Citation: Xiaoyu Wang, Yang Cheng, Guodong Xue, Ziqi Zhou, Mengze Zhao, Chaojie Ma, Jin Xie, Guangjie Yao, Hao Hong, Xu Zhou, Kaihui Liu, Zhongfan Liu. Giant Enhancement of Optical Second Harmonic Generation in Hollow-Core Fiber Integrated with GaSe Nanoflakes[J]. Acta Physico-Chimica Sinica, ;2023, 39(7): 221202. doi: 10.3866/PKU.WHXB202212028 shu

Giant Enhancement of Optical Second Harmonic Generation in Hollow-Core Fiber Integrated with GaSe Nanoflakes

  • Corresponding author: Xu Zhou, xuzhou2020@m.scnu.edu.cn Kaihui Liu, khliu@pku.edu.cn Zhongfan Liu, zfliu@pku.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 17 December 2022
    Revised Date: 19 January 2023
    Accepted Date: 20 January 2023
    Available Online: 7 February 2023

    Fund Project: the National Key R&D Program of China 2021YFA1400201the National Key R&D Program of China 2021YFB3200303the National Key R&D Program of China 2021YFA1400502the National Key R&D Program of China 2022YFA1403504the National Natural Science Foundation of China 52021006the National Natural Science Foundation of China 52172035the National Natural Science Foundation of China 92163206the National Natural Science Foundation of China 52025023the National Natural Science Foundation of China 12104018the Strategic Priority Research Program of Chinese Academy of Sciences XDB33000000the China Postdoctoral Science Foundation 2021T140022the Guangzhou Basic and Applied Basic Research Projects 202201010395

  • All-fiber functional devices are superior to conventional optical crystals for next-generation integrated optics owing to their natural compatibility with optical fiber systems. Nonlinear optical fiber devices play an important role in frequency conversion and optical parametric amplification. However, optical fibers are unsuitable for all-optical systems owing to the intrinsic properties of pure quartz. Optical second harmonic generation (SHG), which is significant in practical optical applications, is theoretically forbidden in traditional centrosymmetric non-crystalline fused silica fibers. Consequently, generating giant second-order optical processes in optical fibers remains challenging. Many studies have attempted to artificially break the centrosymmetry of fused silica fibers using various poling techniques, such as thermal or electric field poling, which can enhance the second-order nonlinear optical susceptibility. However, these methods require difficult and complicated fabrication processes, and the corresponding hybrid optical fibers exhibit an inefficient harmonic generation process, which greatly increases the cost and limits the development of all-fiber nonlinear functionalization. Therefore, there is an urgent need for new fabrication methods and technical means for functionalizing optical fiber devices that can improve the second-order nonlinear effect while remaining simple and practical. Herein, we propose an improved solution-filling method that can effectively deposit highly nonlinear GaSe nanoflakes directly on the inner walls of hollow-core fibers (HCF) with a length of up to half a meter. In addition, the as-fabricated hollow-core fiber integrated with GaSe nanoflakes (GaSe-HCF) is used to demonstrate that the second-order nonlinear effect of the optical fiber is enhanced by the ultrahigh nonlinear effect of the GaSe materials. Compared to previously reported MoS2-embedded hollow-core fibers (MoS2-HCF) and conventional optical fibers, the SHG of the GaSe-HCF is three and two orders of magnitude stronger than that of bare HCF and MoS2-HCF, respectively. A GaSe-HCF with a length of up to half a meter was successfully prepared using the new filling method and exhibited good expansibility. The pressure process was exploited by adding a short length of air column to effectively fill the HCF with the highly nonlinear GaSe suspension, and expand the applicability of this method. Our results will provide a novel and highly efficient strategy to manufacture nonlinear optical fibers integrated with other nanomaterials and can be used to fabricate new all-fiber devices with strongly enhanced second-order nonlinear optical processes, thus broadening nonlinear optics and optoelectronics applications.
  • 加载中
    1. [1]

      Fujii, Y.; Kawasaki, B. S.; Hill, K. O.; Johnson, D. C. Opt. Lett. 1980, 5, 48. doi: 10.1364/OL.5.000048  doi: 10.1364/OL.5.000048

