Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction
- Corresponding author: Qianrong Fang, qrfang@jlu.edu.cn
Citation:
Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction[J]. Acta Physico-Chimica Sinica,
;2023, 39(9): 221205.
doi:
10.3866/PKU.WHXB202212057
化石燃料的大量使用严重影响了我们的生态环境,开发和应用清洁可再生的能源势在必行1, 2。电化学分解水是一种绿色且有前途的技术,在先进的能源技术中扮演者重要的角色。如太阳能燃料生产、超级电容器、可充电的金属-空气电池等3-5。OER作为电解水的阳极反应,由于涉及多电子参与以及O―H键的断裂和O―O键的形成需要很高的能量势垒,因此需提供更高的能量来维持6。在过去的几年中,金属Ir、Ru 7, 8、Co 9、Fe 10及其金属氧化物如RuO2、IrO2常用于电催化OER并表现出高度的活性11。然而,其不稳定性、稀缺性、更高的经济成本以及对环境的二次污染阻碍其进一步的发展和应用12, 13。因此,需要开发一种稳定、环境友好的无金属电催化剂来代替金属催化剂。由于各种碳基材料其可调的分子结构、丰富性和对酸碱环境的强耐受性,在指定催化方面具有独特的优势,因此得到了广泛的研究。研究表明,石墨烯14, 15、石墨16, 17、垂直排列的氮掺杂的碳纳米管18、杂原子掺杂碳纳米管19, 20、氮掺杂的石墨烯片具有优异的催化性能。然而,对于一些无机碳材料的杂原子掺杂很难精确调控掺杂的位置和种类分布,限制了碳材料的进一步发展21, 22。近几年,COF作为一种新兴有机晶态多孔材料23-28,由于其高的比表面积、孔隙率、热稳定性、化学稳定性以及可调节的丰富活性位点越来越受到人们的关注29。目前,COF已经应用于气体吸收30、能量存储31、化学传感32、有机催化33、光催化34等领域。而COF用于电催化OER还有待于研究,尤其是无金属的COF用于电催化OER很少报道。具有强供电子体的电活性四硫富瓦烯(TTF)及其衍生物在有机导电材料中发挥着至关重要的作用35, 36。张德清课题组将TTF与电子受体相结合,从而提高了2D COF的导电性37。考虑以上因素,我们合成了基于强供电子体的四硫富瓦烯无金属2D COF,JUC-630。结果表明,该COF与不含TTF基团的Etta-Td COF相比,表现出更好的OER性能。
N, N-二甲基乙酰胺(99.0%),无水均三甲苯(99.0%),三氟乙酸(≥ 99.0%)来源于中国阿拉丁试剂有限公司。无水四氢呋喃(≥ 99.0%),丙酮(≥ 99.0%),乙醇(≥ 99.8%),二氯甲烷(99.0%),正己烷(≥ 99.0%)来源于天津市大茂化学试剂公司。4, 4’, 4’’, 4’’’-(四硫富瓦烯-4, 4’, 5, 5’-四基)四苯胺(TTF-NH2) (97.0%),4, 4’-(苯并[c][1,2,5]噻二唑-4, 7-二基)二苯甲醛(DPBT) (98.0%),四-(4-氨基苯)-乙烯(Etta) (97.0%)来源于中国研伸科技。
粉末X射线衍射仪(PANalytical B.V Empyrean DY01610,荷兰帕纳科公司,荷兰),红外光谱仪(SHIMADZU IRAffinity-1,日本岛津公司,日本),DTG-60型差热-热重分析系统(SHIMADZUDTG-60,日本岛津公司,日本),自动化气体吸附分析仪(Autosorb-iQ3,美国康塔仪器有限公司,美国),扫描电子显微镜(JEOLJSM-6700,日本电子株式会社,日本),透射电子显微镜(JEOLJSM-2100,日本电子株式会社,日本)。
