Citation: Youwen Rong, Jiaqi Sang, Li Che, Dunfeng Gao, Guoxiong Wang. Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2023, 39(5): 221202. doi: 10.3866/PKU.WHXB202212027 shu

Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction

  • Corresponding author: Li Che, liche@dlmu.edu.cn Dunfeng Gao, dfgao@dicp.ac.cn
  • Received Date: 16 December 2022
    Revised Date: 2 January 2023
    Accepted Date: 2 January 2023
    Available Online: 9 January 2023

    Fund Project: the National Key R & D Program of China 2021YFA1501503National Natural Science Foundation of China 22002155National Natural Science Foundation of China 21973010National Natural Science Foundation of China 22125205National Natural Science Foundation of China 92045302Strategic Priority Research Program of the Chinese Academy of Sciences XDA21061010Liao Ning Revitalization Talents Program, China XLYC1907032Natural Science Foundation of Liaoning Province, China 2021-MS-022the Dalian Institute of Chemical Physics, China DICP I202203

  • As an emerging technology for achieving carbon neutrality, the electrocatalytic CO2 reduction reaction (CO2RR) converts CO2 and water to valuable fuels and chemicals with power supply from renewable energy. Currently, the practical application of the CO2RR suffers from insufficient electrocatalytic performance in terms of selectivity, reaction rate, energy efficiency, and long-term stability. Electrolytes are considered as equally critical as catalysts for enhancing the CO2RR performance. From a catalysis perspective, electrolytes significantly affect the reaction microenvironments around catalytically active sites. From an electrochemical perspective, electrolytes determine the electric double layer structure. The electrocatalytic electrode/electrolyte interface where the CO2RR takes place is strongly influenced by electrolyte composition and identity. Thus, beyond catalyst design, rational electrolyte design is an alternative strategy for advancing the CO2RR towards industrial applications. This review presents important electrolyte effects in the aqueous CO2RR using the most recent studies, with an emphasis on those conducted under industrially-relevant reaction conditions. The effects of (local) pH, cations, and anions in aqueous inorganic electrolytes and their coupled effects with solid polymer electrolytes on tuning the activity and selectivity of the CO2RR are summarized. Although their influences on CO2RR performance are interconnected, pH effects, cation effects, and anion effects as well as electrolyte effects in membrane electrode assembly (MEA) electrolyzers are discussed separately considering the leading role of each factor. The experimentally observed performance dependence on the electrolyte composition and identity as well as the underlying reaction mechanism are discussed. The unique role of vibrational spectroscopies, such as surface-enhanced infrared absorption and Raman, in the characterization of electrode/electrolyte interfaces and the elucidation of electrolyte effects is highlighted. An innovative experimental strategy that involves the validation of specific adsorption of alkali-metal cations on the surface of an electrode by precisely monitoring the vibrational spectroscopic characteristics of probe molecules is highly recommended. The review focuses on the pH-dependent electrocatalytic performance and reaction pathways, the uncertain mechanisms of cation effects, and the roles of typical anions, such as bicarbonate and halides. Particularly, emphasis is given to the transport of key species, such as anions, cations, water, and products in ion exchange membranes, as well as their dynamic behaviors at the electrode/electrolyte interface in MEA CO2 electrolyzers. Although it has some drawbacks, anion exchange membranes are currently the most promising polymer electrolytes for practical application of the CO2RR. However, some emerging strategies based on cation exchange and bipolar membranes as well as tandem electrolysis processes are in progress. In all cases, a detailed understanding of electrolyte effects in the complex environments of MEA electrolyzers is indispensable for achieving performance enhancement. In conclusion, the remaining challenges and research opportunities in terms of the experimental and theoretical investigation of the electrolyte effects in the CO2RR process are proposed. This review provides novel insights into rational electrolyte design and useful guidelines for researchers in the field.
  • 加载中
    1. [1]

      Artz, J.; Muller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434. doi: 10.1021/acs.chemrev.7b00435  doi: 10.1021/acs.chemrev.7b00435

    2. [2]

      Burkart, M. D.; Hazari, N.; Tway, C. L.; Zeitler, E. L. ACS Catal. 2019, 9, 7937. doi: 10.1021/acscatal.9b02113  doi: 10.1021/acscatal.9b02113

    3. [3]

      Gao, D.; Li, W.; Wang, H.; Wang, G.; Cai, R. Trans. Tianjin Univ. 2022, 28, 245. doi: 10.1007/s12209-022-00326-x  doi: 10.1007/s12209-022-00326-x

    4. [4]

      Chen, C.; Kotyk, J. F. K.; Sheehan, S. W. Chem 2018, 4, 2571. doi: 10.1016/j.chempr.2018.08.019  doi: 10.1016/j.chempr.2018.08.019

    5. [5]

      Sanchez, O. G.; Birdja, Y. Y.; Bulut, M.; Vaes, J.; Breugelmans, T.; Pant, D. Curr. Opin. Green Sustain. Chem. 2019, 16, 47. doi: 10.1016/j.cogsc.2019.01.005  doi: 10.1016/j.cogsc.2019.01.005

    6. [6]

      Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2021, 60, 19572. doi: 10.1002/anie.202101522  doi: 10.1002/anie.202101522

    7. [7]

      Wen, G; Ren, B.; Wang, X.; Luo, D.; Dou, H.; Zheng, Y.; Gao, R.; Gostick, J.; Yu, A.; Chen, Z. Nat. Energy 2022, 7, 978. doi: 10.1038/s41560-022-01130-6  doi: 10.1038/s41560-022-01130-6

    8. [8]

      Zhou, Y. S.; Martin, A. J.; Dattila, F.; Xi, S. B.; Lopez, N.; Perez-Ramirez, J.; Yeo, B. S. Nat. Catal. 2022, 5, 545. doi: 10.1038/s41929-022-00803-5  doi: 10.1038/s41929-022-00803-5

    9. [9]

      Zang, Y.; Wei, P.; Li, H.; Gao, D.; Wang, G. Electrochem. Energy Rev. 2022, 5, 29. doi: 10.1007/s41918-022-00140-y  doi: 10.1007/s41918-022-00140-y

    10. [10]

      Zhang, G.; Wang, T.; Zhang, M.; Li, L.; Cheng, D.; Zhen, S.; Wang, Y.; Qin, J.; Zhao, Z.-J.; Gong, J. Nat. Commun. 2022, 13, 7768. doi: 10.1038/s41467-022-35450-8  doi: 10.1038/s41467-022-35450-8

    11. [11]

      Shin, H.; Hansen, K. U.; Jiao, F. Nat. Sustain. 2021, 4, 911. doi: 10.1038/s41893-021-00739-x  doi: 10.1038/s41893-021-00739-x

    12. [12]

      Masel, R. I.; Liu, Z. C.; Yang, H. Z.; Kaczur, J. J.; Carrillo, D.; Ren, S. X.; Salvatore, D.; Berlinguette, C. P. Nat. Nanotechnol. 2021, 16, 118. doi: 10.1038/s41565-020-00823-x  doi: 10.1038/s41565-020-00823-x

    13. [13]

      Wakerley, D.; Lamaison, S.; Wicks, J.; Clemens, A.; Feaster, J.; Corral, D.; Jaffer, S. A.; Sarkar, A.; Fontecave, M.; Duoss, E. B.; et al. Nat. Energy 2022, 7, 130. doi: 10.1038/s41560-021-00973-9  doi: 10.1038/s41560-021-00973-9

    14. [14]

      Gao, D.; Cai, F.; Wang, G.; Bao, X. Curr. Opin. Green Sustain. Chem. 2017, 3, 39. doi: 10.1016/j.cogsc.2016.10.004  doi: 10.1016/j.cogsc.2016.10.004

    15. [15]

      Gao, D.; Aran-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Nat. Catal. 2019, 2, 198. doi: 10.1038/s41929-019-0235-5  doi: 10.1038/s41929-019-0235-5

    16. [16]

      Zhu, Y.; Cui, X.; Liu, H.; Guo, Z.; Dang, Y.; Fan, Z.; Zhang, Z.; Hu, W. Nano Res. 2021, 14, 4471. doi: 10.1007/s12274-021-3448-2  doi: 10.1007/s12274-021-3448-2

    17. [17]