    2. [2]

      Canagasabey, A.; Corbari, C.; Gladyshev, A. V.; Liegeois, F.; Guillemet, S.; Hernandez, Y.; Yashkov, M. V.; Kosolapov, A.; Dianov, E. M.; Ibsen, M. Opt. Lett. 2009, 34, 16. doi: 10.1364/OL.34.002483  doi: 10.1364/OL.34.002483

    3. [3]

      Pruneri, V.; Samoggia, F.; Bonfrate, G.; Kazansky, P. G.; Yang, G. M. Appl. Phys. Lett. 1999, 74, 17. doi: 10.1063/1.123868  doi: 10.1063/1.123868

    4. [4]

      Peter, G. K.; Philip, R.; Hilromichi, T. J. Lightwave Technol. 1997, 15, 8. doi: 10.1109/50.618381  doi: 10.1109/50.618381

    5. [5]

      Ménard, J. M.; Russell, P. S. T. Opt. Lett. 2015, 40, 15. doi: 10.1364/OL.40.003679  doi: 10.1364/OL.40.003679

    6. [6]

      Ménard, J. M.; Köttig, F.; Russell, P. S. T. Opt. Lett. 2016, 41, 16. doi: 10.1364/ol.41.003795  doi: 10.1364/ol.41.003795

    7. [7]

      Feng, T. L.; Raabe, N.; Rustige, P.; Steinmeyer, G. Appl. Phys. Lett. 2018, 112, 24. doi: 10.1063/1.5030171  doi: 10.1063/1.5030171

    8. [8]

      Kashyap, R. Appl. Phys. Lett. 1991, 58, 12. doi: 10.1063/1.104372  doi: 10.1063/1.104372

    9. [9]

      Myers, R. A.; Mukherjee, N.; Brueck, S. R. J. Opt. Lett. 1991, 16, 22. doi: 10.1364/OL.16.001732  doi: 10.1364/OL.16.001732

    10. [10]

      Corbari, C.; Kazansky, P. G.; Slattery, S. A.; Nikogosyan, D. N. Appl. Phys. Lett. 2005, 86, 071106. doi: 10.1063/1.1868075  doi: 10.1063/1.1868075

    11. [11]

      Canagasabey, A.; Corbari, C.; Zhang, Z. W.; Kazansky, P. G.; Ibsen, M. Opt. Lett. 2007, 32, 13. doi: 10.1364/OL.32.001863  doi: 10.1364/OL.32.001863

    12. [12]

      Zhou, X.; Cheng, J. X.; Zhou, Y. B.; Cao, T.; Hong, H.; Liao, Z. M.; Wu, S. W.; Peng, H. L.; Liu, K. H.; Yu, D. P. J. Am. Chem. Soc. 2015, 137, 25. doi: 10.1021/jacs.5b04305  doi: 10.1021/jacs.5b04305

    13. [13]

      Zuo, Y. G.; Yu, W. T.; Liu, C.; Cheng, X.; Qiao, R. X.; Liang, J.; Zhou, X.; Wang, J. H.; Wu, M. H.; Zhao, Y. Nat. Nanotechnol. 2020, 15, 987. doi: 10.1038/s41565-020-0770-x  doi: 10.1038/s41565-020-0770-x

    14. [14]

      Jiang, B. Q.; Hao, Z.; Ji, Y. F.; Hou, Y. G.; Yi, R. X.; Mao, D.; Gan, X. T.; Zhao, J. L. Light Sci. Appl. 2020, 9, 63. doi: 10.1038/s41377-020-0304-1  doi: 10.1038/s41377-020-0304-1

    15. [15]

      Tong, L. M.; Lou, J. Y.; Mazur, E. Opt. Express 2004, 12, 6. doi: 10.1364/OPEX.12.001025  doi: 10.1364/OPEX.12.001025

    16. [16]

      Schartner, E. P.; Dowler, A.; Ebendorf-Heidepriem, H. Opt. Mater. Express 2017, 7, 5. doi: 10.1364/OME.7.001496  doi: 10.1364/OME.7.001496