将TTF-NH2 (14.2 mg,0.025 mmol)和DPBT (17.2 mg,0.05 mmol)混合研磨,随后放入Pyrex管中,抽真空-充氮气连续循环三次,除去管内空气并保持在纯氮气环境下,加入无水N, N-二甲基乙酰胺(0.75 mL)、均三甲苯(0.25 mL)和乙酸水溶液(6 mol∙L−1,0.1 mL)。接着为了保证无水无氧的环境将Pyrex管放入77 K液氮中快速冷冻,抽真空至0.15 mmHg的内部压力使管内液体凝结成固体,之后在CH4与O2混合气体火焰下将管密封,将反应混合物放置于120 ℃烘箱中,为了调节反应速率与结晶速率达到平衡加热3天最佳,过滤分离得到暗黄沉淀物,接着用丙酮(20 mL)洗涤三次。将产物浸入正己烷(20 mL)中4 h,最后过滤得到固体,放置于100 ℃烘箱中真空干燥2 h,得到褐色粉末状的JUC-630,产率为68%。
将Etta (19.6 mg,0.05 mmol)和DPBT (34.4 mg,0.1 mmol)混合研磨,随后放入Pyrex管中,抽真空-充氮气连续循环三次,除去管内空气并保持在纯氮气环境下,加入无水N, N-二甲基乙酰胺(0.9 mL)、均三甲苯(0.1 mL)和乙酸水溶液(6 mol∙L−1,0.1 mL)。接着为了保证无水无氧的环境将Pyrex管放入77 K液氮中快速冷冻,抽真空至0.15 mmHg的内部压力使管内液体凝结成固体,之后在CH4与O2混合气体火焰下将管密封,将反应混合物放置于120 ℃烘箱中,为了调节反应速率与结晶速率达到平衡加热3天最佳,过滤分离得到暗黄沉淀物,接着用丙酮(20 mL)洗涤三次。将产物浸入正己烷(20 mL)中4 h,最后过滤得到固体,放置于100 ℃烘箱中真空干燥2 h,得到褐色粉末状的JUC-630,产率为82%。
将3.0 mg的JUC-630分散在130.0 μL乙醇,130.0 μL蒸馏水,40.0 μL Nafion的混合溶液中,然后室温超声30 min,6.0 μL的混合液均匀地涂在3 mm的玻碳电极上。在1 mol∙L−1 KOH碱性条件下,利用CHI 760E电化学工作站上采用三电极结构评估了催化剂的析氧反应电催化性能。
Scheme 1是两种COFs的合成示意图。我们分别采用粉末X射线衍射(PXRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2吸附、红外光谱图(FT-IR)等多种方法进行了表征。
为了确定JUC-630和Etta-Td COF的晶体结构,使用Materials Studios软件包,对其进行模拟(如图 1所示)。这些结果表明,两种COFs在PBAM空间群中结晶,结构均为sql拓扑的AA层堆叠(如图S1和S2所示,Supporting Informaton),晶格参数分别表现为(JUC-630:a = 54.74669 nm,b = 37.893575 nm,c = 3.538045 nm,α = β = γ = 90°;Etta-Td COF:a = 33.350707 nm,b = 46.557972 nm,c = 3.516149 nm,α = β = γ = 90°)。我们对实验值进行Pawley精修。JUC-630在2.84°,3.22°,4.93°,5.66°,7.96°,8.50°处的衍射峰分别对应于P1空间群的(100),(200),(120),(220),(420),(330)晶面,近似地Etta-Td COF在3.25°,3.80°,5.30°,6.53°,7.77°,10.60°,17.80°和19.62°处的衍射峰分别对应于P1空间群的(110),(020),(200),(220),(230),(400),我们对实验值进行Pawley精修。