      Gao, D.; Liu, T.; Wang, G.; Bao, X. ACS Energy Lett. 2021, 6, 713. doi: 10.1021/acsenergylett.0c02665  doi: 10.1021/acsenergylett.0c02665

    18. [18]

      Zhai, Y.; Han, P.; Yun, Q.; Ge, Y.; Zhang, X.; Chen, Y.; Zhang, H. eScience 2022, 2, 467. doi: 10.1016/j.esci.2022.09.002  doi: 10.1016/j.esci.2022.09.002

    19. [19]

      Hao, L.; Sun, Z. Acta Phys. -Chim. Sin. 2021, 37, 2009033.  doi: 10.3866/PKU.WHXB202009033

    20. [20]

      Meng, Y.; Kuang, S.; Liu, H.; Fan, Q.; Ma, X.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034.  doi: 10.3866/PKU.WHXB202006034

    21. [21]

      Burdyny, T.; Smith, W. A. Energy Environ. Sci. 2019, 12, 1442. doi: 10.1039/C8EE03134G  doi: 10.1039/C8EE03134G

    22. [22]

      Higgins, D.; Hahn, C.; Xiang, C. X.; Jaramillo, T. F.; Weber, A. Z. ACS Energy Lett. 2019, 4, 317. doi: 10.1021/acsenergylett.8b02035  doi: 10.1021/acsenergylett.8b02035

    23. [23]

      Sa, Y. J.; Lee, C. W.; Lee, S. Y.; Na, J.; Lee, U.; Hwang, Y. J. Chem. Soc. Rev. 2020, 49, 6632. doi: 10.1039/D0CS00030B  doi: 10.1039/D0CS00030B

    24. [24]

      Gao, D.; Wei, P.; Li, H.; Lin, L.; Wang, G.; Bao, X. Acta Phys. -Chim. Sin. 2021, 37, 2009021.  doi: 10.3866/PKU.WHXB202009021

    25. [25]

      Lees, E. W.; Mowbray, B. A. W.; Parlane, F. G. L.; Berlinguette, C. P. Nat. Rev. Mater. 2022, 7, 55. doi: 10.1038/s41578-021-00356-2  doi: 10.1038/s41578-021-00356-2

    26. [26]

      Dickinson, E. J. F.; Limon-Petersen, J. G.; Rees, N. V.; Compton, R. G. J. Phys. Chem. C 2009, 113, 11157. doi: 10.1021/jp901628h  doi: 10.1021/jp901628h

    27. [27]

      Strmcnik, D.; Kodama, K.; van der Vliet, D.; Greeley, J.; Stamenkovic, V. R.; Markovic, N. M. Nat. Chem. 2009, 1, 466. doi: 10.1038/nchem.330  doi: 10.1038/nchem.330

    28. [28]

      Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastian-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Nat. Energy 2017, 2, 17031. doi: 10.1038/nenergy.2017.31  doi: 10.1038/nenergy.2017.31

    29. [29]

      Aran-Ais, R. M.; Gao, D.; Roldan Cuenya, B. Acc. Chem. Res. 2018, 51, 2906. doi: 10.1021/acs.accounts.8b00360  doi: 10.1021/acs.accounts.8b00360

    30. [30]

      Konig, M.; Vaes, J.; Klemm, E.; Pant, D. iScience 2019, 19, 135. doi: 10.1016/j.isci.2019.07.014  doi: 10.1016/j.isci.2019.07.014

    31. [31]

      Pupo, M. M. D.; Kortlever, R. ChemPhysChem. 2019, 20, 2926. doi: 10.1002/cphc.201900680  doi: 10.1002/cphc.201900680

    32. [32]

      Sebastian-Pascual, P.; Mezzavilla, S.; Stephens, I. E. L.; Escudero-Escribano, M. ChemCatChem 2019, 11, 3624. doi: 10.1002/cctc.201900552  doi: 10.1002/cctc.201900552

    33. [33]

      Marcandalli, G.; Monteiro, M. C. O.; Goyal, A.; Koper, M. T. M. Acc. Chem. Res. 2022, 55, 1900. doi: 10.1021/acs.accounts.2c00080  doi: 10.1021/acs.accounts.2c00080

    34. [34]

      Xu, A. N.; Govindarajan, N.; Kastlunger, G.; Vijay, S.; Chan, K. R. Acc. Chem. Res. 2022, 55, 495. doi: 10.1021/acs.accounts.1c00679  doi: 10.1021/acs.accounts.1c00679

    35. [35]

      Deng, B.; Huang, M.; Zhao, X.; Mou, S.; Dong, F. ACS Catal. 2022, 12, 331. doi: 10.1021/acscatal.1c03501  doi: 10.1021/acscatal.1c03501

    36. [36]

      Gill, T. M.; Furst, A. L. Curr. Opin. Electrochem. 2022, 35, 101061. doi: 10.1016/j.coelec.2022.101061  doi: 10.1016/j.coelec.2022.101061

    37. [37]

      Bui, J. C.; Kim, C.; King, A. J.; Romiluyi, O.; Kusoglu, A.; Weber, A. Z.; Bell, A. T. Acc. Chem. Res. 2022, 55, 484. doi: 10.1021/acs.accounts.1c00650  doi: 10.1021/acs.accounts.1c00650

    38. [38]

      Wagner, A.; Sahm, C. D.; Reisner, E. Nat. Catal. 2020, 3, 775. doi: 10.1038/s41929-020-00512-x  doi: 10.1038/s41929-020-00512-x

    39. [39]

      Lv, J.; Yin, R.; Zhou, L.; Li, J.; Kikas, R.; Xu, T.; Wang, Z.; Jin, H.; Wang, X.; Wang, S. Angew. Chem. Int. Ed. 2022, 61, e202207252. doi: 10.1002/anie.202207252  doi: 10.1002/anie.202207252

    40. [40]

      Shin, S. J.; Kim, D. H.; Bae, G.; Ringe, S.; Choi, H.; Lim, H. K.; Choi, C. H.; Kim, H. Nat. Commun. 2022, 13, 174. doi: 10.1038/s41467-021-27909-x  doi: 10.1038/s41467-021-27909-x

    41. [41]

      Sebastian-Pascual, P.; Shao-Horn, Y.; Escudero-Escribano, M. Curr. Opin. Electrochem. 2022, 32, 10918. doi: 10.1016/j.coelec.2021.100918  doi: 10.1016/j.coelec.2021.100918

    42. [42]

      Bohra, D.; Chaudhry, J. H.; Burdyny, T.; Pidko, E. A.; Smith, W. A. Energy Environ. Sci. 2019, 12, 3380. doi: 10.1039/C9EE02485A  doi: 10.1039/C9EE02485A

    43. [43]

      Waegele, M. M.; Gunathunge, C. M.; Li, J. Y.; Li, X. J. Chem. Phys. 2019, 151, 160902. doi: 10.1063/1.5124878  doi: 10.1063/1.5124878

    44. [44]

      Ringe, S.; Morales-Guio, C. G.; Chen, L. D.; Fields, M.; Jaramillo, T. F.; Hahn, C.; Chan, K. Nat. Commun. 2020, 11, 33. doi: 10.1038/s41467-019-13777-z  doi: 10.1038/s41467-019-13777-z

    45. [45]

      Xu, Y.; Yang, H.; Chang, X.; Xu, B. Acta Phys. -Chim. Sin. 2023, 39, 2210025.  doi: 10.3866/PKU.WHXB202210025

    46. [46]

      Banerjee, S.; Gerke, C. S.; Thoi, V. S. Acc. Chem. Res. 2022, 55, 504. doi: 10.1021/acs.accounts.1c00680  doi: 10.1021/acs.accounts.1c00680

    47. [47]

      Tan, X.; Sun, X.; Han, B. Natl. Sci. Rev. 2022, 9, nwab022. doi: 10.1093/nsr/nwab022  doi: 10.1093/nsr/nwab022

    48. [48]

      Berto, T. C.; Zhang, L. H.; Hamers, R. J.; Berry, J. F. ACS Catal. 2015, 5, 703. doi: 10.1021/cs501641z  doi: 10.1021/cs501641z

    49. [49]

      Weng, L. C.; Bell, A. T.; Weber, A. Z. Energy Environ. Sci. 2019, 12, 1950. doi: 10.1039/C9EE00909D  doi: 10.1039/C9EE00909D

