Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light
- Corresponding author: Juqun Xi, xijq@yzu.edu.cn Ming Shen, shenming@yzu.edu.cn †These authors contributed equally to this work.
Citation:
Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light[J]. Acta Physico-Chimica Sinica,
;2023, 39(12): 221203.
doi:
10.3866/PKU.WHXB202212039
Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Science 1999, 284 (5418), 1318. doi: 10.1126/science.284.5418.1318
doi: 10.1126/science.284.5418.1318
Lebeaux, D.; Ghigo, J. -M.; Beloin, C. Microbiol. Mol. Biol. Rev. 2014, 78 (3), 510. doi: 10.1128/mmbr.00013-14
doi: 10.1128/mmbr.00013-14
Cappelletty, D. Pediatr. Infect. Dis. J. 1998, 17 (8), S55. doi: 10.1097/00006454-199808001-00002
doi: 10.1097/00006454-199808001-00002
Saidin, S.; Jumat, M. A.; Mohd Amin, N. A. A.; Saleh Al-Hammadi, A. S. Mater. Sci. Eng. C 2021, 118, 111382. doi: 10.1016/j.msec.2020.111382
doi: 10.1016/j.msec.2020.111382
Bbosa, G. S.; Mwebaza, N.; Odda, J.; Kyegombe, D. B.; Ntale, M. Health N. Hav. 2014, 6 (5), 410. doi: 10.4236/health.2014.65059
doi: 10.4236/health.2014.65059
Frieri, M.; Kumar, K.; Boutin, A. J. Infect. Public Health 2017, 10 (4), 369. doi: 10.1016/j.jiph.2016.08.007
doi: 10.1016/j.jiph.2016.08.007
Mohapatra, D. P.; Debata, N. K.; Singh, S. K. J. Glob. Antimicrob. Resist. 2018, 15, 246. doi: 10.1016/j.jgar.2018.08.010
doi: 10.1016/j.jgar.2018.08.010
Danner, M. C.; Robertson, A.; Behrends, V.; Reiss, J. Sci. Total Environ. 2019, 664, 793. doi: 10.1016/J.SCITOTENV.2019.01.406
doi: 10.1016/J.SCITOTENV.2019.01.406
Horcajada, J. P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Clin. Microbiol. Rev. 2019, 32 (4), e00031. doi: 10.1128/CMR.00031-19
doi: 10.1128/CMR.00031-19
Schifano, E.; Cavallini, D.; Bellis, G. de; Bracciale, M. P.; Felici, A. C.; Santarelli, M. L.; Sarto, M. S.; Uccelletti, D. Nanomaterials 2020, 10 (2), 335. doi: 10.3390/nano10020335
doi: 10.3390/nano10020335
Qu, Y.; Duan, X. Chem. Soc. Rev. 2013, 42 (7), 2568. doi: 10.1039/C2CS35355E
doi: 10.1039/C2CS35355E
Xu, H.; Zhang, J.; Lv, X.; Niu, T.; Zeng, Y.; Duan, J.; Hou, B. Biofouling 2019, 35 (7), 719. doi: 10.1080/08927014.2019.1653453
doi: 10.1080/08927014.2019.1653453
Liu, B.; Mu, L.; Han, X.; Zhang, J.; Shi, H. J. Photochem. Photobiol. A-Chem. 2019, 380, 111866. doi: 10.1016/J.JPHOTOCHEM.2019.111866
doi: 10.1016/J.JPHOTOCHEM.2019.111866
Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Appl. Sci. 2019, 9 (12), 2489. doi: 10.3390/app9122489
doi: 10.3390/app9122489
Zhang, Y.; Lin, S.; Zhang, Y.; Song, X. M. Acta Phys. -Chim. Sin. 2013, 29 (11), 2399.