JUC-630在2.84°,3.22°,4.93°,5.66°,7.96°,8.50°处的衍射峰分别对应于P1空间群的(100),(200),(120),(220),(420),(330)晶面,近似地Etta-Td COF在3.25°,3.80°,5.30°,6.53°,7.77°,10.60°,17.80°和19.62°处的衍射峰分别对应于P1空间群的(110),(020),(200),(220),(230),(400),(190),(660)晶面。精修得到的晶胞参数基本与模拟的结构相吻合,JUC-630得到的Rwp = 2.69%,Rp = 2.12%。Etta-Td COF得到的Rwp = 6.09%,Rp = 4.32%。为了进一步证实COFs中官能团的变化,我们测试了傅里叶变换红外光谱(FT-IR)来分析COFs合成过程中基团的变化。FT-IR显示在1690和1622 cm−1处出现JUC-630和Etta-Td COF的C=N的特征峰,而DPBT在1697 cm−1处的C=O的特征峰、TTF-NH2在3331、3212 cm−1和Etta在3334、3210cm−1 N―H的特征峰消失38,证明成功合成了两种COFs (如图S3和S4所示)。固态13C交叉极化魔角自旋(CP/MAS)核磁共振谱进一步证实了JUC-630和Etta-Td COF在159和158存在亚胺基团(如图S5和S6所示) 39。为了研究合成JUC-630和Etta-Td COF的热稳定性,我们进行了热重测试。结果表明,JUC-630和Etta-Td COF的热重量曲线在380和360 ℃左右时开始下降,表明其具有很高的热稳定性(如图S7和S8所示)。我们采用77 K下的氮气吸脱附测试了两种COFs的孔隙率(如图S9和S10所示) 40。JUC-630和Etta-Td COF呈现典型Ⅳ型吸附等温线,分别在P/P0 = 0.4和0.2处呈现明显的介孔材料的平台特征。通过BET方程计算得JUC-630和Etta-Td COF的比表面积分别为907和439.53 m2∙g−1 (如图S11和S12所示) 41。通过利用非局部密度泛函理论(NLDFT)计算得到JUC-630和Etta-Td COF孔径分别为2.4和2.1 nm,这与模拟孔径的数值JUC-630和Etta-Td COF的2.4和2.2 nm相匹配(如图S13和S14所示) 42。通过SEM和TEM观察了两种COF的形貌(如图 2a–d所示)。在JUC-630和Etta-Td COF中,纳米棒占主导地位。此外,相应的EDS元素分析表明,C、S和N元素在COF中均匀分布(如图 2e和f所示)。
为了测试JUC-630的OER性能,我们采用了三电极体系。在1 mol∙L−1 KOH溶液中进行了线性伏安扫描曲线(LSV)测试,同时与Etta-Td COF以及TTF-NH2单体进行了对比。如图显示,JUC-630比Etta-Td COF阳极电流密度升高快,表明其具有较好的OER催化活性,而TTF-NH2单体阳极电流密度上升缓慢,说明COF的多孔特性有助于提高电催化性能。由于10 mA∙cm−2的电流密度是驱动太阳能燃料转换的临界值,并用作比较电催化性能的基准。JUC-630在该电流密度下的过电位是400 mV,这明显低于Etta-Td COF的450 mV和TTF-NH2单体的550 mV,并且与很多无金属催化剂的过电位相当(如表S1所示),甚至优于它们中的大多数(如图 3a所示)。这些结果证明了具有高的导电率的TTF-NH2引入COF中有助于OER性能的提升。
(a) LSV polarization plots of the JUC-630, Etta-Td COF and TTF-NH2; (b) Tafel plots of the JUC-630, Etta-Td COF and TTF-NH2; (c) Capacitive current of different samples as a function of scan rate; (d) EIS Nyquist plot for the JUC-630, Etta-Td COF and TTF-NH2.