    50. [50]

      Singh, M. R.; Clark, E. L.; Bell, A. T. Phys. Chem. Chem. Phys. 2015, 17, 18924. doi: 10.1039/C5CP03283K  doi: 10.1039/C5CP03283K

    51. [51]

      Ovalle, V. J.; Waegele, M. M. J. Phys. Chem. C 2021, 125, 18567. doi: 10.1021/acs.jpcc.1c05921  doi: 10.1021/acs.jpcc.1c05921

    52. [52]

      Chen, W.; Zhang, M.; Liu, B.; Cai, J.; Chen, Y. Curr. Opin. Electrochem. 2022, 34, 101003. doi: 10.1016/j.coelec.2022.101003  doi: 10.1016/j.coelec.2022.101003

    53. [53]

      Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N.; et al. Nat. Catal. 2022, 5, 564. doi: 10.1038/s41929-022-00788-1  doi: 10.1038/s41929-022-00788-1

    54. [54]

      Gupta, N.; Gattrell, M.; MacDougall, B. J. Appl. Electrochem. 2006, 36, 161. doi: 10.1007/s10800-005-9058-y  doi: 10.1007/s10800-005-9058-y

    55. [55]

      Weng, L. C.; Bell, A. T.; Weber, A. Z. Phys. Chem. Chem. Phys. 2018, 20, 16973. doi: 10.1039/C8CP01319E  doi: 10.1039/C8CP01319E

    56. [56]

      Bui, J. C.; Kim, C.; Weber, A. Z.; Bell, A. T. ACS Energy Lett. 2021, 6, 1181. doi: 10.1021/acsenergylett.1c00364  doi: 10.1021/acsenergylett.1c00364

    57. [57]

      Welch, A. J.; Fenwick, A. Q.; Bohme, A.; Chen, H. Y.; Sullivan, I.; Li, X. Q.; DuChene, J. S.; Xiang, C. X.; Atwater, H. A. J. Phys. Chem. C 2021, 125, 20896. doi: 10.1021/acs.jpcc.1c06265  doi: 10.1021/acs.jpcc.1c06265

    58. [58]

      Monteiro, M. C. O.; Koper, M. T. M. Curr. Opin. Electrochem. 2021, 25, 100649. doi: 10.1016/j.coelec.2020.100649  doi: 10.1016/j.coelec.2020.100649

    59. [59]

      Schatz, M.; Jovanovic, S.; Eichel, R. A.; Granwehr, J. Sci. Rep. 2022, 12, 8274. doi: 10.1038/s41598-022-12264-8  doi: 10.1038/s41598-022-12264-8

    60. [60]

      Zhang, G.; Cui, Y.; Kucernak, A. ACS Catal. 2022, 12, 6180. doi: 10.1021/acscatal.2c00609  doi: 10.1021/acscatal.2c00609

    61. [61]

      Govindarajan, N.; Xu, A. N.; Chan, K. Science 2022, 375, 379. doi: 10.1126/science.abj2421  doi: 10.1126/science.abj2421

    62. [62]

      Kim, B.; Ma, S.; Jhong, H. R. M.; Kenis, P. J. A. Electrochim. Acta 2015, 166, 271. doi: 10.1016/j.electacta.2015.03.064  doi: 10.1016/j.electacta.2015.03.064

    63. [63]

      Gao, D.; Wang, J.; Wu, H.; Jiang, X.; Miao, S.; Wang, G.; Bao, X. Electrochem. Commun. 2015, 55, 1. doi: 10.1016/j.elecom.2015.03.008  doi: 10.1016/j.elecom.2015.03.008

    64. [64]

      Wuttig, A.; Yaguchi, M.; Motobayashi, K.; Osawa, M.; Surendranath, Y. Proc. Natl Acad. Sci. USA 2016, 113, E4585. doi: 10.1073/pnas.1602984113  doi: 10.1073/pnas.1602984113

    65. [65]

      Jiang, X.; Li, H.; Yang, Y.; Gao, D. J. Mater. Sci. 2020, 55, 13916. doi: 10.1007/s10853-020-04983-y  doi: 10.1007/s10853-020-04983-y

    66. [66]

      Kim, B.; Seong, H.; Song, J. T.; Kwak, K.; Song, H.; Tan, Y. C.; Park, G.; Lee, D.; Oh, J. ACS Energy Lett. 2020, 5, 749. doi: 10.1021/acsenergylett.9b02511  doi: 10.1021/acsenergylett.9b02511

    67. [67]

      Goyal, A.; Marcandalli, G.; Mints, V. A.; Koper, M. T. M. J. Am. Chem. Soc. 2020, 142, 4154. doi: 10.1021/jacs.9b10061  doi: 10.1021/jacs.9b10061

    68. [68]

      Marcandalli, G.; Goyal, A.; Koper, M. T. M. ACS Catal. 2021, 11, 4936. doi: 10.1021/acscatal.1c00272  doi: 10.1021/acscatal.1c00272

    69. [69]

      Varela, A. S.; Kroschel, M.; Leonard, N. D.; Ju, W.; Steinberg, J.; Bagger, A.; Rossmeisl, J.; Strasser, P. ACS Energy Lett. 2018, 3, 812. doi: 10.1021/acsenergylett.8b00273  doi: 10.1021/acsenergylett.8b00273

    70. [70]

      Seifitokaldani, A.; Gabardo, C. M.; Burdyny, T.; Dinh, C. T.; Edwards, J. P.; Kibria, M. G.; Bushuyev, O. S.; Kelley, S. O.; Sinton, D.; Sargent, E. H. J. Am. Chem. Soc. 2018, 140, 3833. doi: 10.1021/jacs.7b13542  doi: 10.1021/jacs.7b13542

    71. [71]

      Whipple, D. T.; Finke, E. C.; Kenis, P. J. A. Electrochem. Solid-Sate Lett. 2010, 13, B109. doi: 10.1149/1.3456590  doi: 10.1149/1.3456590

    72. [72]

      Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. Nat. Commun. 2014, 5, 3242. doi: 10.1038/ncomms4242  doi: 10.1038/ncomms4242

    73. [73]

      Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y. J. Am. Chem. Soc. 2015, 137, 14834. doi: 10.1021/jacs.5b08259  doi: 10.1021/jacs.5b08259

    74. [74]

      Jiang, X.; Cai, F.; Gao, D.; Dong, J.; Miao, S.; Wang, G.; Bao, X. Electrochem. Commun. 2016, 68, 67. doi: 10.1016/j.elecom.2016.05.003  doi: 10.1016/j.elecom.2016.05.003

    75. [75]

      Zhang, B. A.; Ozel, T.; Elias, J. S.; Costentin, C.; Nocera, D. G. ACS Cent. Sci. 2019, 5, 1097. doi: 10.1021/acscentsci.9b00302  doi: 10.1021/acscentsci.9b00302

    76. [76]

      Raciti, D.; Mao, M.; Park, J. H.; Wang, C. J. Electrochem. Soc. 2018, 165, F799. doi: 10.1149/2.0521810jes  doi: 10.1149/2.0521810jes

    77. [77]

      Moradzaman, M.; Mul, G. J. Phys. Chem. C 2021, 125, 6546. doi: 10.1021/acs.jpcc.0c10792  doi: 10.1021/acs.jpcc.0c10792

    78. [78]

      Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705  doi: 10.1021/acs.chemrev.8b00705

    79. [79]

      Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. J. Phys. Chem. B 1997, 101, 7075. doi: 10.1021/jp970284i  doi: 10.1021/jp970284i

    80. [80]

      Schouten, K. J. P.; Gallent, E. P.; Koper, M. T. M. J. Electroanal. Chem. 2014, 716, 53. doi: 10.1016/j.jelechem.2013.08.033  doi: 10.1016/j.jelechem.2013.08.033

    81. [81]

      Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X. Y.; Higgins, D. C.; Chan, K. R.; Norskov, J. K.; Hahn, C.; et al. ACS Catal. 2018, 8, 7445. doi: 10.1021/acscatal.8b01200  doi: 10.1021/acscatal.8b01200

    82. [82]

