Citation: Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications[J]. Acta Physico-Chimica Sinica, ;2023, 39(9): 221201. doi: 10.3866/PKU.WHXB202212014 shu

Metal Aerogels: Controlled Synthesis and Applications

  • Corresponding author: Ran Du, rdu@bit.edu.cn
  • Received Date: 7 December 2022
    Revised Date: 4 January 2023
    Accepted Date: 5 January 2023
    Available Online: 16 January 2023

    Fund Project: the National Natural Science Foundation of China 22202009the National Natural Science Foundation of China 51972237

  • Emerging as one of the youngest members in the family of porous materials, metal aerogels (MAs) are a new class of aerogels entirely built of nanostructured metals such as gold, silver, palladium, platinum, ruthenium, rhodium, osmium, copper, and nickel. They are typically fabricated via a sol-gel process coupled with special drying techniques (e.g., supercritical drying and freeze-drying). Combining the unique physicochemical properties of various nanostructured metals with the structural attributes of aerogels, MAs mark rapid mass transfer channels, highly conductive three-dimensional (3D) networks, and optical and magnetic properties. In this regard, MAs outperform conventional materials in various territories such as electrocatalysis, enzyme-like catalysis, surface-enhanced Raman scattering, diverse sensing, and actuators. Additionally, a substantial number of metal elements can offer vast opportunities for creating numerous MAs featuring desired properties, which is critical for a deep exploration and releases the full potential of aerogels. Consequently, MAs have received wide attention since their discovery in 2009.However, compared with conventional aerogels, MAs only appeared around a decade ago. A short research history challenges their fundamental studies, including controlled synthesis and structure-performance investigations, thereby retarding on-target materials design for practical applications. Currently, the majority of studies are restricted to MAs based on noble metals. This fact is ascribed to both their intrinsically high catalytic activity and simple fabrication due to the relatively high redox potential. In contrast, reports on low-cost non-noble metal aerogels are largely constrained, not to mention controlled synthesis as well as practical applications. As a result, the compositional and structural diversity of MAs is highly limited. Furthermore, the scope of the application of MAs is still constrained and is mostly restricted to electrocatalysis. Though certain remarkable MA-based electrocatalysts have been reported in the last few years, their limited composition and structure have retarded the systematic investigations into correlations between the material parameters and electrocatalytic properties. This discourages on-demand material design and performance optimization. Hence, fundamental studies and application attempts need to be strengthened to allow further development of this new material system. On this occasion, it is essential to thoroughly summarize the knowledge and design principles of MAs that have been presented in the past ten years. This study comprehensively introduces the state-of-the-art research progress in this field, which includes synthesis strategies, potential gelation mechanisms, and diverse applications of MAs. Additionally, the challenges and opportunities presented by MAs will be drawn from aspects of synthesis and applications. This review expects to attract widespread scientists from different fields (e.g., chemistry, physics, materials science, and life science) to join the area of MAs, thus jointly promoting the development of this young and promising field.
  • 加载中
    1. [1]

      Li, X.; Lu, L.; Li, J.; Zhang, X.; Gao, H. Nat. Rev. Mater. 2020, 5, 706. doi: 10.1038/s41578-020-0212-2  doi: 10.1038/s41578-020-0212-2

    2. [2]

      Hüsing, N.; Schubert, U. Angew. Chem. Int. Ed. 1998, 37, 22. doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I  doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I

    3. [3]

      Guinness World Records. https://www.guinnessworldrecords.com/search?term=aerogel&page=1&type=record&max=20&partial=_Results&

    4. [4]

      Kistler, S. S. Nature 1931, 127, 741. doi: 10.1038/127741a0  doi: 10.1038/127741a0

    5. [5]

      Teichner, S. J.; Nicolaon, G. A. Method of Preparing Inorganic Aerogels. US3672833A, 1972.