为了进一步研究OER反应的动力学,在LSV曲线的基础上,我们绘制出了塔菲尔斜率(如图 3b所示)。塔菲尔斜率值越低表明越有利于OER反应的进行。可见,JUC-630的塔菲尔斜率低于Etta-Td COF和TTF-NH2单体,证明了JUC-630的催化活性更好。为了确定电催化OER增强的原因,我们测试了电化学阻抗谱(如图 3c所示)。JUC-630的半圆直径比其他两者都要小,证明在JUC-630中引入TTF使得电解液和电极界面有高效的电子传输,促进了OER过程。此外,通过测试不同扫描速度的循环伏安(CV如图S15和S16所示),进而估计COF的双电层电容和电化学活性表面积(如图 3d和S17所示)。显然,JUC-630的Cdl值比Etta-Td COF和TTF-NH2单体更高。耐久性是评估实际应用中催化活性的另一个关键因素。通过计时电位测量研究了JUC-630的长期稳定性。随时间变化的计时电位几乎没有观察到活性损失,这意味着JUC-630在强碱溶液中具有良好的OER稳定性(如图S18所示)。
总之,我们在真空密闭条件下通过席夫碱反应制备了一种基于强供电子体的新型2D COF,JUC-630 43。通过红外、固体核磁、氮气吸附等一系列的表征,证实了JUC-630的成功合成。在碱性介质中,在电流密度为10 mA∙cm−2时,JUC-630的过电位为400 mV,这明显低于Etta-Td COF (450 mV)。这个过电位与被广泛关注的碳材料、石墨烯材料相当,甚至优于它们。因此,在COF中引入高导电率的强供电子体有助于电催化性能的提升,这为制备从水资源中进行能量转换的催化剂提供了良好的思路。
Supporting Information: available free of charge via the internet at
You, H.; Yang, S.; Ding, B.; Yang, H. Chem. Soc. Rev. 2013, 42, 2880. doi: 10.1039/C2CS35319A
doi: 10.1039/C2CS35319A
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326
doi: 10.1021/cr1002326
Liu, X.; Dai, L. Nat. Rev. Mater. 2016, 1, 16064. doi: 10.1038/natrevmats.2016.64
doi: 10.1038/natrevmats.2016.64
Kamila, S.; Mohanty, B.; Samantara, A. K.; Guha, P.; Ghosh, A.; Jena, B.; Satyam, P. V.; Mishra, B. K.; Jena, B. K. Sci. Rep. 2017, 7, 8378. doi: 10.1038/s41598-017-08677-5
doi: 10.1038/s41598-017-08677-5
Teng, H.; Wang, W.; Han, X.; Hao, X.; Yang, R. Acta Phys. -Chim. Sin. 2023, 39 (1), 2107017.
doi: 10.3866/PKU.WHXB202107017
Yu, Y.; Feng, Y.; Guan, B.; Lou, W.; Paik, U. Energy Environ. Sci. 2016, 9 (4), 1246. doi: 10.1039/C6EE00100A
doi: 10.1039/C6EE00100A
Reier, T.; Oezaslan, M.; Strasser, P. ACS Catal. 2012, 2 (8), 1765. doi: 10.1021/cs3003098
doi: 10.1021/cs3003098
Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D. B.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Angew. Chem. Int. Ed. 2014, 53 (41), 10960. doi: 10.1021/cr1002326
doi: 10.1021/cr1002326
Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araujo, J. F.; Reier, T.; Dan, H.; Strasser, P. Nat. Commun. 2015, 6, 8625. doi: 10.1038/ncomms9625
doi: 10.1038/ncomms9625
Tran Ngoc, H.; Rousse, G.; Zanna, S.; Lucas, I. T.; Xu, X.; Menguy, N.; Mougel, V.; Fontecave, M. Angew. Chem. Int. Ed. , 2017, 56 (17), 4792. doi: 10.1002/anie.201700388
doi: 10.1002/anie.201700388
Liu, X.; Wang, L.; Yu, C.; Tian, C.; Sun, F.; Ma, J.; Li, L.; Fu, H.; Angew. Chem. Int. Ed. 2018, 57, 16166. doi: 10.1002/anie.201809009
doi: 10.1002/anie.201809009
Bhanja, P.; Mohanty, B.; Patra, A. K.; Ghosh, S.; Jena, B. K.; Bhaumik, A. ChemCatChem 2019, 11, 583. doi: 10.1002/cctc.201801312
doi: 10.1002/cctc.201801312
Siracusano, S.; Van Dijk, N.; Payne-Johnson, E.; Baglio, V.; Aricò, A. S. Appl. Catal. B: Environ. 2015, 164, 488. doi: 10.1016/j.apcatb.2014.09.005
doi: 10.1016/j.apcatb.2014.09.005
Li, Y.; Li, M.; Jiang, L. Q.; Lin, L.; Cui, L.; He, Q. Phys. Chem. Chem. Phys. 2014, 16 (42), 23196. doi: 10.1039/C4CP02528H
doi: 10.1039/C4CP02528H
Wang, Q.; Lee, S.; Zhu, Q.; Liu, J.; Wang, Y.; Dai, S. Chem. Mater. 2010, 22 (7), 2178. doi: 10.1021/cm100139d
doi: 10.1021/cm100139d
Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. J. Phys. Chem. B 2006, 110 (4), 1787. doi: 10.1021/jp055150g
doi: 10.1021/jp055150g
Liu, W.; Peng, F.; Wang, J.; Yu, H.; Zheng, X.; Yang, A. Angew. Chem. Int. Ed. 2011, 50 (14), 3257. doi: 10.1002/ange.201006768
doi: 10.1002/ange.201006768
Gong, P.; Du, F.; Xia, H.; Durstock, M.; Dai, M. Science 2009, 323 (5915), 760. doi: 10.1126/science.1168049
doi: 10.1126/science.1168049
Yang, J.; Jiang, J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Angew. Chem. Int. Ed. 2011, 50 (31), 7270 doi: 10.1002/ange.201101287
doi: 10.1002/ange.201101287
Wu, K.; Zhang, Y.; Yong, Z.; Li, Q. Acta Phys. -Chim. Sin. 2022, 38 (9), 2106034.