      Kastlunger, G.; Wang, L.; Govindarajan, N.; Heenen, H. H.; Ringe, S.; Jaramillo, T.; Hahn, C.; Chan, K. R. ACS Catal. 2022, 12, 4344. doi: 10.1021/acscatal.1c05520  doi: 10.1021/acscatal.1c05520

    83. [83]

      Liu, X. Y.; Schlexer, P.; Xiao, J. P.; Ji, Y. F.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H. J.; Ringe, S.; et al. Nat. Commun. 2019, 10, 2515. doi: 10.1038/s41467-018-07970-9  doi: 10.1038/s41467-018-07970-9

    84. [84]

      Schreier, M.; Yoon, Y.; Jackson, M. N.; Surendranath, Y. Angew. Chem. Int. Ed. 2018, 57, 10221. doi: 10.1002/anie.201806051  doi: 10.1002/anie.201806051

    85. [85]

      Li, J.; Chang, X. X.; Zhang, H. C.; Malkani, A. S.; Cheng, M. J.; Xu, B. J.; Lu, Q. Nat. Commun. 2021, 12, 3264. doi: 10.1038/s41467-021-23582-2  doi: 10.1038/s41467-021-23582-2

    86. [86]

      Chang, X. X.; Li, J.; Xiong, H. C.; Zhang, H. C.; Xu, Y. F.; Xiao, H.; Lu, Q.; Xu, B. J. Angew. Chem. Int. Ed. 2022, 134, e202111167. doi: 10.1002/ange.202111167  doi: 10.1002/ange.202111167

    87. [87]

      Lin, L.; Liu, T.; Xiao, J.; Li, H.; Wei, P.; Gao, D.; Nan, B.; Si, R.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2020, 59, 22408. doi: 10.1002/anie.202009191  doi: 10.1002/anie.202009191

    88. [88]

      Resasco, J.; Lum, Y.; Clark, E.; Zeledon, J. Z.; Bell, A. T. ChemElectroChem 2018, 5, 1064. doi: 10.1002/celc.201701316  doi: 10.1002/celc.201701316

    89. [89]

      Gunathunge, C. M.; Ovalle, V. J.; Li, Y. W.; Janik, M. J.; Waegele, M. M. ACS Catal. 2018, 8, 7507. doi: 10.1021/acscatal.8b01552  doi: 10.1021/acscatal.8b01552

    90. [90]

      Chou, T. C.; Chang, C. C.; Yu, H. L.; Yu, W. Y.; Dong, C. L.; Velasco-Velez, J. J.; Chuang, C. H.; Chen, L. C.; Lee, J. F.; Chen, J. M.; et al. J. Am. Chem. Soc. 2020, 142, 2857. doi: 10.1021/jacs.9b11126  doi: 10.1021/jacs.9b11126

    91. [91]

      Chang, X.; Zhao, Y.; Xu, B. ACS Catal. 2020, 10, 13737. doi: 10.1021/acscatal.0c03108  doi: 10.1021/acscatal.0c03108

    92. [92]

      Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; de Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al. Science 2018, 360, 783. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    93. [93]

      Ma, W.; Xie, S.; Liu, T.; Fan, Q.; Ye, J.; Sun, F.; Jiang, Z.; Zhang, Q.; Cheng, J.; Wang, Y. Nat. Catal. 2020, 3, 478. doi: 10.1038/s41929-020-0450-0  doi: 10.1038/s41929-020-0450-0

    94. [94]

      Li, H.; Liu, T.; Wei, P.; Lin, L.; Gao, D.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2021, 133, 14450. doi: 10.1002/ange.202102657  doi: 10.1002/ange.202102657

    95. [95]

      Lu, X.; Zhu, C.; Wu, Z.; Xuan, J.; Francisco, J. S.; Wang, H. J. Am. Chem. Soc. 2020, 142, 15438. doi: 10.1021/jacs.0c06779  doi: 10.1021/jacs.0c06779

    96. [96]

      Henckel, D. A.; Counihan, M. J.; Holmes, H. E.; Chen, X. Y.; Nwabara, U. O.; Verma, S.; Rodriguez-Lopez, J.; Kenis, P. J. A.; Gewirth, A. A. ACS Catal. 2021, 11, 255. doi: 10.1021/acscatal.0c04297  doi: 10.1021/acscatal.0c04297

    97. [97]

      Jiang, S.; D'Amario, L.; Dau, H. ChemSusChem 2022, 15, e202102506. doi: 10.1002/cssc.202102506  doi: 10.1002/cssc.202102506

    98. [98]

      de Ruiter, J.; An, H. Y.; Wu, L. F.; Gijsberg, Z.; Yang, S.; Hartman, T.; Weckhuysen, B. M.; Stam, W. V. J. Am. Chem. Soc. 2022, 144, 15047. doi: 10.1021/jacs.2c03172  doi: 10.1021/jacs.2c03172

    99. [99]

      Luc, W.; Fu, X. B.; Shi, J. J.; Lv, J. J.; Jouny, M.; Ko, B. H.; Xu, Y. B.; Tu, Q.; Hu, X. B.; Wu, J. S.; et al. Nat. Catal. 2019, 2, 423. doi: 10.1038/s41929-019-0269-8  doi: 10.1038/s41929-019-0269-8

    100. [100]

      Heenen, H. H.; Shin, H.; Kastlunger, G.; Overa, S.; Gauthier, J. A.; Jiao, F.; Chan, K. Energy Environ. Sci. 2022, 15, 3978. doi: 10.1039/D2EE01485H  doi: 10.1039/D2EE01485H

    101. [101]

      Kim, C.; Weng, L. C.; Bell, A. T. ACS Catal. 2020, 10, 12403. doi: 10.1021/acscatal.0c02915  doi: 10.1021/acscatal.0c02915

    102. [102]

      Aran-Ais, R. M.; Scholten, F.; Kunze, S.; Rizo, R.; Roldan Cuenya, B. Nat. Energy 2020, 5, 317. doi: 10.1038/s41560-020-0594-9  doi: 10.1038/s41560-020-0594-9

    103. [103]

      Jeon, H. S.; Timoshenko, J.; Rettenmaier, C.; Herzog, A.; Yoon, A.; Chee, S. W.; Oener, S.; Hejral, U.; Haase, F. T.; Roldan Cuenya, B. J. Am. Chem. Soc. 2021, 143, 7578. doi: 10.1021/jacs.1c03443  doi: 10.1021/jacs.1c03443

    104. [104]

      Murata, A.; Hori, Y. Bull. Chem. Soc. Jpn. 1991, 64, 123. doi: 10.1246/bcsj.64.123  doi: 10.1246/bcsj.64.123

    105. [105]

      Singh, M. R.; Kwon, Y.; Lum, Y.; Ager, J. W.; Bell, A. T. J. Am. Chem. Soc. 2016, 138, 13006. doi: 10.1021/jacs.6b07612  doi: 10.1021/jacs.6b07612

    106. [106]

      Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. J. Am. Chem. Soc. 2017, 139, 11277. doi: 10.1021/jacs.7b06765  doi: 10.1021/jacs.7b06765

    107. [107]

      Gao, D.; McCrum, I. T.; Deo, S.; Choi, Y. W.; Scholten, F.; Wan, W.; Chen, J. G.; Janik, M. J.; Roldan Cuenya, B. ACS Catal. 2018, 8, 10012. doi: 10.1021/acscatal.8b02587  doi: 10.1021/acscatal.8b02587

    108. [108]

      Malkani, A. S.; Li, J.; Oliveira, N. J.; He, M.; Chang, X.; Xu, B.; Lu, Q. Sci. Adv. 2020, 6, eabd2569. doi: 10.1126/sciadv.abd2569  doi: 10.1126/sciadv.abd2569

    109. [109]

      Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; Garcia-Muelas, R.; Lopez, N.; Koper, M. T. M. Nat. Catal. 2021, 4, 654. doi: 10.1038/s41929-021-00655-5  doi: 10.1038/s41929-021-00655-5

    110. [110]

      Rebstock, J. A.; Zhu, Q. S.; Baker, L. R. Chem. Sci. 2022, 13, 7634. doi: 10.1039/D2SC01878K  doi: 10.1039/D2SC01878K

    111. [111]

      Pan, B.; Wang, Y.; Li, Y. Chem. Catal. 2022, 2, 1267. doi: 10.1016/j.checat.2022.03.012  doi: 10.1016/j.checat.2022.03.012