doi: 10.3866/PKU.WHXB201309061
Dryden, M. Int. J. Antimicrob. Agents 2018, 51 (3), 299. doi: 10.1016/j.ijantimicag.2017.08.029
doi: 10.1016/j.ijantimicag.2017.08.029
Zhang, J.; Wang, J.; Xu, H.; Lv, X.; Zeng, Y. X.; Duan, J.; Hou, B. RSC Adv. 2019, 9, 37109. doi: 10.1039/c9ra06810d
doi: 10.1039/c9ra06810d
Kołodziejczak-Radzimska, A.; Jesionowski, T. Materials 2014, 7 (4), 2833. doi: 10.3390/ma7042833
doi: 10.3390/ma7042833
Liu, H. L.; Yang, T. C. K. Process Biochem. 2003, 39 (4), 475. doi: 10.1016/S0032-9592(03)00084-0
doi: 10.1016/S0032-9592(03)00084-0
Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. J. Nanopart. Res. 2007, 9 (3), 479. doi: 10.1007/s11051-006-9150-1
doi: 10.1007/s11051-006-9150-1
Basnet, P.; Anderson, E.; Zhao, Y. ACS Appl. Nano Mater. 2019, 2 (4), 2446. doi: 10.1021/acsanm.9b00325
doi: 10.1021/acsanm.9b00325
Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. -T.; Zhong, J.; Kang, Z. Science 2015, 347 (6225), 970. doi: 10.1126/science.aaa3145
doi: 10.1126/science.aaa3145
Kong, J.; Zhang, S.; Shen, M.; Zhang, J.; Yoganathan, S. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 643, 128742. doi: 10.1016/J.COLSURFA.2022.128742
doi: 10.1016/J.COLSURFA.2022.128742
Yao, Y.; Fan, J.; Shen, M.; Li, W.; Du, B.; Li, X.; Dai, J. J. Colloid Interface Sci. 2019, 546, 70. doi: 10.1016/j.jcis.2019.03.021
doi: 10.1016/j.jcis.2019.03.021
Yao, Y.; Yuan, J.; Shen, M.; Du, B. Inorg. Chem. Front. 2021, 8 (22), 4903. doi: 10.1039/d1qi00968k
doi: 10.1039/d1qi00968k
Suresh, S.; Karthikeyan, S. J. Iran. Chem. Soc. 2016, 13 (11), 2049. doi: 10.1007/s13738-016-0922-y
doi: 10.1007/s13738-016-0922-y
Yu, Y. -X.; Ouyang, W. -X.; Zhang, W. -D. J. Solid State Electrochem. 2014, 18 (6), 1743. doi: 10.1007/s10008-014-2402-6
doi: 10.1007/s10008-014-2402-6
Dai, G.; Yu, J.; Liu, G. J. Phys. Chem. C 2011, 115 (15), 7339. doi: 10.1021/jp200788n
doi: 10.1021/jp200788n
Yao, Y.; Yuan, J.; Shen, M.; Du, B.; Xing, R. Chin. J. Inorg. Chem. 2022, 38 (2), 261.
doi: 10.11862/CJIC.2022.022
Yao, Y.; Zhang, Y.; Shen, M.; Li, W.; Xia, W. Colloids Surf. A-Physicochem. Eng. Asp. 2020, 591, 124556. doi: 10.1016/j.colsurfa.2020.124556
doi: 10.1016/j.colsurfa.2020.124556
Domenico, P.; Salo, R. J.; Novick, S. G.; Schoch, P. E.; van Horn, K.; Cunha, B. A. Antimicrob. Agents Chemother. 1997, 41 (8), 1697. doi: 10.1128/AAC.41.8.1697
doi: 10.1128/AAC.41.8.1697
Thomas, F.; Bialek, B.; Hensel, R. J. Clin. Toxicol. 2013, s3, 004. doi: 10.4172/2161-0495.S3-004
doi: 10.4172/2161-0495.S3-004
Meng, X.; Zhang, Z. J. Mol. Catal. A-Chem. 2016, 423, 533. doi: 10.1016/j.molcata.2016.07.030
doi: 10.1016/j.molcata.2016.07.030
Zhou, H.; Zhong, S.; Shen, M.; Hou, J.; Chen, W. J. Alloys Compd. 2018, 769, 301. doi: 10.1016/j.jallcom.2018.08.007