doi: 10.3866/PKU.WHXB202106034
Zhu, Y.-N.; Cao, C.-Y.; Jiang, W.-J.; Yang, S.-L.; Hu, J.-S.; Song, W.-G.; Wan, L.-J. J. Mater. Chem. A 2016, 4, 18470. doi: 10.1039/C6TA08335H
doi: 10.1039/C6TA08335H
Kone, I.; Xie, A.; Tang, Y.; Chen, Y.; Liu, J.; Chen, Y.; Sun, Y.; Yang, X.; Wan, P. ACS Appl. Mater. Interfaces 2017, 9, 20963. doi: 10.1021/acsami.7b02306
doi: 10.1021/acsami.7b02306
Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166. doi: 10.1126/science.1120411
doi: 10.1126/science.1120411
Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Adv. Sci. 2019, 6, 1801410. doi: 10.1002/advs.201801410
doi: 10.1002/advs.201801410
Li, Z.; Li, H.; Guan, X.; Tang, J.; Yusran, Y.; Li, Z.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. J. Am. Chem. Soc. 2017, 139 (49), 17741. doi: 10.1021/jacs.7b11283
doi: 10.1021/jacs.7b11283
Li, H.; Chang, J.; Li, S.; Guan, X.; Li, D.; Li, C.; Tang, L.; Xue, M.; Yan, Y.; Valtchev, V.; et al. J. Am. Chem. Soc. 2019, 141 (34), 13324. doi: 10.1021/jacs.9b06908
doi: 10.1021/jacs.9b06908
Liu, X.; Guan, X.; Fang, Q.; Jin, Y. Chem. J. Chin. Univ. 2019, 40 (7), 1341.
doi: 10.7503/cjcu20190086
Yan, Y.; Guan, X.; Li, H.; Fang, Q.; Qiu, S. Natl. Sci. Rev. 2020, 7, 170. doi: 10.1093/nsr/nwz122
doi: 10.1093/nsr/nwz122
Rodríguez-San-Miguel, D.; Zamora, F. Chem. Soc. Rev. 2019, 48, 4375. doi: 10.1039/C9CS00258H
doi: 10.1039/C9CS00258H
Liang, Y.; Feng, L.; Liu, X.; Zhao, Y.; Chen, Q.; Sui, Z.; Wang, N. Chem. Eng. J. 2021, 404, 127095. doi: 10.1016/j.cej.2020.127095
doi: 10.1016/j.cej.2020.127095
Shan, Z.; Wu, M.; Du, Y.; Xu, B.; He, B.; Wu, X.; Zhang, G. Chem. Mater. 2021, 33, 5058. doi: 10.1021/acs.chemmater.1c00978
doi: 10.1021/acs.chemmater.1c00978
Lu, Y.; Liang, Y.; Zhao, Y.; Xia, M.; Liu, X.; Shen, T.; Feng, L.; Yuan, N.; Chen, Q. ACS Appl. Mater. Interfaces 2021, 13, 1644. doi: 10.1021/acsami.0c20203
doi: 10.1021/acsami.0c20203
Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. ACS Catal. 2020, 10, 8717. doi: 10.1021/acscatal.0c01242
