Citation: Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221203. doi: 10.3866/PKU.WHXB202212038 shu

Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications

  • Corresponding author: Huilong Fei, hlfei@hnu.edu.cn
  • Received Date: 23 December 2022
    Revised Date: 13 February 2023
    Accepted Date: 13 February 2023
    Available Online: 22 February 2023

    Fund Project: the National Natural Science Foundation of China 51902099the National Natural Science Foundation of China 92163116

  • To achieve the stated goal of carbon neutrality, solar energy is regarded as the most promising alternative to traditional fossil fuels as a sustainable and clean resource. The key prerequisite for improving the efficiency of solar conversion is to maximize solar energy utilization. As a promising technology, photothermal catalysis can harness full-spectrum sunlight to activate photocatalysis and thermocatalysis through hot carrier generation and local heating. These synergistic catalytic effects driven by both light and heat can overcome the challenges associated with the low catalytic efficiency of photocatalysis and high energy consumption of thermocatalysis as well as modulate the reaction pathways to achieve desirable activity and selectivity. To achieve outstanding catalytic performance, photothermal materials should meet the requirements for sufficient electron-hole separation, efficient solar thermal generation, and abundant exposed active sites. Common fabrication strategies are based on the integration of materials with photo-active and photothermal conversion capabilities that often suffer from buried active sites, high temperature-induced deactivation, and complicated synthetic procedures. Single-atom catalysts (SACs) with isolated single atoms uniformly dispersed on a solid surface are advantageous for 100% atomic utilization and excellent catalytic activity. Therefore, these materials have received increasing attention for a wide range of applications. Many SAC substrates are endowed with hot carrier generation and photothermal conversion abilities under illumination. The strong chemical interaction between metal atoms and supports or surface lattice reconstruction can also prevent catalyst sintering even in long-term high-temperature environments. These unique features make SACs highly suitable for photothermal catalytic processes. Therefore, it is important to summarize recent advances in this field and provide in-depth insights into SACs-based photothermal catalysis to accelerate solar conversion technology development. Herein, the fundamental mechanisms and characteristics of photocatalysis, thermocatalysis, and photothermal catalysis are introduced and three photothermal catalysis modes categorized by driving force (including photo-driven thermocatalysis, thermal-assisted photocatalysis, and photo-thermal co-catalysis) are described and compared along with representative examples. The photothermal properties of SACs supported by carbon, semiconductors, and plasmonic materials are reviewed and pioneering studies for different applications are discussed in detail. Finally, the challenges and future research directions are proposed. This review aims to give a comprehensive understanding of photothermal catalytic processes driven by solar energy based on SACs and provide accessible guidelines for future development to achieve carbon neutrality targets.
  • 加载中
    1. [1]

      Ciriminna, R.; Falletta, E.; Della Pina, C.; Teles, J. H.; Pagliaro, M. Angew. Chem. Int. Ed. 2016, 55, 14209. doi: 10.1002/anie.201604656  doi: 10.1002/anie.201604656

    2. [2]

      Schlummer, B. Chem. unserer Zeit 2016, 50, 114. doi: 10.1002/ciuz.201500705  doi: 10.1002/ciuz.201500705

    3. [3]

      Rusdan, N. A.; Timmiati, S. N.; Isahak, W. N. R. W.; Yaakob, Z.; Lim, K. L.; Khaidar, D. Nanomaterials 2022, 12, 3877. doi: 10.3390/nano12213877  doi: 10.3390/nano12213877

    4. [4]

      Hashimoto, K.; Irie, H.; Fujishima, A. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap. 2005, 44, 8269. doi: 10.1143/jjap.44.8269  doi: 10.1143/jjap.44.8269

    5. [5]

      Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L. Z.; Amal, R.; Ng, Y. H. Adv. Mater. 2020, 32, 21. doi: 10.1002/adma.201904717  doi: 10.1002/adma.201904717

    6. [6]

      Bora, L. V.; Mewada, R. K. Renew. Sust. Energ. Rev. 2017, 76, 1393. doi: 10.1016/j.rser.2017.01.130  doi: 10.1016/j.rser.2017.01.130

    7. [7]

      Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Science 2015, 349, 632. doi: 10.1126/science.aac5443  doi: 10.1126/science.aac5443

    8. [8]

      Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Chem. Soc. Rev. 2021, 50, 2173. doi: 10.1039/d0cs00357c  doi: 10.1039/d0cs00357c

    9. [9]