    17. [17]

      Mo, J.; Feng, G. Z.; Liao, Y.; Yang, M.; Zhou, S. High Power Laser Part. Beams 2018, 30, 8. doi: 10.11884/HPLPB201830.180079  doi: 10.11884/HPLPB201830.180079

    18. [18]

      Dong, Q.; Liu, H. J. J. Vib. Acoust. 2019, 141, 3. doi: 10.1121/1.5101732  doi: 10.1121/1.5101732

    19. [19]

      Yao, B. C.; Wu, Y.; Cheng, Y.; Zhang, A. Q.; Gong, Y.; Rao, Y. J.; Wang, Z. G.; Chen, Y. F. Sensor Actuat. B-Chem. 2014, 194, 142. doi: 10.1016/j.snb.2013.12.085  doi: 10.1016/j.snb.2013.12.085

    20. [20]

      Shang, N. Z.; Cheng, Y.; Ao, S.; Tuerdi, G.; Li, M. W.; Wang, X. Y.; Hong, H.; Li, Z. H.; Zhang, X. Y.; Fu, W. Y.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2108041  doi: 10.3866/PKU.WHXB202108041

    21. [21]

      Wei, W.; Nong, J. P.; Zhu, Y.; Zhang, G. W.; Wang, N.; Luo, S. Q.; Chen, N.; Lan, G. L.; Chuang, C. J.; Huang, Y. Plasmonics 2017, 13, 483. doi: 10.1007/s11468-017-0534-0  doi: 10.1007/s11468-017-0534-0

    22. [22]

      Huang, M.; Yang, C. H.; Sun B.; Zhang, Z. X.; Zhang, L. Opt. Express 2018, 26, 3. doi: 10.1364/oe.26.003098  doi: 10.1364/oe.26.003098

    23. [23]

      Xin, W.; Liu, Z. B.; Sheng, Q. W.; Feng, M.; Huang, L. G.; Wang, P.; Jiang, W. S.; Xing, F.; Liu, Y. G.; Tian, J. G. Opt. Express 2014, 22, 9. doi: 10.1364/OE.22.010239  doi: 10.1364/OE.22.010239

    24. [24]

      Corbari, C.; Gladyshev, A. V.; Lago, L.; Ibsen, M.; Hernandez, Y.; Kazansky, P. G. Opt. Lett. 2014, 39, 22. doi: 10.1364/ol.39.006505  doi: 10.1364/ol.39.006505

    25. [25]

      Yu, Y.; Chen, H.; Zhang, Z. F.; Chen, D. B.; Yan, P. G. Sensors 2020, 20, 6. doi: 10.3390/s20061645  doi: 10.3390/s20061645

    26. [26]

      Li, W.; Chen, B. G.; Meng, C. Fang, W.; Xiao, Y.; Li, X. Y.; Hu, Z. F.; Fu, Y. X.; Tong, L. M.; Wang, H. Q.; et al. Nano Lett. 2014, 14, 2. doi: 10.1021/nl404356t  doi: 10.1021/nl404356t

    27. [27]

      Gao, C.; Gao, L.; Zhu, T.; Yin, G. L. Opt. Lett. 2017, 42, 9. doi: 10.1364/OL.42.001708  doi: 10.1364/OL.42.001708

    28. [28]

      Wang, R. D.; Li, D.; Jiang, M.; Wu, H.; Xu, X.; Ren, Z. Y. Opt. Commun. 2018, 410, 604. doi: 10.1016/j.optcom.2017.10.078  doi: 10.1016/j.optcom.2017.10.078

    29. [29]

      Wang, X. Y.; Fu, G. W.; Cui, Y. Z.; Fu, X. H.; Jin, W.; Bi, W. H. App. Phys. Express 2020, 13, 10. doi: 10.35848/1882-0786/abb95a  doi: 10.35848/1882-0786/abb95a

    30. [30]

      Bi, W. H.; Wang, Y. Y.; Fu, G. W.; Wang, X. Y.; Li, C. L. Acta Phys. Sin. 2016, 65, 4  doi: 10.7498/aps.65.047801