doi: 10.1021/acscatal.0c01242
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317
doi: 10.1038/nmat2317
Wu, Q.; Xie, R.; Mao, M.; Chai, G.; Yi, J.; Zhao, S. ACS Energy Lett. 2020, 5, 1005. doi: 10.1021/acsenergylett.9b02756
doi: 10.1021/acsenergylett.9b02756
Ding, H.; Li, Y.; Hu, H.; Sun, Y.; Wang, J.; Wang, C.; Wang, C.; Zhang, G.; Wang, B.; Xu, W.; et al. Chem. Eur. J. 2014, 20, 14614. doi: 10.1002/chem.201405330
doi: 10.1002/chem.201405330
Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Mor-iyama, M.; Ito, K.; Kato, T. J. Am. Chem. Soc. 2005, 127, 14769. doi: 10.1021/ja053496z
doi: 10.1021/ja053496z
Tao, S.; Jiang, D. CCS Chem. 2020, 2, 2003. doi: 10.31635/ccschem.020.202000491
doi: 10.31635/ccschem.020.202000491
Liu, Y.; Ren, J.; Wang, Y.; Zhu, X.; Guan, X.; Wang, Z.; Zhou, Y.; Zhu, L.; Qiu, S.; Xiao, S.; et al. CCS Chem. 2022, doi: 10.31635/ccschem.022.202202352
doi: 10.31635/ccschem.022.202202352
Li, M.; Liu, J.; Li, Y.; Xing, G.; Yu, X.; Peng, C.; Chen, L. CCS Chem. 2020, 2, 696. doi: 10.31635/ccschem.020.202000257
doi: 10.31635/ccschem.020.202000257
Song, J.; Wang, Z.; Liu, Y.; Tuo, C.; Wang, Y.; Fang, Q.; Qiu, S. Chem. Res. Chin. Univ. 2022, 38, 834. doi: 10.1007/s40242-022-2060-7
doi: 10.1007/s40242-022-2060-7
He, C.; Wu, Q.; Mao, M.; Zou, Y.; Liu, B.; Huang, Y.; Cao, R. CCS Chem. 2020, 2, 2368. doi: 10.31635/ccschem.020.202000460
doi: 10.31635/ccschem.020.202000460
You, H.; Yang, S.; Ding, B.; Yang, H. Chem. Soc. Rev. 2013, 42, 2880. doi: 10.1039/C2CS35319A
doi: 10.1039/C2CS35319A
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326
doi: 10.1021/cr1002326
Liu, X.; Dai, L. Nat. Rev. Mater. 2016, 1, 16064. doi: 10.1038/natrevmats.2016.64
doi: 10.1038/natrevmats.2016.64
Kamila, S.; Mohanty, B.; Samantara, A. K.; Guha, P.; Ghosh, A.; Jena, B.; Satyam, P. V.; Mishra, B. K.; Jena, B. K. Sci. Rep. 2017, 7, 8378. doi: 10.1038/s41598-017-08677-5
doi: 10.1038/s41598-017-08677-5
Teng, H.; Wang, W.; Han, X.; Hao, X.; Yang, R. Acta Phys. -Chim. Sin. 2023, 39 (1), 2107017.
