Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications
- Corresponding author: Huilong Fei, hlfei@hnu.edu.cn
 
	            Citation:
	            
		            Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications[J]. Acta Physico-Chimica Sinica,
							;2023, 39(9): 221203.
						
							doi:
								10.3866/PKU.WHXB202212038
						
					
				
					
				
	        
	                
				Ciriminna, R.; Falletta, E.; Della Pina, C.; Teles, J. H.; Pagliaro, M. Angew. Chem. Int. Ed.   2016,   55, 14209. doi: 10.1002/anie.201604656
												 doi: 10.1002/anie.201604656
											
										
				Schlummer, B. Chem. unserer Zeit 2016,   50, 114. doi: 10.1002/ciuz.201500705
												 doi: 10.1002/ciuz.201500705
											
										
				Rusdan, N. A.; Timmiati, S. N.; Isahak, W. N. R. W.; Yaakob, Z.; Lim, K. L.; Khaidar, D. Nanomaterials 2022,   12, 3877. doi: 10.3390/nano12213877
												 doi: 10.3390/nano12213877
											
										
				Hashimoto, K.; Irie, H.; Fujishima, A. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap.   2005,   44, 8269. doi: 10.1143/jjap.44.8269
												 doi: 10.1143/jjap.44.8269
											
										
				Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L. Z.; Amal, R.; Ng, Y. H. Adv. Mater.   2020,   32, 21. doi: 10.1002/adma.201904717
												 doi: 10.1002/adma.201904717
											
										
				Bora, L. V.; Mewada, R. K. Renew. Sust. Energ. Rev.   2017,   76, 1393. doi: 10.1016/j.rser.2017.01.130
												 doi: 10.1016/j.rser.2017.01.130
											
										
				Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Science 2015,   349, 632. doi: 10.1126/science.aac5443
												 doi: 10.1126/science.aac5443
											
										
				Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Chem. Soc. Rev.   2021,   50, 2173. doi: 10.1039/d0cs00357c
												 doi: 10.1039/d0cs00357c
											
										
				Li, Z.; Liu, J.; Zhao, Y.; Waterhouse, G. I. N.; Chen, G.; Shi, R.; Zhang, X.; Liu, X.; Wei, Y.; Wen, X. D.; et al. Adv. Mater.   2018,   30, e1800527. doi: 10.1002/adma.201800527
												 doi: 10.1002/adma.201800527
											
										
				Jia, J.; O'Brien, P. G.; He, L.; Qiao, Q.; Fei, T.; Reyes, L. M.; Burrow, T. E.; Dong, Y.; Liao, K.; Varela, M.; et al. Adv. Sci.   2016,   3, 1600189. doi: 10.1002/advs.201600189
												 doi: 10.1002/advs.201600189
											
										
				Zhang, H.; Wang, T.; Wang, J.; Liu, H.; Dao, T. D.; Li, M.; Liu, G.; Meng, X.; Chang, K.; Shi, L.; et al. Adv. Mater.   2016,   28, 3703. doi: 10.1002/adma.201505187
												 doi: 10.1002/adma.201505187
											
										
				Yang, Y.; Zhao, S.; Cui, L.; Bi, F.; Zhang, Y.; Liu, N.; Wang, Y.; Liu, F.; He, C.; Zhang, X. Green Energy Environ.   2022,  doi: 10.1016/j.gee.2022.02.006
												 doi: 10.1016/j.gee.2022.02.006
											
										
				Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Mater. Horiz.   2018,   5, 323. doi: 10.1039/c7mh01064h
												 doi: 10.1039/c7mh01064h
											
										
				Zhou, S.; Shang, L.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L.; Zhang, T. Adv. Mater.   2019,   31, e1900509. doi: 10.1002/adma.201900509
												 doi: 10.1002/adma.201900509
											
										
				Fei, H. L.; Dong, J. C.; Arellano-Jimenez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M.; et al. Nat. Commun.   2015,   6, 8. doi: 10.1038/ncomms9668
												 doi: 10.1038/ncomms9668
											