    6. [6]

      Tewari, P. H.; Hunt, A. J.; Lofftus, K. D. Mater. Lett. 1985, 3, 363. doi: 10.1016/0167-577X(85)90077-1  doi: 10.1016/0167-577X(85)90077-1

    7. [7]

      Pekala, R. W. J. Mater. Sci. 1989, 24, 3221. doi: 10.1007/BF01139044  doi: 10.1007/BF01139044

    8. [8]

      Mayer, S. T.; Pekala, R. W.; Kaschmitter, J. L. J. Electrochem. Soc. 1993, 140, 446. doi: 10.1149/1.2221066  doi: 10.1149/1.2221066

    9. [9]

      Lu, Y.; He, W.; Cao, T.; Guo, H.; Zhang, Y.; Li, Q.; Shao, Z.; Cui, Y.; Zhang, X. Sci. Rep. 2014, 4, 5792. doi: 10.1038/srep05792  doi: 10.1038/srep05792

    10. [10]

      Du, R.; Zhao, Q.; Zhang, N.; Zhang, J. Small 2015, 11, 3263. doi: 10.1002/smll.201403170  doi: 10.1002/smll.201403170

    11. [11]

      Lohe, M. R.; Rose, M.; Kaskel, S. Chem. Commun. 2009, 6056. doi: 10.1039/B910175F  doi: 10.1039/B910175F

    12. [12]

      Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Science 2005, 307, 397. doi: 10.1126/science.1104226  doi: 10.1126/science.1104226

    13. [13]

      Li, G. Y.; Wu, X. H.; He, W. N.; Fang, J. H.; Zhang, X. T. Acta Phys. -Chim. Sin. 2016, 32, 2146.  doi: 10.3866/PKU.WHXB201605243

    14. [14]

      Wang, X. C.; Li, J. Z.; Li, G. Y.; Wang, J.; Zhang, X. T.; Guo, Q. Acta Phys. -Chim. Sin. 2017, 33, 2141.  doi: 10.3866/PKU.WHXB201705223

    15. [15]

      Lin, Z.; Zeng, Z.; Gui, X.; Tang, Z.; Zou, M.; Cao, A. Adv. Energy Mater. 2016, 6, 1600554. doi: 10.1002/aenm.201600554  doi: 10.1002/aenm.201600554

    16. [16]

      Rahmanian, V.; Pirzada, T.; Wang, S.; Khan, S. A. Adv. Mater. 2021, 33, 2102892. doi: 10.1002/adma.202102892  doi: 10.1002/adma.202102892

    17. [17]

      Feng, J.; Su, B. -L.; Xia, H.; Zhao, S.; Gao, C.; Wang, L.; Ogbeide, O.; Feng, J.; Hasan, T. Chem. Soc. Rev. 2021, 50, 3842. doi: 10.1039/C9CS00757A  doi: 10.1039/C9CS00757A

    18. [18]

      Liu, W.; Herrmann, A. K.; Bigall, N. C.; Rodriguez, P.; Wen, D.; Oezaslan, M.; Schmidt, T. J.; Gaponik, N.; Eychmüller, A. Acc. Chem. Res. 2015, 48, 154. doi: 10.1021/ar500237c  doi: 10.1021/ar500237c

    19. [19]

      Du, R.; Fan, X.; Jin, X.; Hübner, R.; Hu, Y.; Eychmüller, A. Matter 2019, 1, 39. doi: 10.1016/j.matt.2019.05.006  doi: 10.1016/j.matt.2019.05.006

    20. [20]

      Qin, G. W.; Liu, J.; Balaji, T.; Xu, X.; Matsunaga, H.; Hakuta, Y.; Zuo, L.; Raveendran, P. J. Phys. Chem. C 2008, 112, 10352. doi: 10.1021/jp800923h  doi: 10.1021/jp800923h

    21. [21]

      Bigall, N. C.; Herrmann, A. K.; Vogel, M.; Rose, M.; Simon, P.; Carrillo-Cabrera, W.; Dorfs, D.; Kaskel, S.; Gaponik, N.; Eychmuller, A. Angew. Chem. Int. Ed. 2009, 48, 9731. doi: 10.1002/anie.200902543  doi: 10.1002/anie.200902543

    22. [22]

      Leventis, N.; Chandrasekaran, N.; Sotiriou-Leventis, C.; Mumtaz, A. J. Mater. Chem. 2009, 19, 63. doi: 10.1039/B815985H  doi: 10.1039/B815985H

    23. [23]

      Jung, S. M.; Jung, H. Y.; Dresselhaus, M. S.; Jung, Y. J.; Kong, J. Sci. Rep. 2012, 2, 849. doi: 10.1038/srep00849  doi: 10.1038/srep00849