doi: 10.3866/PKU.WHXB202107017
Yu, Y.; Feng, Y.; Guan, B.; Lou, W.; Paik, U. Energy Environ. Sci. 2016, 9 (4), 1246. doi: 10.1039/C6EE00100A
doi: 10.1039/C6EE00100A
Reier, T.; Oezaslan, M.; Strasser, P. ACS Catal. 2012, 2 (8), 1765. doi: 10.1021/cs3003098
doi: 10.1021/cs3003098
Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D. B.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Angew. Chem. Int. Ed. 2014, 53 (41), 10960. doi: 10.1021/cr1002326
doi: 10.1021/cr1002326
Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araujo, J. F.; Reier, T.; Dan, H.; Strasser, P. Nat. Commun. 2015, 6, 8625. doi: 10.1038/ncomms9625
doi: 10.1038/ncomms9625
Tran Ngoc, H.; Rousse, G.; Zanna, S.; Lucas, I. T.; Xu, X.; Menguy, N.; Mougel, V.; Fontecave, M. Angew. Chem. Int. Ed. , 2017, 56 (17), 4792. doi: 10.1002/anie.201700388
doi: 10.1002/anie.201700388
Liu, X.; Wang, L.; Yu, C.; Tian, C.; Sun, F.; Ma, J.; Li, L.; Fu, H.; Angew. Chem. Int. Ed. 2018, 57, 16166. doi: 10.1002/anie.201809009
doi: 10.1002/anie.201809009
Bhanja, P.; Mohanty, B.; Patra, A. K.; Ghosh, S.; Jena, B. K.; Bhaumik, A. ChemCatChem 2019, 11, 583. doi: 10.1002/cctc.201801312
doi: 10.1002/cctc.201801312
Siracusano, S.; Van Dijk, N.; Payne-Johnson, E.; Baglio, V.; Aricò, A. S. Appl. Catal. B: Environ. 2015, 164, 488. doi: 10.1016/j.apcatb.2014.09.005
doi: 10.1016/j.apcatb.2014.09.005
Li, Y.; Li, M.; Jiang, L. Q.; Lin, L.; Cui, L.; He, Q. Phys. Chem. Chem. Phys. 2014, 16 (42), 23196. doi: 10.1039/C4CP02528H
doi: 10.1039/C4CP02528H
Wang, Q.; Lee, S.; Zhu, Q.; Liu, J.; Wang, Y.; Dai, S. Chem. Mater. 2010, 22 (7), 2178. doi: 10.1021/cm100139d
doi: 10.1021/cm100139d
Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. J. Phys. Chem. B 2006, 110 (4), 1787. doi: 10.1021/jp055150g
doi: 10.1021/jp055150g
Liu, W.; Peng, F.; Wang, J.; Yu, H.; Zheng, X.; Yang, A. Angew. Chem. Int. Ed. 2011, 50 (14), 3257. doi: 10.1002/ange.201006768
doi: 10.1002/ange.201006768
Gong, P.; Du, F.; Xia, H.; Durstock, M.; Dai, M. Science 2009, 323 (5915), 760. doi: 10.1126/science.1168049
doi: 10.1126/science.1168049
Yang, J.; Jiang, J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Angew. Chem. Int. Ed. 2011, 50 (31), 7270 doi: 10.1002/ange.201101287
doi: 10.1002/ange.201101287
Wu, K.; Zhang, Y.; Yong, Z.; Li, Q. Acta Phys. -Chim. Sin. 2022, 38 (9), 2106034.
doi: 10.3866/PKU.WHXB202106034
Zhu, Y.-N.; Cao, C.-Y.; Jiang, W.-J.; Yang, S.-L.; Hu, J.-S.; Song, W.-G.; Wan, L.-J. J. Mater. Chem. A 2016, 4, 18470. doi: 10.1039/C6TA08335H
doi: 10.1039/C6TA08335H
Kone, I.; Xie, A.; Tang, Y.; Chen, Y.; Liu, J.; Chen, Y.; Sun, Y.; Yang, X.; Wan, P. ACS Appl. Mater. Interfaces 2017, 9, 20963. doi: 10.1021/acsami.7b02306
doi: 10.1021/acsami.7b02306
Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166. doi: 10.1126/science.1120411
doi: 10.1126/science.1120411
Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Adv. Sci. 2019, 6, 1801410. doi: 10.1002/advs.201801410
doi: 10.1002/advs.201801410
Li, Z.; Li, H.; Guan, X.; Tang, J.; Yusran, Y.; Li, Z.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. J. Am. Chem. Soc. 2017, 139 (49), 17741. doi: 10.1021/jacs.7b11283
doi: 10.1021/jacs.7b11283
Li, H.; Chang, J.; Li, S.; Guan, X.; Li, D.; Li, C.; Tang, L.; Xue, M.; Yan, Y.; Valtchev, V.; et al. J. Am. Chem. Soc. 2019, 141 (34), 13324. doi: 10.1021/jacs.9b06908
doi: 10.1021/jacs.9b06908
Liu, X.; Guan, X.; Fang, Q.; Jin, Y. Chem. J. Chin. Univ. 2019, 40 (7), 1341.