    112. [112]

      Yu, Y.; Yin, J.; Li, R.; Ma, Y. B.; Fan, Z. Chem. Catal. 2022, 2, 2229. doi: 10.1016/j.checat.2022.07.024  doi: 10.1016/j.checat.2022.07.024

    113. [113]

      Akhade, S. A.; McCrum, I. T.; Janik, M. J. J. Electrochem. Soc. 2016, 163, F477. doi: 10.1149/2.0581606jes  doi: 10.1149/2.0581606jes

    114. [114]

      Ringe, S.; Clark, E. L.; Resasco, J.; Walton, A.; Seger, B.; Bell, A. T.; Chan, K. Energy Environ. Sci. 2019, 12, 3001. doi: 10.1039/C9EE01341E  doi: 10.1039/C9EE01341E

    115. [115]

      Wallentine, S.; Bandaranayake, S.; Biswas, S.; Baker, L. R. J. Phys. Chem. Lett. 2020, 11, 8307. doi: 10.1021/acs.jpclett.0c02628  doi: 10.1021/acs.jpclett.0c02628

    116. [116]

      Hussain, G.; Perez-Martinez, L.; Le, J. B.; Papasizza, M.; Cabello, G.; Cheng, J.; Cuesta, A. Electrochim. Acta 2019, 327, 135055. doi: 10.1016/j.electacta.2019.135055  doi: 10.1016/j.electacta.2019.135055

    117. [117]

      Chen, L. D.; Urushihara, M.; Chan, K. R.; Norskov, J. K. ACS Catal. 2016, 6, 7133. doi: 10.1021/acscatal.6b02299  doi: 10.1021/acscatal.6b02299

    118. [118]

      Ayemoba, O.; Cuesta, A. ACS Appl. Mater. Interfaces 2017, 9, 27377. doi: 10.1021/acsami.7b07351  doi: 10.1021/acsami.7b07351

    119. [119]

      Zhang, F.; Co, A. C. Angew. Chem. Int. Ed. 2020, 59, 1674. doi: 10.1002/anie.201912637  doi: 10.1002/anie.201912637

    120. [120]

      Li, J. Y.; Li, X.; Gunathunge, C. M.; Waegele, M. M. Proc. Natl. Acad. Sci. USA 2019, 116, 9220. doi: 10.1073/pnas.1900761116  doi: 10.1073/pnas.1900761116

    121. [121]

      Bagger, A.; Arnarson, L.; Hansen, M. H.; Spohr, E.; Rossmeisl, J. J. Am. Chem. Soc. 2019, 141, 1506. doi: 10.1021/jacs.8b08839  doi: 10.1021/jacs.8b08839

    122. [122]

      Yin, Z.; Peng, H.; Wei, X.; Zhou, H.; Gong, J.; Huai, M.; Xiao, L.; Wang, G.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2019, 12, 2455. doi: 10.1039/C9EE01204D  doi: 10.1039/C9EE01204D

    123. [123]

      Li, W.; Yin, Z.; Gao, Z.; Wang, G.; Li, Z.; Wei, F.; Wei, X.; Peng, H.; Hu, X.; Xiao, L.; et al. Nat. Energy 2022, 7, 835. doi: 10.1038/s41560-022-01092-9  doi: 10.1038/s41560-022-01092-9

    124. [124]

      Xu, Y.; Miao, R. K.; Edwards, J. P.; Liu, S. J.; O'Brien, C. P.; Gabardo, C. M.; Fan, M. Y.; Huang, J. E.; Robb, A.; Sargent, E. H.; et al. Joule 2022, 6, 1333. doi: 10.1016/j.joule.2022.04.023  doi: 10.1016/j.joule.2022.04.023

    125. [125]

      Neyrizi, S.; Kiewiet, J.; Hempenius, M. A.; Mul, G. ACS Energy Lett. 2022, 7, 3439. doi: 10.1021/acsenergylett.2c01372  doi: 10.1021/acsenergylett.2c01372

    126. [126]

      Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H.; et al. Nature 2016, 537, 382. doi: 10.1038/nature19060  doi: 10.1038/nature19060

    127. [127]

      Le, D.; Rahman, T. S. Nat. Catal. 2022, 5, 977. doi: 10.1038/s41929-022-00876-2  doi: 10.1038/s41929-022-00876-2

    128. [128]

      Dattila, F.; Monteiro, M. C. O.; Koper, M. T. M.; Lopez, N. Nat. Catal. 2022, 5, 979. doi: 10.1038/s41929-022-00877-1  doi: 10.1038/s41929-022-00877-1

    129. [129]

      Liu, H.; Liu, J.; Yang, B. ACS Catal. 2021, 11, 12336. doi: 10.1021/acscatal.1c01072  doi: 10.1021/acscatal.1c01072

    130. [130]

      Shin, S. J.; Choi, H.; Ringe, S.; Won, D. H.; Oh, H. S.; Kim, D. H.; Lee, T.; Nam, D. H.; Kim, H.; Choi, C. H. Nat. Commun. 2022, 13, 5482. doi: 10.1038/s41467-022-33199-8  doi: 10.1038/s41467-022-33199-8

    131. [131]

      Ren, W.; Xu, A.; Chan, K. R.; Hu, X. Angew. Chem. Int. Ed. 2022, 61, e202214173. doi: 10.1002/anie.202214173  doi: 10.1002/anie.202214173

    132. [132]

      Chandrashekar, S.; van Montfort, H. P. I.; Bohra, D.; Filonenko, G.; Geerlings, H.; Burdyny, T.; Smith, W. A. Nanoscale 2022, 14, 14185. doi: 10.1039/D2NR03438G  doi: 10.1039/D2NR03438G

    133. [133]

      Bhargava, S. S.; Cofell, E. R.; Chumble, P.; Azmoodeh, D.; Someshwar, S.; Kenis, P. J. A. Electrochim. Acta 2021, 394, 139055. doi: 10.1016/j.electacta.2021.139055  doi: 10.1016/j.electacta.2021.139055

    134. [134]

      Huang, J. E.; Li, F. W.; Ozden, A.; Rasouli, A. S.; de Arquer, F. P. G.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. W.; et al. Science 2021, 372, 1074. doi: 10.1126/science.abg6582  doi: 10.1126/science.abg6582

    135. [135]

      Monteiro, M. C. O.; Philips, M. F.; Schouten, K. J. P.; Koper, M. T. M. Nat. Commun. 2021, 12, 4943. doi: 10.1038/s41467-021-24936-6  doi: 10.1038/s41467-021-24936-6

    136. [136]

      Gu, J.; Liu, S.; Ni, W.; Ren, W.; Haussener, S.; Hu, X. Nat. Catal. 2022, 5, 268. doi: 10.1038/s41929-022-00761-y  doi: 10.1038/s41929-022-00761-y

    137. [137]

      Qiao, Y.; Lai, W.; Huang, K.; Yu, T.; Wang, Q.; Gao, L.; Yang, Z.; Ma, Z.; Sun, T.; Liu, M.; et al. ACS Catal. 2022, 12, 2357. doi: 10.1021/acscatal.1c05135  doi: 10.1021/acscatal.1c05135

    138. [138]

      Sheng, X.; Ge, W.; Jiang, H.; Li, C. Adv. Mater. 2022, 34, 2201295. doi: 10.1002/adma.202201295  doi: 10.1002/adma.202201295

    139. [139]

      Liu, Z.; Yan, T.; Shi, H.; Pan, H.; Cheng, Y.; Kang, P. ACS Appl. Mater. Interfaces 2022, 14, 7900. doi: 10.1021/acsami.1c21242  doi: 10.1021/acsami.1c21242

    140. [140]

      Jiang, Z.; Zhang, Z.; Li, H.; Tang, Y.; Yuan, Y.; Zao, J.; Zheng, H.; Liang, Y. Adv. Energy Mater. 2023, doi: 10.1002/aenm.202203603  doi: 10.1002/aenm.202203603

    141. [141]

      Qin, H.; Li, F.; Du, Y.; Yang, L.; Wang, H.; Bai, Y.; Lin, M.; Gu, J. ACS Catal. 2023, 13, 916. doi: 10.1021/acscatal.2c04875  doi: 10.1021/acscatal.2c04875