      Li, Z.; Liu, J.; Zhao, Y.; Waterhouse, G. I. N.; Chen, G.; Shi, R.; Zhang, X.; Liu, X.; Wei, Y.; Wen, X. D.; et al. Adv. Mater. 2018, 30, e1800527. doi: 10.1002/adma.201800527  doi: 10.1002/adma.201800527

    10. [10]

      Jia, J.; O'Brien, P. G.; He, L.; Qiao, Q.; Fei, T.; Reyes, L. M.; Burrow, T. E.; Dong, Y.; Liao, K.; Varela, M.; et al. Adv. Sci. 2016, 3, 1600189. doi: 10.1002/advs.201600189  doi: 10.1002/advs.201600189

    11. [11]

      Zhang, H.; Wang, T.; Wang, J.; Liu, H.; Dao, T. D.; Li, M.; Liu, G.; Meng, X.; Chang, K.; Shi, L.; et al. Adv. Mater. 2016, 28, 3703. doi: 10.1002/adma.201505187  doi: 10.1002/adma.201505187

    12. [12]

      Yang, Y.; Zhao, S.; Cui, L.; Bi, F.; Zhang, Y.; Liu, N.; Wang, Y.; Liu, F.; He, C.; Zhang, X. Green Energy Environ. 2022, doi: 10.1016/j.gee.2022.02.006  doi: 10.1016/j.gee.2022.02.006

    13. [13]

      Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Mater. Horiz. 2018, 5, 323. doi: 10.1039/c7mh01064h  doi: 10.1039/c7mh01064h

    14. [14]

      Zhou, S.; Shang, L.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L.; Zhang, T. Adv. Mater. 2019, 31, e1900509. doi: 10.1002/adma.201900509  doi: 10.1002/adma.201900509

    15. [15]

      Fei, H. L.; Dong, J. C.; Arellano-Jimenez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M.; et al. Nat. Commun. 2015, 6, 8. doi: 10.1038/ncomms9668  doi: 10.1038/ncomms9668

    16. [16]

      Yan, H.; Zhao, M.; Feng, X.; Zhao, S.; Zhou, X.; Li, S.; Zha, M.; Meng, F.; Chen, X.; Liu, Y.; et al. Angew. Chem. Int. Ed. 2022, 61, e202116059. doi: 10.1002/anie.202116059  doi: 10.1002/anie.202116059

    17. [17]

      Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Energy Environ. Sci. 2021, 14, 2954. doi: 10.1039/d1ee00247c  doi: 10.1039/d1ee00247c

    18. [18]

      Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X.; et al. Angew. Chem. Int. Ed. 2016, 55, 10800. doi: 10.1002/anie.201604802  doi: 10.1002/anie.201604802

    19. [19]

      Li, X. Y.; Wang, C.; Tang, J. W. Nat. Rev. Mater. 2022, 7, 617. doi: 10.1038/s41578-022-00422-3  doi: 10.1038/s41578-022-00422-3

    20. [20]

      Li, X.; Wang, W.; Dong, F.; Zhang, Z.; Han, L.; Luo, X.; Huang, J.; Feng, Z.; Chen, Z.; Jia, G.; et al. ACS Catal. 2021, 11, 4739. doi: 10.1021/acscatal.0c05354  doi: 10.1021/acscatal.0c05354

    21. [21]

      Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Water Res. 2010, 44, 2997. doi: 10.1016/j.watres.2010.02.039  doi: 10.1016/j.watres.2010.02.039

    22. [22]

      Zhou, P.; Yu, J.; Jaroniec, M. Adv. Mater. 2014, 26, 4920. doi: 10.1002/adma.201400288  doi: 10.1002/adma.201400288

    23. [23]

      Pokrant, S. Nature 2020, 581, 386. doi: 10.1038/d41586-020-01455-w  doi: 10.1038/d41586-020-01455-w

    24. [24]

      Zhao, Y.; Gao, W.; Li, S.; Williams, G. R.; Mahadi, A. H.; Ma, D. Joule 2019, 3, 920. doi: 10.1016/j.joule.2019.03.003  doi: 10.1016/j.joule.2019.03.003

    25. [25]

      Tian, J.; Han, R.; Guo, Q.; Zhao, Z.; Sha, N. Catalysts 2022, 12, 612. doi: 10.3390/catal12060612  doi: 10.3390/catal12060612

    26. [26]