										
				Yan, H.; Zhao, M.; Feng, X.; Zhao, S.; Zhou, X.; Li, S.; Zha, M.; Meng, F.; Chen, X.; Liu, Y.; et al. Angew. Chem. Int. Ed.   2022,   61, e202116059. doi: 10.1002/anie.202116059
												 doi: 10.1002/anie.202116059
											
										
				Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Energy Environ. Sci.   2021,   14, 2954. doi: 10.1039/d1ee00247c
												 doi: 10.1039/d1ee00247c
											
										
				Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X.; et al. Angew. Chem. Int. Ed.   2016,   55, 10800. doi: 10.1002/anie.201604802
												 doi: 10.1002/anie.201604802
											
										
				Li, X. Y.; Wang, C.; Tang, J. W. Nat. Rev. Mater.   2022,   7, 617. doi: 10.1038/s41578-022-00422-3
												 doi: 10.1038/s41578-022-00422-3
											
										
				Li, X.; Wang, W.; Dong, F.; Zhang, Z.; Han, L.; Luo, X.; Huang, J.; Feng, Z.; Chen, Z.; Jia, G.; et al. ACS Catal.   2021,   11, 4739. doi: 10.1021/acscatal.0c05354
												 doi: 10.1021/acscatal.0c05354
											
										
				Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Water Res.   2010,   44, 2997. doi: 10.1016/j.watres.2010.02.039
												 doi: 10.1016/j.watres.2010.02.039
											
										
				Zhou, P.; Yu, J.; Jaroniec, M. Adv. Mater.   2014,   26, 4920. doi: 10.1002/adma.201400288
												 doi: 10.1002/adma.201400288
											
										
				Pokrant, S. Nature 2020,   581, 386. doi: 10.1038/d41586-020-01455-w
												 doi: 10.1038/d41586-020-01455-w
											
										
				Zhao, Y.; Gao, W.; Li, S.; Williams, G. R.; Mahadi, A. H.; Ma, D. Joule 2019,   3, 920. doi: 10.1016/j.joule.2019.03.003
												 doi: 10.1016/j.joule.2019.03.003
											
										
				Tian, J.; Han, R.; Guo, Q.; Zhao, Z.; Sha, N. Catalysts 2022,   12, 612. doi: 10.3390/catal12060612
												 doi: 10.3390/catal12060612
											
										
				Meng, X. G.; Cui, X. J.; Rajan, N. P.; Yu, L.; Deng, D. H.; Bao, X. H. Chem 2019,   5, 2296. doi: 10.1016/j.chempr.2019.05.008
												 doi: 10.1016/j.chempr.2019.05.008
											
										
				Wu, H. L.; Li, X. B.; Tung, C. H.; Wu, L. Z. Adv. Mater.   2019,   31, 23. doi: 10.1002/adma.201900709
												 doi: 10.1002/adma.201900709
											
										
				Zhu, Z. Z.; Guo, W. Y.; Zhang, Y.; Pan, C. S.; Xu, J.; Zhu, Y. F.; Lou, Y. Carbon Energy 2021,   3, 519. doi: 10.1002/cey2.127
												 doi: 10.1002/cey2.127
											
										
				Wang, J.; Gao, X. X.; Wang, Y. J.; Wang, S. Y.; Xie, Z. W.; Yang, B. Z.; Zhang, Z. G.; Yang, Z.; Kang, L.; Yao, W. Q. Appl. Catal. B: Environ.   2022,   317, 19. doi: 10.1016/j.apcatb.2022.121789
												 doi: 10.1016/j.apcatb.2022.121789
											
										
				Ge, H.; Kuwahara, Y.; Kusu, K.; Bian, Z.; Yamashita, H. Appl. Catal. B: Environ.   2022,   317, 121734. doi: 10.1016/j.apcatb.2022.121734
												 doi: 10.1016/j.apcatb.2022.121734
											
										
				Guo, S.; Li, X.; Li, J.; Wei, B. Nat. Commun.   2021,   12, 1343. doi: 10.1038/s41467-021-21526-4
												 doi: 10.1038/s41467-021-21526-4
											
										
				Wang, X.; Wu, L.; Wang, Z.; Feng, Y.; Liu, Y.; Dai, H.; Wang, Z.; Deng, J. Appl. Catal. B: Environ.   2023,   322, 122075. doi: 10.1016/j.apcatb.2022.122075
												 doi: 10.1016/j.apcatb.2022.122075
											
										
				Feng. Y.; Dai, L.; Wang, Z.; Peng, Y.; Duan, E.; Liu, Y.; Jing, L.; Wang, X.; Rastegarpanah, A.; Dai, H.; et al. Environ. Sci. Technol.   2022,   56, 8722. doi: 10.1021/acs.est.1c08643
												 doi: 10.1021/acs.est.1c08643
											
										
				Feng, Y.; Ma, P.; Wang, Z.; Shi, Y.; Wang, Z.; Peng, Y.; Jing, L.; Liu, Y.; Yu, X.; Wang, X.; et al. Environ. Sci. Technol.   2022,   56, 17341. doi: 10.1021/acs.est.2c07146
												 doi: 10.1021/acs.est.2c07146
											
										
				Song, L.; Zhao, T.; Yang, D.; Wang, X.; Hao, X.; Liu, Y.; Zhang, S.; Yu, Z. Z. J. Hazard. Mater.   2020,   393, 122332. doi: 10.1016/j.jhazmat.2020.122332
												 doi: 10.1016/j.jhazmat.2020.122332
											
										
				Ma, R.; Sun, J.; Li, D. H.; Wei, J. J. Int. J. Hydrog. Energy 2020,   45, 30288. doi: 10.1016/j.ijhydene.2020.08.127
												 doi: 10.1016/j.ijhydene.2020.08.127
											
										
				Cheng, P.; Wang, D.; Schaaf, P. Adv. Sustain. Syst 2022,   46, 1900. doi: 10.1002/adsu.202200115
												 doi: 10.1002/adsu.202200115
											
										
				Wu, Z.; Li, C.; Li, Z.; Feng, K.; Cai, M.; Zhang, D.; Wang, S.; Chu, M.; Zhang, C.; Shen, J.; et al. ACS Nano 2021,   15, 5696. doi: 10.1021/acsnano.1c00990
												 doi: 10.1021/acsnano.1c00990
											
										
				Yue, X. Y.; Liu, X.; Wang, K.; Yang, Z.; Chen, X.; Dai, W. X.; Fu, X. Z. Inorg. Chem. Front.   2022,   9, 1258. doi: 10.1039/d2qi00004k
												 doi: 10.1039/d2qi00004k
											
										
				Li, S.; Miao, P.; Zhang, Y.; Wu, J.; Zhang, B.; Du, Y.; Han, X.; Sun, J.; Xu, P. Adv. Mater.   2021,   33, e2000086. doi: 10.1002/adma.202000086
												 doi: 10.1002/adma.202000086
											
										
				Liang, C.; Li, C.; Zhu, Y.; Du, X.; Zeng, Y.; Zhou, Y.; Zhao, J.; Li, S.; Liu, X.; Yu, Q.; et al. Appl. Surf. Sci.   2022,   601, 154144. doi: 10.1016/j.apsusc.2022.154144
												 doi: 10.1016/j.apsusc.2022.154144
											
										
				Xiong, R.; Tang, C.; Li, K.; Wan, J.; Jia, W.; Xiao, Y.; Cheng, B.; Lei, S. J. Mater. Chem. A 2022,   10, 22819. doi: 10.1039/d2ta05712c
												 doi: 10.1039/d2ta05712c
											
										
				Li, P. Y.; Liu, L.; An, W. J.; Wang, H.; Guo, H. X.; Liang, Y. H.; Cui, W. Q. Appl. Catal. B: Environ.   2020,   266, 14. doi: 10.1016/j.apcatb.2020.118618
												 doi: 10.1016/j.apcatb.2020.118618
											