    142. [142]

      Schizodimou, A.; Kyriacou, G. Electrochim. Acta 2012, 78, 171. doi: 10.1016/j.electacta.2012.05.118  doi: 10.1016/j.electacta.2012.05.118

    143. [143]

      Monteiro, M. C. O.; Dattila, F.; Lopez, N.; Koper, M. T. M. J. Am. Chem. Soc. 2022, 144, 1589. doi: 10.1021/jacs.1c10171  doi: 10.1021/jacs.1c10171

    144. [144]

      Wang, Y.; Dan, X.; Wang, X.; Yi, Z.; Fu, J.; Feng, Y.; Hu, J.; Wang, D.; Wan, L. J. Am. Chem. Soc. 2022, 144, 20126. doi: 10.1021/jacs.2c09862  doi: 10.1021/jacs.2c09862

    145. [145]

      Ovalle, V. J.; Hsu, Y. S.; Agrawal, N.; Janik, M. J.; Waegele, M. M. Nat. Catal. 2022, 5, 624. doi: 10.1038/s41929-022-00816-0  doi: 10.1038/s41929-022-00816-0

    146. [146]

      Li, J.; Wu, D. H.; Malkani, A. S.; Chang, X. X.; Cheng, M. J.; Xu, B. J.; Lu, Q. Angew. Chem. Int. Ed. 2020, 59, 4464. doi: 10.1002/anie.201912412  doi: 10.1002/anie.201912412

    147. [147]

      Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc., Faraday Trans. 1 1989, 85, 2309. doi: 10.1039/F19898502309  doi: 10.1039/F19898502309

    148. [148]

      Sun, M.; Staykov, A.; Yamauchi, M. ACS Catal. 2022, 12, 14856. doi: 10.1021/acscatal.2c03650  doi: 10.1021/acscatal.2c03650

    149. [149]

      Sebastian-Pascual, P.; Petersen, A. S.; Bagger, A.; Rossmeisl, J.; Escudero-Escribano, M. ACS Catal. 2021, 11, 1128. doi: 10.1021/acscatal.0c03998  doi: 10.1021/acscatal.0c03998

    150. [150]

      Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P. Catal. Today 2016, 260, 8. doi: 10.1016/j.cattod.2015.06.009  doi: 10.1016/j.cattod.2015.06.009

    151. [151]

      Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G. G.; Yan, Y. S.; Jiao, F.; Xu, B. J. J. Am. Chem. Soc. 2017, 139, 3774. doi: 10.1021/jacs.7b10462  doi: 10.1021/jacs.7b10462

    152. [152]

      Zhu, S. Q.; Jiang, B.; Cai, W. B.; Shao, M. H. J. Am. Chem. Soc. 2017, 139, 15664. doi: 10.1021/jacs.7b10462  doi: 10.1021/jacs.7b10462

    153. [153]

      Wuttig, A.; Yoon, Y.; Ryu, J.; Surendranath, Y. J. Am. Chem. Soc. 2017, 139, 17109. doi: 10.1021/jacs.7b08345  doi: 10.1021/jacs.7b08345

    154. [154]

      Li, T.; Yang, C.; Luo, J.; Zheng, G. ACS Catal. 2019, 9, 10440. doi: 10.1021/acscatal.9b02443  doi: 10.1021/acscatal.9b02443

    155. [155]

      Shan, W.; Liu, R.; Zhao, H.; Liu, J. J. Phys. Chem. Lett. 2022, 13, 7296. doi: 10.1021/acs.jpclett.2c01372  doi: 10.1021/acs.jpclett.2c01372

    156. [156]

      McCrum, I. T.; Akhade, S. A.; Janik, M. J. Electrochim. Acta 2015, 173, 302. doi: 10.1016/j.electacta.2015.05.036  doi: 10.1016/j.electacta.2015.05.036

    157. [157]

      Ovalle, V. J.; Waegele, M. M. J. Phys. Chem. C 2020, 124, 14713. doi: 10.1021/acs.jpcc.0c04037  doi: 10.1021/acs.jpcc.0c04037

    158. [158]

      Yuan, T.; Wang, T.; Zhang, G.; Deng, W.; Cheng, D.; Gao, H.; Zhao, J.; Yu, J.; Zhang, P.; Gong, J. Chem. Sci. 2022, 13, 8117. doi: 10.1039/D2SC02689A  doi: 10.1039/D2SC02689A

    159. [159]

      Garg, S.; Li, M. R.; Wu, Y. M.; Idros, M. N.; Wang, H. M.; Yago, A. J.; Ge, L.; Wang, G. X.; Rufford, T. E. ChemSusChem 2021, 14, 2601. doi: 10.1002/cssc.202100848  doi: 10.1002/cssc.202100848

    160. [160]

      Verma, S.; Lu, X.; Ma, S. C.; Masel, R. I.; Kenis, P. J. A. Phys. Chem. Chem. Phys. 2016, 18, 7075. doi: 10.1039/C5CP05665A  doi: 10.1039/C5CP05665A

    161. [161]

      Hsieh, Y. C.; Betancourt, L. E.; Senanayake, S. D.; Hu, E. Y.; Zhang, Y.; Xu, W. Q.; Polyansky, D. E. ACS Appl. Energy Mater. 2019, 2, 102. doi: 10.1021/acsaem.8b01692  doi: 10.1021/acsaem.8b01692

    162. [162]

      Li, S.; Dong, X.; Zhao, Y.; Mao, J.; Chen, W.; Chen, A.; Song, Y.; Li, G.; Jiang, Z.; Wei, W.; et al. Angew. Chem. Int. Ed. 2022, 61, e202210432. doi: 10.1002/anie.202210432  doi: 10.1002/anie.202210432

    163. [163]

      Varela, A. S.; Ju, W.; Reier, T.; Strasser, P. ACS Catal. 2016, 6, 2136. doi: 10.1021/acscatal.5b02550  doi: 10.1021/acscatal.5b02550

    164. [164]

      Gao, D.; Scholten, F.; Roldan Cuenya, B. ACS Catal. 2017, 7, 5112. doi: 10.1021/acscatal.7b01416  doi: 10.1021/acscatal.7b01416

    165. [165]

      Huang, Y.; Ong, C. W.; Yeo, B. S. ChemSusChem 2018, 11, 3299. doi: 10.1002/cssc.201801078  doi: 10.1002/cssc.201801078

    166. [166]

      Yang, Y.; Li, K. J.; Ajmal, S.; Feng, Y. Q.; Bacha, A. U. R.; Nabi, L.; Zhang, L. W. Sustain. Energy Fuels 2020, 4, 2284. doi: 10.1039/C9SE01318K  doi: 10.1039/C9SE01318K

    167. [167]

      Masana, J. J.; Peng, B. W.; Shuai, Z. Y.; Qiu, M.; Yu, Y. J. Mater. Chem. A 2022, 10, 1086. doi: 10.1039/D1TA09125E  doi: 10.1039/D1TA09125E

    168. [168]

      Gao, D.; Li, H.; Wei, P.; Wang, Y.; Wang, G.; Bao, X. Chin. J. Catal. 2022, 43, 1001. doi: 10.1016/S1872-2067(21)63940-2  doi: 10.1016/S1872-2067(21)63940-2

    169. [169]

      Gao, D.; Sinev, I.; Scholten, F.; Aran-Ais, R. M.; Divins, N. J.; Kvashnina, K.; Timoshenko, J.; Roldan Cuenya, B. Angew. Chem. Int. Ed. 2019, 58, 17047. doi: 10.1002/anie.201910155  doi: 10.1002/anie.201910155

    170. [170]

      Gao, D.; Zegkinoglou, I.; Divins, N. J.; Scholten, F.; Sinev, I.; Grosse, P.; Roldan Cuenya, B. ACS Nano 2017, 11, 4825. doi: 10.1021/acsnano.7b01257  doi: 10.1021/acsnano.7b01257

    171. [171]

      Grosse, P.; Gao, D.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B. Angew. Chem. Int. Ed. 2018, 57, 6192. doi: 10.1002/anie.201802083  doi: 10.1002/anie.201802083

    172. [172]

      Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. J. Am. Chem. Soc. 2018, 140, 8681. doi: 10.1021/jacs.8b02173  doi: 10.1021/jacs.8b02173

    173. [173]

      Wang, H.; Matios, E.; Wang, C.; Luo, J.; Lu, X.; Hu, X.; Li, W. Nano Lett. 2019, 19, 3925. doi: 10.1021/acs.nanolett.9b01197  doi: 10.1021/acs.nanolett.9b01197

    174. [174]

      Aran-Ais, R. M.; Rizo, R.; Grosse, P.; Algara-Siller, G.; Dembel, K.; Plodinec, M.; Lunkenbein, T.; Chee, S. W.; Roldan Cuenya, B. Nat. Commun. 2020, 11, 3489. doi: 10.1038/s41467-020-17220-6  doi: 10.1038/s41467-020-17220-6

    175. [175]

      Grosse, P.; Yoon, A.; Rettenmaier, C.; Herzog, A.; Chee, S. W.; Roldan Cuenya, B. Nat. Commun. 2021, 12, 6736. doi: 10.1038/s41467-021-26743-5  doi: 10.1038/s41467-021-26743-5

    176. [176]

      Zhao, Z.; Zhang, J.; Lei, M.; Lum, Y. Nano Res. Energy 2023, doi: 10.26599/NRE.2023.9120044  doi: 10.26599/NRE.2023.9120044

    177. [177]

      Overa, S.; Feric, T. G.; Park, A. H. A.; Jiao, F. Joule 2021, 5, 8. doi: 10.1016/j.joule.2020.12.004  doi: 10.1016/j.joule.2020.12.004

    178. [178]

      Gao, D.; Cai, F.; Xu, Q.; Wang, G.; Pan, X.; Bao, X. J. Energy Chem. 2014, 23, 694. doi: 10.1016/S2095-4956(14)60201-1  doi: 10.1016/S2095-4956(14)60201-1

    179. [179]

      Wei, P.; Li, H.; Lin, L.; Gao, D.; Zhang, X.; Gong, H.; Qing, G.; Cai, R.; Wang, G.; Bao, X. Sci. China Chem. 2020, 63, 1711. doi: 10.1007/s11426-020-9825-9  doi: 10.1007/s11426-020-9825-9

    180. [180]

      Endrodi, B.; Kecsenovity, E.; Samu, A.; Halmagyi, T.; Rojas-Carbonell, S.; Wang, L.; Yan, Y.; Janaky, C. Energy Environ. Sci. 2020, 13, 4098. doi: 10.1039/D0EE02589E  doi: 10.1039/D0EE02589E

    181. [181]

      Oener, S. Z.; Twight, L. P.; Lindquist, G. A.; Boettcher, S. W. ACS Energy Lett. 2021, 6, 1. doi: 10.1021/acsenergylett.0c02078  doi: 10.1021/acsenergylett.0c02078

    182. [182]

      Ge, L.; Rabiee, H.; Li, M. R.; Subramanian, S.; Zheng, Y.; Lee, J. H.; Burdyny, T.; Wang, H. Chem 2022, 8, 663. doi: 10.1016/j.chempr.2021.12.002  doi: 10.1016/j.chempr.2021.12.002

    183. [183]

      Xie, K.; Miao, R. K.; Ozden, A.; Liu, S. J.; Chen, Z.; Dinh, C. T.; Huang, J. E.; Xu, Q. C.; Gabardo, C. M.; Lee, G.; et al. Nat. Commun. 2022, 13, 3609. doi: 10.1038/s41467-022-31295-3  doi: 10.1038/s41467-022-31295-3

    184. [184]

      Garg, S.; Rodriguez, C. A. G.; Rufford, T. E.; Varcoe, J. R.; Seger, B. Energy Environ. Sci. 2022, 15, 4440. doi: 10.1039/D2EE01818G  doi: 10.1039/D2EE01818G

    185. [185]

      Sang, J.; Wei, P.; Liu, T.; Lv, H.; Ni, X.; Gao, D.; Zhang, J.; Li, H.; Zang, Y.; Yang, F.; et al. Angew. Chem. Int. Ed. 2022, 61, e202114238. doi: 10.1002/anie.202114238  doi: 10.1002/anie.202114238

    186. [186]

      Kowalski, A.; Faber, G.; Cave, E. Curr. Opin. Green Sustain. Chem. 2023, 39, 100702. doi: 10.1016/j.cogsc.2022.100702  doi: 10.1016/j.cogsc.2022.100702

    187. [187]

      Park, J.; Ko, Y.-J.; Lim, C.; Kim, H.; Min, B. K.; Lee, K.-Y.; Koh, J. H.; Oh, H.-S.; Lee, W. H. Chem. Eng. J. 2023, 453, 139826. doi: 10.1016/j.cej.2022.139826  doi: 10.1016/j.cej.2022.139826

    188. [188]

      Jiang, X.; Lin, L.; Rong, Y.; Li, R.; Jiang, Q.; Yang, Y.; Gao, D. Nano Res. 2023, doi: 10.1007/s12274-022-5073-0  doi: 10.1007/s12274-022-5073-0

    189. [189]

      Wei, P.; Gao, D.; Liu, T.; Li, H.; Sang, J.; Wang, C.; Cai, R.; Wang, G.; Bao, X. Nat. Nanotechnol. 2023, doi: 10.1038/s41565-022-01286-y  doi: 10.1038/s41565-022-01286-y

    190. [190]

      Ma, M.; Clark, E. L.; Therkildsen, K. T.; Dalsgaard, S.; Chorkendorff, I.; Seger, B. Energy Environ. Sci. 2020, 13, 977. doi: 10.1039/D0EE00047G  doi: 10.1039/D0EE00047G

    191. [191]

      McCallum, C.; Gabardo, C. M.; O'Brien, C. P.; Edwards, J. P.; Wicks, J.; Xu, Y.; Sargent, E. H.; Sinton, D. Cell Rep. Phys. Sci. 2021, 2, 100522. doi: 10.1016/j.xcrp.2021.100522  doi: 10.1016/j.xcrp.2021.100522

    192. [192]

      Rabinowitz, J. A.; Kanan, M. W. Nat. Commun. 2020, 11, 5231. doi: 10.1038/s41467-020-19135-8  doi: 10.1038/s41467-020-19135-8

    193. [193]

      Jouny, M.; Luc, W.; Jiao, F. Nat. Catal. 2018, 1, 748. doi: 10.1038/s41929-018-0133-2  doi: 10.1038/s41929-018-0133-2

    194. [194]

      Kim, J. Y.; Zhu, P.; Chen, F. Y.; Wu, Z. Y.; Cullen, D. A.; Wang, H. T. Nat. Catal. 2022, 5, 288. doi: 10.1038/s41929-022-00763-w  doi: 10.1038/s41929-022-00763-w

    195. [195]

      Zheng, Y. W.; Omasta, T. J.; Peng, X.; Wang, L. Q.; Varcoe, J. R.; Pivovar, B. S.; Mustain, W. E. Energy Environ. Sci. 2019, 12, 2806. doi: 10.1039/C9EE01334B  doi: 10.1039/C9EE01334B

    196. [196]

      Endrodi, B.; Samu, A.; Kecsenovity, E.; Halmagyi, T.; Sebok, D.; Janaky, C. Nat. Energy 2021, 6, 439. doi: 10.1038/s41560-021-00813-w  doi: 10.1038/s41560-021-00813-w

    197. [197]

      Romiluyi, O.; Danilovic, N.; Bell, A. T.; Weber, A. Z. Electrochem. Sci. Adv. 2022, e2100186. doi: 10.1002/elsa.202100186  doi: 10.1002/elsa.202100186

    198. [198]

      Li, M. R.; Idros, M. N.; Wu, Y. M.; Burdyny, T.; Garg, S.; Zhao, X. S.; Wang, G.; Rufford, T. E. J. Mater. Chem. A 2021, 9, 19369. doi: 10.1039/D1TA03636J  doi: 10.1039/D1TA03636J

    199. [199]

      Wheeler, D. G.; Mowbray, B. A. W.; Reyes, A.; Habibzadeh, F.; He, J. F.; Berlinguette, C. P. Energy Environ. Sci. 2020, 13, 5126. doi: 10.1039/D0EE02219E  doi: 10.1039/D0EE02219E

    200. [200]