      Meng, X. G.; Cui, X. J.; Rajan, N. P.; Yu, L.; Deng, D. H.; Bao, X. H. Chem 2019, 5, 2296. doi: 10.1016/j.chempr.2019.05.008  doi: 10.1016/j.chempr.2019.05.008

    27. [27]

      Wu, H. L.; Li, X. B.; Tung, C. H.; Wu, L. Z. Adv. Mater. 2019, 31, 23. doi: 10.1002/adma.201900709  doi: 10.1002/adma.201900709

    28. [28]

      Zhu, Z. Z.; Guo, W. Y.; Zhang, Y.; Pan, C. S.; Xu, J.; Zhu, Y. F.; Lou, Y. Carbon Energy 2021, 3, 519. doi: 10.1002/cey2.127  doi: 10.1002/cey2.127

    29. [29]

      Wang, J.; Gao, X. X.; Wang, Y. J.; Wang, S. Y.; Xie, Z. W.; Yang, B. Z.; Zhang, Z. G.; Yang, Z.; Kang, L.; Yao, W. Q. Appl. Catal. B: Environ. 2022, 317, 19. doi: 10.1016/j.apcatb.2022.121789  doi: 10.1016/j.apcatb.2022.121789

    30. [30]

      Ge, H.; Kuwahara, Y.; Kusu, K.; Bian, Z.; Yamashita, H. Appl. Catal. B: Environ. 2022, 317, 121734. doi: 10.1016/j.apcatb.2022.121734  doi: 10.1016/j.apcatb.2022.121734

    31. [31]

      Guo, S.; Li, X.; Li, J.; Wei, B. Nat. Commun. 2021, 12, 1343. doi: 10.1038/s41467-021-21526-4  doi: 10.1038/s41467-021-21526-4

    32. [32]

      Wang, X.; Wu, L.; Wang, Z.; Feng, Y.; Liu, Y.; Dai, H.; Wang, Z.; Deng, J. Appl. Catal. B: Environ. 2023, 322, 122075. doi: 10.1016/j.apcatb.2022.122075  doi: 10.1016/j.apcatb.2022.122075

    33. [33]

      Feng. Y.; Dai, L.; Wang, Z.; Peng, Y.; Duan, E.; Liu, Y.; Jing, L.; Wang, X.; Rastegarpanah, A.; Dai, H.; et al. Environ. Sci. Technol. 2022, 56, 8722. doi: 10.1021/acs.est.1c08643  doi: 10.1021/acs.est.1c08643

    34. [34]

      Feng, Y.; Ma, P.; Wang, Z.; Shi, Y.; Wang, Z.; Peng, Y.; Jing, L.; Liu, Y.; Yu, X.; Wang, X.; et al. Environ. Sci. Technol. 2022, 56, 17341. doi: 10.1021/acs.est.2c07146  doi: 10.1021/acs.est.2c07146

    35. [35]

      Song, L.; Zhao, T.; Yang, D.; Wang, X.; Hao, X.; Liu, Y.; Zhang, S.; Yu, Z. Z. J. Hazard. Mater. 2020, 393, 122332. doi: 10.1016/j.jhazmat.2020.122332  doi: 10.1016/j.jhazmat.2020.122332

    36. [36]

      Ma, R.; Sun, J.; Li, D. H.; Wei, J. J. Int. J. Hydrog. Energy 2020, 45, 30288. doi: 10.1016/j.ijhydene.2020.08.127  doi: 10.1016/j.ijhydene.2020.08.127

    37. [37]

      Cheng, P.; Wang, D.; Schaaf, P. Adv. Sustain. Syst 2022, 46, 1900. doi: 10.1002/adsu.202200115  doi: 10.1002/adsu.202200115

    38. [38]

      Wu, Z.; Li, C.; Li, Z.; Feng, K.; Cai, M.; Zhang, D.; Wang, S.; Chu, M.; Zhang, C.; Shen, J.; et al. ACS Nano 2021, 15, 5696. doi: 10.1021/acsnano.1c00990  doi: 10.1021/acsnano.1c00990

    39. [39]

      Yue, X. Y.; Liu, X.; Wang, K.; Yang, Z.; Chen, X.; Dai, W. X.; Fu, X. Z. Inorg. Chem. Front. 2022, 9, 1258. doi: 10.1039/d2qi00004k  doi: 10.1039/d2qi00004k

    40. [40]

      Li, S.; Miao, P.; Zhang, Y.; Wu, J.; Zhang, B.; Du, Y.; Han, X.; Sun, J.; Xu, P. Adv. Mater. 2021, 33, e2000086. doi: 10.1002/adma.202000086  doi: 10.1002/adma.202000086

    41. [41]

      Liang, C.; Li, C.; Zhu, Y.; Du, X.; Zeng, Y.; Zhou, Y.; Zhao, J.; Li, S.; Liu, X.; Yu, Q.; et al. Appl. Surf. Sci. 2022, 601, 154144. doi: 10.1016/j.apsusc.2022.154144  doi: 10.1016/j.apsusc.2022.154144

    42. [42]

      Xiong, R.; Tang, C.; Li, K.; Wan, J.; Jia, W.; Xiao, Y.; Cheng, B.; Lei, S. J. Mater. Chem. A 2022, 10, 22819. doi: 10.1039/d2ta05712c  doi: 10.1039/d2ta05712c

    43. [43]

      Li, P. Y.; Liu, L.; An, W. J.; Wang, H.; Guo, H. X.; Liang, Y. H.; Cui, W. Q. Appl. Catal. B: Environ. 2020, 266, 14. doi: 10.1016/j.apcatb.2020.118618  doi: 10.1016/j.apcatb.2020.118618

    44. [44]

      Li, L.; Li, Y.; Jiao, L.; Liu, X.; Ma, Z.; Zeng, Y. -J.; Zheng, X.; Jiang, H. -L. J. Am. Chem. Soc. 2022, 144, 17075. doi: 10.1021/jacs.2c06720  doi: 10.1021/jacs.2c06720

    45. [45]

      Liu, Y.; Zhang, Z.; Fang, Y.; Liu, B.; Huang, J.; Miao, F.; Bao, Y.; Dong, B. Appl. Catal. B: Environ. 2019, 252, 164. doi: 10.1016/j.apcatb.2019.04.035  doi: 10.1016/j.apcatb.2019.04.035

    46. [46]

      Zhang, L.; Pan, J.; Liu, L.; Zhang, S.; Wang, X.; Song, S.; Zhang, H. Small 2022, 18, e2201271. doi: 10.1002/smll.202201271  doi: 10.1002/smll.202201271

    47. [47]

      Song, C.; Liu, X.; Xu, M.; Masi, D.; Wang, Y.; Deng, Y.; Zhang, M.; Qin, X.; Feng, K.; Yan, J.; et al. ACS Catal. 2020, 10, 10364. doi: 10.1021/acscatal.0c02244  doi: 10.1021/acscatal.0c02244

    48. [48]

      Ding, X.; Liu, X.; Cheng, J.; Kong, L.; Guo, Y. Catal. Sci. Technol. 2022, 12, 4740. doi: 10.1039/D2CY00439A  doi: 10.1039/D2CY00439A

    49. [49]

      Zhang, Z.; Mao, C.; Meira, D. M.; Duchesne, P. N.; Tountas, A. A.; Li, Z.; Qiu, C.; Tang, S.; Song, R.; Ding, X.; et al. Nat. Commun. 2022, 13, 1512. doi: 10.1038/s41467-022-29222-7  doi: 10.1038/s41467-022-29222-7

    50. [50]

      Ding, X.; Liu, X.; Cheng, J. H.; Kong, L. Z.; Guo, Y. Catal. Sci. Technol. 2022, 12, 4740. doi: 10.1039/d2cy00439a  doi: 10.1039/d2cy00439a

    51. [51]

      Li, Y.; Liu, Z.; Rao, Z.; Yu, F.; Bao, W.; Tang, Y.; Zhao, H.; Zhang, J.; Wang, Z.; Li, J.; et al. Appl. Catal. B: Environ. 2022, 319, 121903. doi: 10.1016/j.apcatb.2022.121903  doi: 10.1016/j.apcatb.2022.121903

    52. [52]

      Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    53. [53]

      Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C.; et al. Angew. Chem. Int. Ed. 2021, 60, 9480. doi: 10.1002/anie.202017152  doi: 10.1002/anie.202017152

    54. [54]

      Lu, X. Y.; Gao, S. S.; Lin, H.; Yu, L. D.; Han, Y. H.; Zhu, P. A.; Bao, W. C.; Yao, H. L.; Chen, Y.; Shi, J. L. Adv. Mater. 2020, 32, 9. doi: 10.1002/adma.202002246  doi: 10.1002/adma.202002246

    55. [55]