										
				Li, L.; Li, Y.; Jiao, L.; Liu, X.; Ma, Z.; Zeng, Y. -J.; Zheng, X.; Jiang, H. -L. J. Am. Chem. Soc.   2022,   144, 17075. doi: 10.1021/jacs.2c06720
												 doi: 10.1021/jacs.2c06720
											
										
				Liu, Y.; Zhang, Z.; Fang, Y.; Liu, B.; Huang, J.; Miao, F.; Bao, Y.; Dong, B. Appl. Catal. B: Environ.   2019,   252, 164. doi: 10.1016/j.apcatb.2019.04.035
												 doi: 10.1016/j.apcatb.2019.04.035
											
										
				Zhang, L.; Pan, J.; Liu, L.; Zhang, S.; Wang, X.; Song, S.; Zhang, H. Small 2022,   18, e2201271. doi: 10.1002/smll.202201271
												 doi: 10.1002/smll.202201271
											
										
				Song, C.; Liu, X.; Xu, M.; Masi, D.; Wang, Y.; Deng, Y.; Zhang, M.; Qin, X.; Feng, K.; Yan, J.; et al. ACS Catal.   2020,   10, 10364. doi: 10.1021/acscatal.0c02244
												 doi: 10.1021/acscatal.0c02244
											
										
				Ding, X.; Liu, X.; Cheng, J.; Kong, L.; Guo, Y. Catal. Sci. Technol.   2022,   12, 4740. doi: 10.1039/D2CY00439A
												 doi: 10.1039/D2CY00439A
											
										
				Zhang, Z.; Mao, C.; Meira, D. M.; Duchesne, P. N.; Tountas, A. A.; Li, Z.; Qiu, C.; Tang, S.; Song, R.; Ding, X.; et al. Nat. Commun.   2022,   13, 1512. doi: 10.1038/s41467-022-29222-7
												 doi: 10.1038/s41467-022-29222-7
											
										
				Ding, X.; Liu, X.; Cheng, J. H.; Kong, L. Z.; Guo, Y. Catal. Sci. Technol.   2022,   12, 4740. doi: 10.1039/d2cy00439a
												 doi: 10.1039/d2cy00439a
											
										
				Li, Y.; Liu, Z.; Rao, Z.; Yu, F.; Bao, W.; Tang, Y.; Zhao, H.; Zhang, J.; Wang, Z.; Li, J.; et al. Appl. Catal. B: Environ.   2022,   319, 121903. doi: 10.1016/j.apcatb.2022.121903
												 doi: 10.1016/j.apcatb.2022.121903
											
										
				Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Nat. Chem.   2011,   3, 634. doi: 10.1038/nchem.1095
												 doi: 10.1038/nchem.1095
											
										
				Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C.; et al. Angew. Chem. Int. Ed.   2021,   60, 9480. doi: 10.1002/anie.202017152
												 doi: 10.1002/anie.202017152
											
										
				Lu, X. Y.; Gao, S. S.; Lin, H.; Yu, L. D.; Han, Y. H.; Zhu, P. A.; Bao, W. C.; Yao, H. L.; Chen, Y.; Shi, J. L. Adv. Mater.   2020,   32, 9. doi: 10.1002/adma.202002246
												 doi: 10.1002/adma.202002246
											
										
				Kerketta, U.; Tesler, A. B.; Schmuki, P. Catalysts 2022,   12, 1223. doi: 10.3390/catal12101223
												 doi: 10.3390/catal12101223
											
										
				Jin, X. X.; Wang, R. Y.; Zhang, L. X.; Si, R.; Shen, M.; Wang, M.; Tian, J. J.; Shi, J. L. Angew. Chem. Int. Ed.   2020,   59, 6827. doi: 10.1002/anie.201914565
												 doi: 10.1002/anie.201914565
											
										
				Li, Z.; Liu, F. N.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Wang, B.; Chen, C. X.; Lu, Y. Z. Nano Res.   2022,   15, 4411. doi: 10.1007/s12274-021-4029-0
												 doi: 10.1007/s12274-021-4029-0
											