doi: 10.7503/cjcu20190086
Yan, Y.; Guan, X.; Li, H.; Fang, Q.; Qiu, S. Natl. Sci. Rev. 2020, 7, 170. doi: 10.1093/nsr/nwz122
doi: 10.1093/nsr/nwz122
Rodríguez-San-Miguel, D.; Zamora, F. Chem. Soc. Rev. 2019, 48, 4375. doi: 10.1039/C9CS00258H
doi: 10.1039/C9CS00258H
Liang, Y.; Feng, L.; Liu, X.; Zhao, Y.; Chen, Q.; Sui, Z.; Wang, N. Chem. Eng. J. 2021, 404, 127095. doi: 10.1016/j.cej.2020.127095
doi: 10.1016/j.cej.2020.127095
Shan, Z.; Wu, M.; Du, Y.; Xu, B.; He, B.; Wu, X.; Zhang, G. Chem. Mater. 2021, 33, 5058. doi: 10.1021/acs.chemmater.1c00978
doi: 10.1021/acs.chemmater.1c00978
Lu, Y.; Liang, Y.; Zhao, Y.; Xia, M.; Liu, X.; Shen, T.; Feng, L.; Yuan, N.; Chen, Q. ACS Appl. Mater. Interfaces 2021, 13, 1644. doi: 10.1021/acsami.0c20203
doi: 10.1021/acsami.0c20203
Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. ACS Catal. 2020, 10, 8717. doi: 10.1021/acscatal.0c01242
doi: 10.1021/acscatal.0c01242
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317
doi: 10.1038/nmat2317
Wu, Q.; Xie, R.; Mao, M.; Chai, G.; Yi, J.; Zhao, S. ACS Energy Lett. 2020, 5, 1005. doi: 10.1021/acsenergylett.9b02756
doi: 10.1021/acsenergylett.9b02756
Ding, H.; Li, Y.; Hu, H.; Sun, Y.; Wang, J.; Wang, C.; Wang, C.; Zhang, G.; Wang, B.; Xu, W.; et al. Chem. Eur. J. 2014, 20, 14614. doi: 10.1002/chem.201405330
doi: 10.1002/chem.201405330
Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Mor-iyama, M.; Ito, K.; Kato, T. J. Am. Chem. Soc. 2005, 127, 14769. doi: 10.1021/ja053496z
doi: 10.1021/ja053496z
Tao, S.; Jiang, D. CCS Chem. 2020, 2, 2003. doi: 10.31635/ccschem.020.202000491
doi: 10.31635/ccschem.020.202000491
Liu, Y.; Ren, J.; Wang, Y.; Zhu, X.; Guan, X.; Wang, Z.; Zhou, Y.; Zhu, L.; Qiu, S.; Xiao, S.; et al. CCS Chem. 2022, doi: 10.31635/ccschem.022.202202352
doi: 10.31635/ccschem.022.202202352
Li, M.; Liu, J.; Li, Y.; Xing, G.; Yu, X.; Peng, C.; Chen, L. CCS Chem. 2020, 2, 696. doi: 10.31635/ccschem.020.202000257
doi: 10.31635/ccschem.020.202000257
Song, J.; Wang, Z.; Liu, Y.; Tuo, C.; Wang, Y.; Fang, Q.; Qiu, S. Chem. Res. Chin. Univ. 2022, 38, 834. doi: 10.1007/s40242-022-2060-7
doi: 10.1007/s40242-022-2060-7
He, C.; Wu, Q.; Mao, M.; Zou, Y.; Liu, B.; Huang, Y.; Cao, R. CCS Chem. 2020, 2, 2368. doi: 10.31635/ccschem.020.202000460
doi: 10.31635/ccschem.020.202000460
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Xiaofang DONG , Yue YANG , Shen WANG , Xiaofang HAO , Yuxia WANG , Peng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388