      Kerketta, U.; Tesler, A. B.; Schmuki, P. Catalysts 2022, 12, 1223. doi: 10.3390/catal12101223  doi: 10.3390/catal12101223

    56. [56]

      Jin, X. X.; Wang, R. Y.; Zhang, L. X.; Si, R.; Shen, M.; Wang, M.; Tian, J. J.; Shi, J. L. Angew. Chem. Int. Ed. 2020, 59, 6827. doi: 10.1002/anie.201914565  doi: 10.1002/anie.201914565

    57. [57]

      Li, Z.; Liu, F. N.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Wang, B.; Chen, C. X.; Lu, Y. Z. Nano Res. 2022, 15, 4411. doi: 10.1007/s12274-021-4029-0  doi: 10.1007/s12274-021-4029-0

    58. [58]

      Xi, J. B.; Jung, H. S.; Xu, Y.; Xiao, F.; Bae, J. W.; Wang, S. Adv. Funct. Mater. 2021, 31, 39. doi: 10.1002/adfm.202008318  doi: 10.1002/adfm.202008318

    59. [59]

      Cui, X. J.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Nat. Catal. 2018, 1, 385. doi: 10.1038/s41929-018-0090-9  doi: 10.1038/s41929-018-0090-9

    60. [60]

      Lang, R.; Du, X.; Huang, Y.; Jiang, X.; Zhang, Q.; Guo, Y.; Liu, K.; Qiao, B.; Wang, A.; Zhang, T. Chem. Rev. 2020, 120, 11986. doi: 10.1021/acs.chemrev.0c00797  doi: 10.1021/acs.chemrev.0c00797

    61. [61]

      Shi, Q.; Yu, T.; Wu, R.; Liu, J. ACS Appl. Mater. Interfaces 2021, 13, 60815. doi: 10.1021/acsami.1c18797  doi: 10.1021/acsami.1c18797

    62. [62]

      Speranza, G. Nanomaterials 2021, 11, 99. doi: 10.3390/nano11040967  doi: 10.3390/nano11040967

    63. [63]

      Li, Z.; Lei, H.; Kan, A.; Xie, H.; Yu, W. Energy 2021, 216, 119262. doi: 10.1016/j.energy.2020.119262  doi: 10.1016/j.energy.2020.119262

    64. [64]

      Yang, Q.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2019, 58, 3511. doi: 10.1002/anie.201813494  doi: 10.1002/anie.201813494

    65. [65]

      Gong, L.; Sun, J.; Liu, Y. S.; Yang, G. C. J. Mater. Chem. A 2021, 9, 21689. doi: 10.1039/d1ta06159c  doi: 10.1039/d1ta06159c

    66. [66]

      Liu, Y.; Wang, X. C.; Li, Q. Y.; Yan, T. R.; Lou, X. X.; Zhang, C. Y.; Cao, M. H.; Zhang, L.; Sham, T. K.; Zhang, Q.; et al. Adv. Funct. Mater. 2022, 2210283. doi: 10.1002/adfm.202210283  doi: 10.1002/adfm.202210283

    67. [67]

      Guo, Y. C.; Chen, W. J.; Feng, L.; Fan, Y. C.; Liang, J. S.; Wang, X. M.; Zhang, X. J. Mater. Chem. A 2022, 10, 12418. doi: 10.1039/d2ta02885a  doi: 10.1039/d2ta02885a

    68. [68]

      Tan, K. W.; Yap, C. M.; Zheng, Z. Y.; Haw, C. Y.; Khiew, P. S.; Chiu, W. S. Adv. Sustain. Syst. 2022, 6, 29. doi: 10.1002/adsu.202100416  doi: 10.1002/adsu.202100416

    69. [69]

      Yang, J.; Wang, D.; Han, H.; Li, C. Acc. Chem. Res. 2013, 46, 1900. doi: 10.1021/ar300227e  doi: 10.1021/ar300227e

    70. [70]

      Zhou, L. A.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L.; et al. Nat. Energy 2020, 5, 61. doi: 10.1038/s41560-019-0517-9  doi: 10.1038/s41560-019-0517-9

    71. [71]

      Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Adv. Mater. 2022, 34, 2200057. doi: 10.1002/adma.202200057  doi: 10.1002/adma.202200057

    72. [72]