										
				Xi, J. B.; Jung, H. S.; Xu, Y.; Xiao, F.; Bae, J. W.; Wang, S. Adv. Funct. Mater.   2021,   31, 39. doi: 10.1002/adfm.202008318
												 doi: 10.1002/adfm.202008318
											
										
				Cui, X. J.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Nat. Catal.   2018,   1, 385. doi: 10.1038/s41929-018-0090-9
												 doi: 10.1038/s41929-018-0090-9
											
										
				Lang, R.; Du, X.; Huang, Y.; Jiang, X.; Zhang, Q.; Guo, Y.; Liu, K.; Qiao, B.; Wang, A.; Zhang, T. Chem. Rev.   2020,   120, 11986. doi: 10.1021/acs.chemrev.0c00797
												 doi: 10.1021/acs.chemrev.0c00797
											
										
				Shi, Q.; Yu, T.; Wu, R.; Liu, J. ACS Appl. Mater. Interfaces 2021,   13, 60815. doi: 10.1021/acsami.1c18797
												 doi: 10.1021/acsami.1c18797
											
										
				Speranza, G. Nanomaterials 2021,   11, 99. doi: 10.3390/nano11040967
												 doi: 10.3390/nano11040967
											
										
				Li, Z.; Lei, H.; Kan, A.; Xie, H.; Yu, W. Energy 2021,   216, 119262. doi: 10.1016/j.energy.2020.119262
												 doi: 10.1016/j.energy.2020.119262
											
										
				Yang, Q.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Angew. Chem. Int. Ed.   2019,   58, 3511. doi: 10.1002/anie.201813494
												 doi: 10.1002/anie.201813494
											
										
				Gong, L.; Sun, J.; Liu, Y. S.; Yang, G. C. J. Mater. Chem. A 2021,   9, 21689. doi: 10.1039/d1ta06159c
												 doi: 10.1039/d1ta06159c
											
										
				Liu, Y.; Wang, X. C.; Li, Q. Y.; Yan, T. R.; Lou, X. X.; Zhang, C. Y.; Cao, M. H.; Zhang, L.; Sham, T. K.; Zhang, Q.; et al. Adv. Funct. Mater.   2022,  2210283. doi: 10.1002/adfm.202210283
												 doi: 10.1002/adfm.202210283
											
										
				Guo, Y. C.; Chen, W. J.; Feng, L.; Fan, Y. C.; Liang, J. S.; Wang, X. M.; Zhang, X. J. Mater. Chem. A 2022,   10, 12418. doi: 10.1039/d2ta02885a
												 doi: 10.1039/d2ta02885a
											
										
				Tan, K. W.; Yap, C. M.; Zheng, Z. Y.; Haw, C. Y.; Khiew, P. S.; Chiu, W. S. Adv. Sustain. Syst.   2022,   6, 29. doi: 10.1002/adsu.202100416
												 doi: 10.1002/adsu.202100416
											
										
				Yang, J.; Wang, D.; Han, H.; Li, C. Acc. Chem. Res.   2013,   46, 1900. doi: 10.1021/ar300227e
												 doi: 10.1021/ar300227e
											
										
				Zhou, L. A.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L.; et al. Nat. Energy 2020,   5, 61. doi: 10.1038/s41560-019-0517-9
												 doi: 10.1038/s41560-019-0517-9
											
										
				Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Adv. Mater.   2022,   34, 2200057. doi: 10.1002/adma.202200057
												 doi: 10.1002/adma.202200057
											
										
				Li, X. J.; Zhao, S. Y.; Duan, X. G.; Zhang, H. Y.; Yang, S. Z.; Zhang, P. P.; Jiang, S. P.; Liu, S. M.; Sun, H. Q.; Wang, S. B. Appl. Catal. B: Environ.   2021,   283, 119660. doi: 10.1016/j.apcatb.2020.119660
												 doi: 10.1016/j.apcatb.2020.119660
											
										
				Cai, S.; Zhang, M.; Li, J.; Chen, J.; Jia, H. Sol. RRL 2020,   5, 2000313. doi: 10.1002/solr.202000313
												 doi: 10.1002/solr.202000313
											