    24. [24]

      Jung, S. M.; Preston, D. J.; Jung, H. Y.; Deng, Z.; Wang, E. N.; Kong, J. Adv. Mater. 2016, 28, 1413. doi: 10.1002/adma.201504774  doi: 10.1002/adma.201504774

    25. [25]

      Zhu, C.; Shi, Q.; Fu, S.; Song, J.; Xia, H.; Du, D.; Lin, Y. Adv. Mater. 2016, 28, 8779. doi: 10.1002/adma.201602546  doi: 10.1002/adma.201602546

    26. [26]

      Pan, Z.; Wang, Z. -Y.; Wang, M. -H.; Yang, L.; Yu, S. -H. Sci. China Mater. 2021, 64, 2868. doi: 10.1007/s40843-021-1677-3  doi: 10.1007/s40843-021-1677-3

    27. [27]

      Gao, H. -L.; Xu, L.; Long, F.; Pan, Z.; Du, Y. -X.; Lu, Y.; Ge, J.; Yu, S. -H. Angew. Chem. Int. Ed. 2014, 53, 4561. doi: 10.1002/anie.201400457  doi: 10.1002/anie.201400457

    28. [28]

      Fang, Q.; Qin, Y.; Wang, H.; Xu, W.; Yan, H.; Jiao, L.; Wei, X.; Li, J.; Luo, X.; Liu, M.; Hu, L.; Gu, W.; Zhu, C. Anal. Chem. 2022, 94, 11030. doi: 10.1021/acs.analchem.2c01836  doi: 10.1021/acs.analchem.2c01836

    29. [29]

      Jiao, L.; Xu, W.; Yan, H.; Wu, Y.; Gu, W.; Li, H.; Du, D.; Lin, Y.; Zhu, C. Chem. Commun. 2019, 55, 9865. doi: 10.1039/c9cc04436a  doi: 10.1039/c9cc04436a

    30. [30]

      Duan, W.; Zhang, P.; Xiahou, Y.; Song, Y.; Bi, C.; Zhan, J.; Du, W.; Huang, L.; Möhwald, H.; Xia, H. ACS Appl. Mater. Interfaces 2018, 10, 23081. doi: 10.1021/acsami.8b04823  doi: 10.1021/acsami.8b04823

    31. [31]

      Wang, C.; Duan, W.; Xing, L.; Xiahou, Y.; Du, W.; Xia, H. J. Mater. Chem. B 2019, 7, 7588. doi: 10.1039/c9tb01653h  doi: 10.1039/c9tb01653h

    32. [32]

      Xu, J.; Sun, F.; Li, Q.; Yuan, H.; Ma, F.; Wen, D.; Shang, L. Small 2022, 18, 2200525. doi: 10.1002/smll.202200525  doi: 10.1002/smll.202200525

    33. [33]

      Gao, W.; Lei, M.; Li, L.; Wen, D. Chem. Commun. 2020, 56, 15446. doi: 10.1039/D0CC06337A  doi: 10.1039/D0CC06337A

    34. [34]

      Dubale, A. A.; Zheng, Y.; Wang, H.; Hubner, R.; Li, Y.; Yang, J.; Zhang, J.; Sethi, N. K.; He, L.; Zheng, Z.; et al. Angew. Chem. Int. Ed. 2020, 59, 13891. doi: 10.1002/anie.202004314  doi: 10.1002/anie.202004314

    35. [35]

      Zheng, Y.; Yang, J.; Lu, X.; Wang, H.; Dubale, A. A.; Li, Y.; Jin, Z.; Lou, D.; Sethi, N. K.; Ye, Y.; et al. Adv. Energy Mater. 2021, 11, 2002276. doi: 10.1002/aenm.202002276  doi: 10.1002/aenm.202002276

    36. [36]

      Du, R.; Jin, W.; Wu, H.; Hübner, R.; Zhou, L.; Xue, G.; Hu, Y.; Eychmüller, A. J. Mater. Chem. A 2021, 9, 17189. doi: 10.1039/d1ta03103a  doi: 10.1039/d1ta03103a

    37. [37]

      Jiang, X.; