasoli, A.; Sun, W.; Wang, L.; Ozin, G. A.; Yang, D. Mater. Today Nano 2021, 14, 100113. doi: 10.1016/j.mtnano.2021.100113
doi: 10.1016/j.mtnano.2021.100113
Ning, S.; Sun, Y.; Ouyang, S.; Qi, Y.; Ye, J. Appl. Catal. B 2022, 310, 121063. doi: 10.1016/j.apcatb.2022.121063
doi: 10.1016/j.apcatb.2022.121063
Aramouni, N. A. K.; Touma, J. G.; Abu Tarboush, B.; Zeaiter, J.; Ahmad, M. N. Renew. Sustain. Energy Rev. 2018, 82, 2570. doi: 10.1016/j.rser.2017.09.076
doi: 10.1016/j.rser.2017.09.076
Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. ACS Catal. 2015, 5, 3028. doi: 10.1021/acscatal.5b00357
doi: 10.1021/acscatal.5b00357
Zhang, S. R.; Nguyen, L.; Liang, J. X.; Shan, J. J.; Liu, J. Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Li, J.; Tao, F. Nat. Commun. 2015, 6, 1. doi: 10.1038/ncomms8938
doi: 10.1038/ncomms8938
Bian, Z. F.; Das, S.; Wai, M. H.; Hongmanorom, P.; Kawi, S. ChemPhysChem 2017, 18, 3117. doi: 10.1002/cphc.201700529
doi: 10.1002/cphc.201700529
Zubenko, D.; Singh, S.; Rosen, B. Appl. Catal. B 2017, 209, 711. doi: 10.1016/j.apcatb.2017.03.047
doi: 10.1016/j.apcatb.2017.03.047
Song, Y.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B.; Jamal, A.; Moon, D.; et al. Science 2020, 367, 777. doi: 10.1126/science.aav2412
doi: 10.1126/science.aav2412
Naeem, M. A.; Abdala, P. M.; Armutlulu, A.; Kim, S. M.; Fedorov, A.; Mueller, C. R. ACS Catal. 2020, 10, 1923. doi: 10.1021/acscatal.9b04555
doi: 10.1021/acscatal.9b04555
Das, S.; Perez-Ramirez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Chem. Soc. Rev. 2020, 49, 2937. doi: 10.1039/c9cs00713j
doi: 10.1039/c9cs00713j
Li, Z.; Li, M.; Bian, Z.; Kathiraser, Y.; Kawi, S. Appl. Catal. B 2016, 188, 324. doi: 10.1016/j.apcatb.2016.01.067
doi: 10.1016/j.apcatb.2016.01.067
Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
doi: 10.1038/238037a0
Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Science 2015, 347, 970. doi: 10.1126/science.aaa3145
doi: 10.1126/science.aaa3145
Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/c3cs60378d
doi: 10.1039/c3cs60378d
Han, F.; Kambala, V. S. R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Appl. Catal. A 2009, 359, 25. doi: 10.1016/j.apcata.2009.02.043
doi: 10.1016/j.apcata.2009.02.043
Byrne, C.; Subramanian, G.; Pillai, S. C. J. Environ. Chem. Eng. 2018, 6, 3531. doi: 10.1016/j.jece.2017.07.080
doi: 10.1016/j.jece.2017.07.080
Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Chem. Rev. 2019, 119, 3962. doi: 10.1021/acs.chemrev.8b00400
doi: 10.1021/acs.chemrev.8b00400
Ding, M.; Flaig, R. W.; Jiang, H. -L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783. doi: 10.1039/c8cs00829a
doi: 10.1039/c8cs00829a
Tahir, B.; Tahir, M.; Amin, N. A. S. Appl. Surf. Sci. 2017, 419, 875. doi: 10.1016/j.apsusc.2017.05.117
doi: 10.1016/j.apsusc.2017.05.117
Tahir, M.; Tahir, B.; Zakaria, Z. Y.; Muhammad, A. J. Cleaner Prod. 2019, 213, 451. doi: 10.1016/j.jclepro.2018.12.169
doi: 10.1016/j.jclepro.2018.12.169
Yang, Y.; Tan, H. Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Ho, W. K. Small Methods 2021, 5, 2001042. doi: 10.1002/smtd.202001042
doi: 10.1002/smtd.202001042
Liu, H.; Meng, X.; Thang Duy, D.; Liu, L.; Li, P.; Zhao, G.; Nagao, T.; Yang, L.; Ye, J. J. Mater. Chem. A 2017, 5, 10567. doi: 10.1039/c7ta00704c
doi: 10.1039/c7ta00704c
Liu, H.; Thang Duy, D.; Liu, L.; Meng, X.; Nagaoa, T.; Ye, J. Appl. Catal. B 2017, 209, 183. doi: 10.1016/j.apcatb.2017.02.080
doi: 10.1016/j.apcatb.2017.02.080
Zhang, Q.; Mao, M.; Li, Y.; Yang, Y.; Huang, H.; Jiang, Z.; Hu, Q.; Wu, S.; Zhao, X. Appl. Catal. B 2018, 239, 555. doi: 10.1016/j.apcatb.2018.08.052
doi: 10.1016/j.apcatb.2018.08.052
Liu, H.; Song, H.; Meng, X.; Yang, L.; Ye, J. Catal. Today 2019, 335, 187. doi: 10.1016/j.cattod.2018.11.005
doi: 10.1016/j.cattod.2018.11.005
Jiang, Z.; Li, Y.; Zhang, Q.; Yang, Y.; Wu, S.; Wu, J.; Zhao, X. J. Mater. Chem. A 2019, 7, 4881. doi: 10.1039/c9ta00259f
doi: 10.1039/c9ta00259f
Zhang, Q.; Li, Y.; Wu, S.; Wu, J.; Jiang, Z.; Yang, Y.; Ren, L.; Zhao, X. J. Mater. Chem. A 2019, 7, 19800. doi: 10.1039/c9ta06923b
doi: 10.1039/c9ta06923b
Takeda, K.; Yamaguchi, A.; Cho, Y.; Anjaneyulu, O.; Fujita, T.; Abe, H.; Miyauchi, M. Global Chall. 2020, 4, 1900067. doi: 10.1002/gch2.201900067
doi: 10.1002/gch2.201900067
Rao, Z.; Cao, Y.; Huang, Z.; Yin, Z.; Wan, W.; Ma, M.; Wu, Y.; Wang, J.; Yang, G.; Cui, Y.; et al. ACS Catal. 2021, 11, 4730. doi: 10.1021/acscatal.0c04826
doi: 10.1021/acscatal.0c04826
Han, K.; Wang, Y.; Wang, S.; Liu, Q.; Deng, Z.; Wang, F. Chem. Eng. J. 2021, 421, 129989. doi: 10.1016/j.cej.2021.129989
doi: 10.1016/j.cej.2021.129989
Tan, X.; Wu, S.; Li, Y.; Zhang, Q.; Hu, Q.; Wu, J.; Zhang, A.; Zhang, Y. Energy Environ. Mater. 2022, 5, 582. doi: 10.1002/eem2.12193
doi: 10.1002/eem2.12193
Lorber, K.; Zavasnik, J.; Sancho-Parramon, J.; Bubas, M.; Mazaj, M.; Djinovic, P. Appl. Catal. B 2022, 301, 120745. doi: 10.1016/j.apcatb.2021.120745
doi: 10.1016/j.apcatb.2021.120745
Zhao, J.; Guo, X.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Dai, Q.; Zhang, T. Adv. Funct. Mater. 2022, 32, 2204056. doi: 10.1002/adfm.202204056
doi: 10.1002/adfm.202204056
Du, Z.; Pan, F.; Yang, X.; Fang, L.; Gang, Y.; Fang, S.; Li, T.; Hu, Y. H.; Li, Y. Catal. Today 2023, 409, 31. doi: 10.1016/j.cattod.2022.05.014
doi: 10.1016/j.cattod.2022.05.014
Xie, T.; Zhang, Z. -Y.; Zheng, H. -Y.; Xu, K. -D.; Hu, Z.; Lei, Y. Chem. Eng. J. 2022, 429, 132507. doi: 10.1016/j.cej.2021.132507
doi: 10.1016/j.cej.2021.132507
Han, B.; Wei, W.; Chang, L.; Cheng, P. F.; Hu, Y. H. ACS Catal. 2016, 6, 494. doi: 10.1021/acscatal.5b02653
doi: 10.1021/acscatal.5b02653
Liu, H.; Song, H.; Zhou, W.; Meng, X.; Ye, J. Angew. Chem. Int. Ed. 2018, 57, 16781. doi: 10.1002/anie.201810886
doi: 10.1002/anie.201810886
Song, H.; Meng, X.; Dao, T. D.; Zhou, W.; Liu, H.; Shi, L.; Zhang, H.; Nagao, T.; Kako, T.; Ye, J. ACS Appl. Mater. Interfaces 2018, 10, 408. doi: 10.1021/acsami.7b13043
doi: 10.1021/acsami.7b13043
Liu, H.; Meng, X.; Thang Duy, D.; Zhang, H.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 11545. doi: 10.1002/anie.201504933
doi: 10.1002/anie.201504933
Shoji, S.; Peng, X.; Yamaguchi, A.; Watanabe, R.; Fukuhara, C.; Cho, Y.; Yamamoto, T.; Matsumura, S.; Yu, M. -W.; Ishii, S.; et al. Nat. Catal. 2020, 3, 148. doi: 10.1038/s41929-019-0419-z
doi: 10.1038/s41929-019-0419-z
Cho, Y.; Shoji, S.; Yamaguchi, A.; Hoshina, T.; Fujita, T.; Abe, H.; Miyauchi, M. Chem. Commun. 2020, 56, 4611. doi: 10.1039/d0cc00729c
doi: 10.1039/d0cc00729c
Liu, H.; Li, M.; Thang Duy, D.; Liu, Y.; Zhou, W.; Liu, L.; Meng, X.; Nagao, T.; Ye, J. Nano Energy 2016, 26, 398. doi: 10.1016/j.nanoen.2016.05.045
doi: 10.1016/j.nanoen.2016.05.045
Zhou, L.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M.; Dong, L.; Henderson, L.; et al. Nat. Energy 2020, 5, 61. doi: 10.1038/s41560-019-0517-9
doi: 10.1038/s41560-019-0517-9
Wu, S.; Li, Y.; Zhang, Q.; Jiang, Z.; Yang, Y.; Wu, J.; Zhao, X. Energy Environ. Sci. 2019, 12, 2581. doi: 10.1039/c9ee01484e
doi: 10.1039/c9ee01484e
He, K.; Shen, R.; Hao, L.; Li, Y.; Zhang, P.; Jiang, J.; Li, X. Acta Phys. -Chim. Sin. 2022, 38, 2201021.
doi: 10.3866/PKU.WHXB202201021
Ma, J.; Long, R.; Liu, D.; Low, J. X.; Xiong, Y. J. Small Struct. 2022, 3, 2100147. doi: 10.1002/sstr.202100147
doi: 10.1002/sstr.202100147
Liu, Y.; Duan, Z.; Li, J.; Chan, C. Acta Phys. -Chim. Sin. 2021, 37, 2011012.
doi: 10.3866/PKU.WHXB202011012
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005