doi: 10.1016/j.jallcom.2018.08.007
Wei, X.; Akbar, M. U.; Raza, A.; Li, G. Nanoscale Adv. 2021, 3 (12), 3353. doi: 10.1039/D1NA00223F
doi: 10.1039/D1NA00223F
Zhou, H.; Kalware, K.; Shen, M.; Zhong, S.; Yao, Y. CrystEngComm 2020, 22 (8), 1368. doi: 10.1039/c9ce01960j
doi: 10.1039/c9ce01960j
Huang, W. L. J. Comput. Chem. 2009, 30 (12), 1882. doi: 10.1002/JCC.21191
doi: 10.1002/JCC.21191
Zhang, M.; Qin, J.; Yu, P.; Zhang, B.; Ma, M.; Zhang, X.; Liu, R. Beilstein J. Nanotechnol. 2018, 9 (1), 789. doi: 10.3762/BJNANO.9.72
doi: 10.3762/BJNANO.9.72
Khodja, A. A.; Sehili, T.; Pilichowski, J. F.; Boule, P. J. Photochem. Photobiol. A-Chem. 2001, 141 (2–3), 231. doi: 10.1016/S1010-6030(01)00423-3
doi: 10.1016/S1010-6030(01)00423-3
Jamil, T. S.; Mansor, E. S.; Azab El-Liethy, M. J. Environ. Chem. Eng. 2015, 3 (4), 2463. doi: 10.1016/j.jece.2015.09.017
doi: 10.1016/j.jece.2015.09.017
Pang, S.; He, Y.; Zhong, R.; Guo, Z.; He, P.; Zhou, C.; Xue, B.; Wen, X.; Li, H. Ceram. Int. 2019, 45 (10), 12663. doi: 10.1016/j.ceramint.2019.03.076
doi: 10.1016/j.ceramint.2019.03.076
Seredych, M.; Łoś, S.; Giannakoudakis, D. A.; Rodríguez-Castellón, E.; Bandosz, T. J. ChemSusChem 2016, 9 (8), 795. doi: 10.1002/cssc.201501658
doi: 10.1002/cssc.201501658
Mulwa, W. M. Appl. Phys. A 2020, 126 (7), 546. doi: 10.1007/s00339-020-03735-8
doi: 10.1007/s00339-020-03735-8
Intaphong, P.; Phuruangrat, A.; Thongtem, T.; Thongtem, S. J. Aust. Ceram. Soc. 2019, 55, 1021. doi: 10.1007/s41779-019-00314-w
doi: 10.1007/s41779-019-00314-w
Zhou, T.; Zhang, H.; Zhang, X.; Yang, W.; Cao, Y.; Yang, P. J. Phys. Chem. C 2020, 124 (37), 20294. doi: 10.1021/ACS.JPCC.0C06833
doi: 10.1021/ACS.JPCC.0C06833
Al-Keisy, A.; Ren, L.; Xu, X.; Hao, W.; Dou, S. X.; Du, Y. J. Phys. Chem. C 2019, 123 (1), 517. doi: 10.1021/ACS.JPCC.8B09816
doi: 10.1021/ACS.JPCC.8B09816
Huang, N.; Shu, J.; Wang, Z.; Chen, M.; Ren, C.; Zhang, W. J. Alloys Compd. 2015, 648, 919. doi: 10.1016/J.JALLCOM.2015.07.039
doi: 10.1016/J.JALLCOM.2015.07.039
Wang, Y.; Deng, K.; Zhang, L. J. Phys. Chem. C 2011, 115 (29), 14300. doi: 10.1021/jp2042069
doi: 10.1021/jp2042069
Tauc, J. Mater. Res. Bull. 1968, 3 (1), 37. doi: 10.1016/0025-5408(68)90023-8
doi: 10.1016/0025-5408(68)90023-8
Jiang, J.; Zhang, X.; Sun, P.; Zhang, L. J. Phys. Chem. C 2011, 115 (42), 20555. doi: 10.1021/JP205925Z
doi: 10.1021/JP205925Z
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Nanomicro. Lett. 2015, 7 (3), 219. doi: 10.1007/s40820-015-0040-x
doi: 10.1007/s40820-015-0040-x
Jiang, Y.; Zhang, L.; Wen, D.; Ding, Y. Mater. Sci. Eng. C 2016, 69, 1361. doi: 10.1016/j.msec.2016.08.044
doi: 10.1016/j.msec.2016.08.044
Bayer, M. E.; Sloyer, J. L. J. Gen. Microbiol. 1990, 136, 867. doi: 10.1099/00221287-136-5-867