										
				Zheng, J.; Lu, L.; Lebedev, K.; Wu, S.; Zhao, P.; McPherson, I. J.; Wu, T. -S.; Kato, R.; Li, Y.; Ho, P. -L.; et al. Chem. Catal.   2021,   1, 162. doi: 10.1016/j.checat.2021.03.002
												 doi: 10.1016/j.checat.2021.03.002
											
										
				Dao, T. D.; Chen, K.; Ishii, S.; Ohi, A.; Nabatame, T.; Kitajima, M.; Nagao, T. ACS Photonics 2015,   2, 964. doi: 10.1021/acsphotonics.5b00195
												 doi: 10.1021/acsphotonics.5b00195
											
										
				Li, Y. G.; Hao, J. C.; Song, H.; Zhang, F. Y.; Bai, X. H.; Meng, X. G.; Zhang, H. Y.; Wang, S. F.; Hu, Y.; Ye, J. H. Nat. Commun.   2019,   10, 9. doi: 10.1038/s41467-019-10304-y
												 doi: 10.1038/s41467-019-10304-y
											
										
				Li, Y. G.; Guan, Q. Q.; Huang, G. Y.; Yuan, D. C.; Xie, F.; Li, K. L.; Zhang, Z. B.; San, X. Y.; Ye, J. H. Adv. Energy Mater.   2022,   12, 2202459. doi: 10.1002/aenm.202202459
												 doi: 10.1002/aenm.202202459
											
										
				Wang, Z.; Xie, S.; Feng, Y.; Ma, P.; Zheng, K.; Duan, E.; Liu, Y.; Dai, H.; Deng, J. Appl. Catal. B: Environ.   2021,   298, 120612. doi: 10.1016/j.apcatb.2021.120612
												 doi: 10.1016/j.apcatb.2021.120612
											
										
				Li, X.; Zhu, J.; Wei, B. Chem. Soc. Rev.   2016,   45, 3145. doi: 10.1039/c6cs00195e
												 doi: 10.1039/c6cs00195e
											
										
				Zhao, J.; Xue, S.; Ji, R. R.; Li, B.; Li, J. H. Chem. Soc. Rev.   2021,   50, 12070. doi: 10.1039/d1cs00237f
												 doi: 10.1039/d1cs00237f
											
										
				Shao, T.; Wang, X.; Dong, H.; Liu, S.; Duan, D.; Li, Y.; Song, P.; Jiang, H.; Hou, Z.; Gao, C.; et al. Adv. Mater.   2022,   34, e2202367. doi: 10.1002/adma.202202367
												 doi: 10.1002/adma.202202367
											
										
				Han, L.; Zhang, L.; Wu, H.; Zu, H.; Cui, P.; Guo, J.; Guo, R.; Ye, J.; Zhu, J.; Zheng, X.; et al. Adv. Sci.   2019,   6, 1900006. doi: 10.1002/advs.201900006
												 doi: 10.1002/advs.201900006
											
										
				Zhou, L. A.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L.; et al. Nat. Energy 2020,   5, 61. doi: 10.1038/s41560-019-0517-9
												 doi: 10.1038/s41560-019-0517-9
											
										
				Yang, J. L.; Wang, H. J.; Zhu, Z.; Yue, M. F.; Yang, W. M.; Zhang, X. G.; Ruan, X.; Guan, Z.; Yang, Z. L.; Cai, W.; et al. Angew. Chem. Int. Ed.   2022,   61, e202112749. doi: 10.1002/anie.202112749
												 doi: 10.1002/anie.202112749
											
										
				Li, Y.; Bai, X.; Yuan, D.; Zhang, F.; Li, B.; San, X.; Liang, B.; Wang, S.; Luo, J.; Fu, G. Nat. Commun.   2022,   13, 776. doi: 10.1038/s41467-022-28364-y
												 doi: 10.1038/s41467-022-28364-y
											
										
						
						
						
	                Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Ying Chen , Ronghua Yan , Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Deyun Ma , Fenglan Liang , Qingquan Xue , Yanping Liu , Chunqiang Zhuang , Shijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029