      Choi, W.; Park, S.; Jung, W.; Won, D. H.; Na, J.; Hwang, Y. J. ACS Energy Lett. 2022, 7, 939. doi: 10.1021/acsenergylett.1c02658  doi: 10.1021/acsenergylett.1c02658

    201. [201]

      Gabardo, C. M.; O'Brien, C. P.; Edwards, J. P.; McCallum, C.; Xu, Y.; Dinh, C. T.; Li, J.; Sargent, E. H.; Sinton, D. Joule 2019, 3, 2777. doi: 10.1016/j.joule.2019.07.021  doi: 10.1016/j.joule.2019.07.021

    202. [202]

      Zhang, J.; Luo, W.; Zuttel, A. J. Catal. 2020, 385, 140. doi: 10.1016/j.jcat.2020.03.013  doi: 10.1016/j.jcat.2020.03.013

    203. [203]

      Miao, R. K.; Xu, Y.; Ozden, A.; Robb, A.; O'Brien, C. P.; Gabardo, C. M.; Lee, G.; Edwards, J. P.; Huang, J. E.; Fan, M. Y.; et al. Joule 2021, 5, 2742. doi: 10.1016/j.joule.2021.08.013  doi: 10.1016/j.joule.2021.08.013

    204. [204]

      Yang, K.; Li, M.; Subramanian, S.; Blommaert, M. A.; Smith, W. A.; Burdyny, T. ACS Energy Lett. 2021, 6, 4291. doi: 10.1021/acsenergylett.1c02058  doi: 10.1021/acsenergylett.1c02058

    205. [205]

      Siritanaratkul, B.; Forster, M.; Greenwell, F.; Sharma, P. K.; Yu, E. H.; Cowan, A. J. J. Am. Chem. Soc. 2022, 144, 7551. doi: 10.1021/jacs.1c13024  doi: 10.1021/jacs.1c13024

    206. [206]

      Pan, B.; Fan, J.; Zhang, J.; Luo, Y.; Shen, C.; Wang, C.; Wang, Y.; Li, Y. ACS Energy Lett. 2022, 7, 4224. doi: 10.1021/acsenergylett.2c02292  doi: 10.1021/acsenergylett.2c02292

    207. [207]

      Fan, L.; Xia, C.; Zhu, P.; Lu, Y.; Wang, H. Nat. Commun. 2021, 11, 3633. doi: 10.1038/s41467-020-17403-1  doi: 10.1038/s41467-020-17403-1

    208. [208]

      Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W.; Stavitski, E.; Alshareef, H. N.; Wang, H. Nat. Energy 2019, 4, 776. doi: 10.1038/s41560-019-0451-x  doi: 10.1038/s41560-019-0451-x

    209. [209]

      Wang, Z.; Zhou, Y.; Liu, D.; Qi, R.; Xia, C.; Li, M.; You, B.; Xia, B. Angew. Chem. Int. Ed. 2022, 61, e202200552. doi: 10.1002/anie.202200552  doi: 10.1002/anie.202200552

    210. [210]

      Ji, Y.; Chen, Z.; Wei, R.; Yang, C.; Wang, Y.; Xu, J.; Zhang, H.; Guan, A.; Chen, J.; Sham, T.-K.; et al. Nat. Catal. 2022, 5, 251. doi: 10.1038/s41929-022-00757-8  doi: 10.1038/s41929-022-00757-8

    211. [211]

      Sisler, J.; Khan, S.; Ip, A. H.; Schreiber, M. W.; Jaffer, S. A.; Bobicki, E. R.; Dinh, C.-T.; Sargent, E. H. ACS Energy Lett. 2021, 6, 997. doi: 10.1021/acsenergylett.0c02633  doi: 10.1021/acsenergylett.0c02633

    212. [212]

      Ozden, A.; Wang, Y.; Li, F.; Luo, M.; Sisler, J.; Thevenon, A.; Rosas-Hernández, A.; Burdyny, T.; Lum, Y.; Yadegari, H.; et al. Joule 2021, 5, 706. doi: 10.1016/j.joule.2021.01.007  doi: 10.1016/j.joule.2021.01.007

    213. [213]

      Chen, C.; Yu, S.; Yang, Y.; Louisia, S.; Roh, I.; Jin, J.; Chen, S.; Chen, P.-C.; Shan, Y.; Yang, P. Nat. Catal. 2022, 5, 878. doi: 10.1038/s41929-022-00844-w  doi: 10.1038/s41929-022-00844-w

    214. [214]

      Ren, H.; Kovalev, M.; Weng, Z.; Muhamad, M. Z.; Ma, H.; Sheng, Y.; Sun, L.; Wang, J.; Rihm, S.; Yang, W.; et al. Nat. Catal. 2022, 5, 1169. doi: 10.1038/s41929-022-00891-3  doi: 10.1038/s41929-022-00891-3

    215. [215]

      Heidary, N.; Ly, K. H.; Kornienko, N. Nano Lett. 2019, 19, 4817. doi: 10.1021/acs.nanolett.9b01582  doi: 10.1021/acs.nanolett.9b01582

    216. [216]

      Huang-fu, Z. C.; Song, Q. T.; He, Y. H.; Wang, J. J.; Ye, J. Y.; Zhou, Z. Y.; Sun, S. G.; Wang, Z. H. Phys. Chem. Chem. Phys. 2019, 21, 25047. doi: 10.1039/C9CP04346B  doi: 10.1039/C9CP04346B

    217. [217]

      Li, H.; Jiang, K.; Zou, S. Z.; Cai, W. B. Chin. J. Catal. 2022, 43, 2772. doi: 10.1016/S1872-2067(22)64095-6  doi: 10.1016/S1872-2067(22)64095-6

    218. [218]

      Li, H.; Wei, P.; Gao, D.; Wang, G. Curr. Opin. Green Sustain. Chem. 2022, 34, 100589. doi: 10.1016/j.cogsc.2022.100589  doi: 10.1016/j.cogsc.2022.100589

    219. [219]

      Liu, S.; D'Amario, l.; Jiang, S.; Dau, H. Curr. Opin. Electrochem. 2022, 35, 101042. doi: 10.1016/j.coelec.2022.101042  doi: 10.1016/j.coelec.2022.101042

    220. [220]

      Wei, Z. Y.; Sautet, P. Angew. Chem. Int. Ed. 2022, 61, e202210060. doi: 10.1002/anie.202210060  doi: 10.1002/anie.202210060

    221. [221]

      Dattila, F.; Seemakurthi, R. R.; Zhou, Y. C.; Lopez, N. Chem. Rev. 2022, 122, 11085. doi: 10.1021/acs.chemrev.1c00690  doi: 10.1021/acs.chemrev.1c00690

    222. [222]

      Weng, L. C.; Bell, A. T.; Weber, A. Z. Energy Environ. Sci. 2020, 13, 3592. doi: 10.1039/D0EE01604G  doi: 10.1039/D0EE01604G

    223. [223]

      Lees, E. W.; Bui, J. C.; Song, D. T.; Weber, A. Z.; Berlinguette, C. P. ACS Energy Lett. 2022, 7, 834. doi: 10.1021/acsenergylett.1c02522  doi: 10.1021/acsenergylett.1c02522

    224. [224]

      Li, H.; Jiao, Y., Davey, K.; Qiao, S. Angew. Chem. Int. Ed. 2023, 62, e202216383. doi: 10.1002/anie.202216383  doi: 10.1002/anie.202216383

    225. [225]

      Gomes, R. J.; Birch, C.; Cencer, M. M.; Li, C. Y.; Son, S. B.; Bloom, I. D.; Assary, R. S.; Amanchukwu, C. V. J. Phys. Chem. C 2022, 126, 13595. doi: 10.1021/acs.jpcc.2c03321  doi: 10.1021/acs.jpcc.2c03321

  • 加载中
    1. [1]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    2. [2]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    3. [3]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    4. [4]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    5. [5]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    6. [6]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    7. [7]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    8. [8]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    9. [9]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    10. [10]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    11. [11]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    12. [12]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    13. [13]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    14. [14]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    15. [15]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    16. [16]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    17. [17]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    18. [18]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    19. [19]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    20. [20]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

Metrics
  • PDF Downloads(23)
  • Abstract views(718)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return