doi: 10.1099/00221287-136-5-867
Abebe, B.; Zereffa, E. A.; Tadesse, A.; Murthy, H. C. A. Nanoscale Res. Lett. 2020, 15, 190. doi: 10.1186/s11671-020-03418-6
doi: 10.1186/s11671-020-03418-6
Zhang, Y. -M.; Rock, C. O. Nat. Rev. Microbiol. 2008, 6 (3), 222. doi: 10.1038/nrmicro1839
doi: 10.1038/nrmicro1839
Koe, W. S.; Lee, J. W.; Chong, W. C.; Pang, Y. L.; Sim, L. C. Environ. Sci. Pollut. Res. 2020, 27, 2522. doi: 10.1007/s11356-019-07193-5
doi: 10.1007/s11356-019-07193-5
He, W.; Kim, H. K.; Wamer, W. G.; Melka, D.; Callahan, J. H.; Yin, J. J. J. Am. Chem. Soc. 2014, 136 (2), 750. doi: 10.1021/ja410800y
doi: 10.1021/ja410800y
Liu, J.; Zou, S.; Lou, B.; Chen, C.; Xiao, L.; Fan, J. Inorg. Chem. 2019, 58 (13), 8525. doi: 10.1021/acs.inorgchem.9b00834
doi: 10.1021/acs.inorgchem.9b00834
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Shujun Ning , Zhiyuan Wei , Zhening Chen , Tianmin Wu , Lu Zhang . Curvature and defect formation synergistically promote the photocatalysis of ZnO slabs. Chinese Chemical Letters, 2025, 36(7): 111057-. doi: 10.1016/j.cclet.2025.111057
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Xiaokang Hou , Huanxin Ma , Mengmeng Zhao , Chunhua Feng , Shishu Zhu . Unveiling role of Cu(Ⅱ) in photochemical transformation and reactive oxygen species production of schwertmannite in the presence of tartaric acid. Chinese Chemical Letters, 2025, 36(7): 110332-. doi: 10.1016/j.cclet.2024.110332
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Xingyu Chen , Sihui Zhuang , Weiyao Yan , Zhengli Zeng , Jianguo Feng , Hongen Cao , Lei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635
Jiaxi Wang , Zhiwei Gao , Hao Liang , Qianyue Liu , Weiqian Jin , Huyang Gao , Bailei Wang , Ruikai Zhu , Jiahao Huang , Xiaowen Li , Xingmou Wu , Weijiu Mo , Yinhan Liao , Ming Gao , Xiaojie Li , Cuiping Li . NIR stimulated epigallocatechin gallate loaded polydopamine with enhanced antibacterial and ROS scavenging abilities for improved infectious wound healing. Chinese Chemical Letters, 2025, 36(7): 110569-. doi: 10.1016/j.cclet.2024.110569
Yuyao Guan , Baoting Yu , Jun Ding , Tingting Sun , Zhigang Xie . BODIPY photosensitizers for antibacterial photodynamic therapy. Chinese Chemical Letters, 2025, 36(8): 110645-. doi: 10.1016/j.cclet.2024.110645
Xicheng Li , Dong Mo , Shoushan Hu , Meng Pan , Meng Wang , Tingyu Yang , Changxing Qu , Yujia Wei , Jianan Li , Hanzhi Deng , Zhongwu Bei , Tianying Luo , Qingya Liu , Yun Yang , Jun Liu , Jun Wang , Zhiyong Qian . A Pt@ZIF-8/ALN-ac/GelMA composite hydrogel with antibacterial, antioxidant, and osteogenesis for periodontitis. Chinese Chemical Letters, 2025, 36(9): 110674-. doi: 10.1016/j.cclet.2024.110674
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463