      Li, X. J.; Zhao, S. Y.; Duan, X. G.; Zhang, H. Y.; Yang, S. Z.; Zhang, P. P.; Jiang, S. P.; Liu, S. M.; Sun, H. Q.; Wang, S. B. Appl. Catal. B: Environ. 2021, 283, 119660. doi: 10.1016/j.apcatb.2020.119660  doi: 10.1016/j.apcatb.2020.119660

    73. [73]

      Cai, S.; Zhang, M.; Li, J.; Chen, J.; Jia, H. Sol. RRL 2020, 5, 2000313. doi: 10.1002/solr.202000313  doi: 10.1002/solr.202000313

    74. [74]

      Zheng, J.; Lu, L.; Lebedev, K.; Wu, S.; Zhao, P.; McPherson, I. J.; Wu, T. -S.; Kato, R.; Li, Y.; Ho, P. -L.; et al. Chem. Catal. 2021, 1, 162. doi: 10.1016/j.checat.2021.03.002  doi: 10.1016/j.checat.2021.03.002

    75. [75]

      Dao, T. D.; Chen, K.; Ishii, S.; Ohi, A.; Nabatame, T.; Kitajima, M.; Nagao, T. ACS Photonics 2015, 2, 964. doi: 10.1021/acsphotonics.5b00195  doi: 10.1021/acsphotonics.5b00195

    76. [76]

      Li, Y. G.; Hao, J. C.; Song, H.; Zhang, F. Y.; Bai, X. H.; Meng, X. G.; Zhang, H. Y.; Wang, S. F.; Hu, Y.; Ye, J. H. Nat. Commun. 2019, 10, 9. doi: 10.1038/s41467-019-10304-y  doi: 10.1038/s41467-019-10304-y

    77. [77]

      Li, Y. G.; Guan, Q. Q.; Huang, G. Y.; Yuan, D. C.; Xie, F.; Li, K. L.; Zhang, Z. B.; San, X. Y.; Ye, J. H. Adv. Energy Mater. 2022, 12, 2202459. doi: 10.1002/aenm.202202459  doi: 10.1002/aenm.202202459

    78. [78]

      Wang, Z.; Xie, S.; Feng, Y.; Ma, P.; Zheng, K.; Duan, E.; Liu, Y.; Dai, H.; Deng, J. Appl. Catal. B: Environ. 2021, 298, 120612. doi: 10.1016/j.apcatb.2021.120612  doi: 10.1016/j.apcatb.2021.120612

    79. [79]

      Li, X.; Zhu, J.; Wei, B. Chem. Soc. Rev. 2016, 45, 3145. doi: 10.1039/c6cs00195e  doi: 10.1039/c6cs00195e

    80. [80]

      Zhao, J.; Xue, S.; Ji, R. R.; Li, B.; Li, J. H. Chem. Soc. Rev. 2021, 50, 12070. doi: 10.1039/d1cs00237f  doi: 10.1039/d1cs00237f

    81. [81]

      Shao, T.; Wang, X.; Dong, H.; Liu, S.; Duan, D.; Li, Y.; Song, P.; Jiang, H.; Hou, Z.; Gao, C.; et al. Adv. Mater. 2022, 34, e2202367. doi: 10.1002/adma.202202367  doi: 10.1002/adma.202202367

    82. [82]

      Han, L.; Zhang, L.; Wu, H.; Zu, H.; Cui, P.; Guo, J.; Guo, R.; Ye, J.; Zhu, J.; Zheng, X.; et al. Adv. Sci. 2019, 6, 1900006. doi: 10.1002/advs.201900006  doi: 10.1002/advs.201900006

    83. [83]

      Zhou, L. A.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L.; et al. Nat. Energy 2020, 5, 61. doi: 10.1038/s41560-019-0517-9  doi: 10.1038/s41560-019-0517-9

    84. [84]

      Yang, J. L.; Wang, H. J.; Zhu, Z.; Yue, M. F.; Yang, W. M.; Zhang, X. G.; Ruan, X.; Guan, Z.; Yang, Z. L.; Cai, W.; et al. Angew. Chem. Int. Ed. 2022, 61, e202112749. doi: 10.1002/anie.202112749  doi: 10.1002/anie.202112749

    85. [85]

      Li, Y.; Bai, X.; Yuan, D.; Zhang, F.; Li, B.; San, X.; Liang, B.; Wang, S.; Luo, J.; Fu, G. Nat. Commun. 2022, 13, 776. doi: 10.1038/s41467-022-28364-y  doi: 10.1038/s41467-022-28364-y

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(94)
  • Abstract views(1709)
  • HTML views(506)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return