    31. [31]

      Chen, K.; Zhou, X.; Cheng, X.; Qiao, R. X.; Cheng, Y.; Liu, C.; Xie, Y. D.; Yu, W. T. Yao, F. R.; Sun, Z. P.; et al. Nat. Photonics 2019, 13, 11. doi: 10.1038/s41566-019-0492-5  doi: 10.1038/s41566-019-0492-5

    32. [32]

      Guo, J.; Xie, J. J.; Li, D. J.; Yang, G. L.; Chen, F.; Wang, C. R.; Zhang, L. M.; Andreev, Y. M.; Kokh, K. A.; Lanskii, G. V.; et al. Light Sci. Appl. 2015, 4, e362. doi: 10.1038/lsa.2015.135  doi: 10.1038/lsa.2015.135

    33. [33]

      Cotter, D.; Manning, R. J.; Blow, K. J.; Ellis, A. D.; Kelly, A. E.; Nesset, D.; Phillips, I. D.; Poustie, A. J.; Rogers, D. C. Science 1999, 286, 5444. doi: 10.1126/science.286.5444.1523  doi: 10.1126/science.286.5444.1523

    34. [34]

      Dudley, J. M.; Taylor, J. R. Nat. Photonics 2009, 3, 85. doi: 10.1038/nphoton.2008.285  doi: 10.1038/nphoton.2008.285

    35. [35]

      Autere, A.; Jussila, H.; Dai, Y. Y.; Wang, Y. D.; Lipsanen, H.; Sun, Z. P. Adv. Mater. 2018, 30, 24. doi: 0.1002/adma.201705963

    36. [36]

      Li, Y.; Yi, R.; Mak, K. F.; You, Y.; Heinz, T. F. Nano Lett. 2013, 13, 7. doi: 10.1021/nl401561r  doi: 10.1021/nl401561r

    37. [37]

      Tombelaine, V.; Buy-Lesvigne, C.; Leproux, P.; Couderc, V.; Melin, G. Opt. Lett. 2008, 33, 17. doi: 10.1364/OL.33.002011  doi: 10.1364/OL.33.002011

    38. [38]

      Segura, A.; Bouvier, J.; Andres M. V.; Manjon, F. J.; Munoz, V.; Bouvier, J. Phys. Rev. B 1997, 56, 7. doi: 10.1103/PhysRevB.56.4075  doi: 10.1103/PhysRevB.56.4075

    39. [39]

      Allakhverdiev, K. R.; Yetis, M. O.; Baykara, T. K.; Salaev, E. Y. Laser Phys. 2009, 19, 5. doi: 10.1134/S1054660X09050375  doi: 10.1134/S1054660X09050375

    40. [40]

      Lei, S. D.; Ge, L. H.; Liu, Z.; Najmaei, S.; Shi, G.; You, G.; Lou, J.; Vajtai, R.; Ajayan, P. M. Nano Lett. 2013, 13, 2777. doi: 10.1021/nl4010089  doi: 10.1021/nl4010089

    41. [41]

      Zhou, Y. B.; Nie, Y. F.; Liu, Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, X.; Yin, J. B.; Liu, Z. F.; Peng, H. L. ACS Nano 2014, 8, 2. doi: 10.1021/nn405529r  doi: 10.1021/nn405529r

    42. [42]

      Late, D. J.; Liu, B.; Matte, H. S. S; Rao, C. N. R.; Dravid, V. P. Adv. Funct. Mater. 2012, 22, 9. doi: 10.1002/adfm.201102913  doi: 10.1002/adfm.201102913

  • 加载中
    1. [1]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    2. [2]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    3. [3]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    4. [4]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    5. [5]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    6. [6]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    7. [7]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    8. [8]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    9. [9]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    10. [10]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    11. [11]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    12. [12]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    13. [13]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    14. [14]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    15. [15]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    16. [16]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    17. [17]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    18. [18]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    19. [19]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    20. [20]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

Metrics
  • PDF Downloads(12)
  • Abstract views(487)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return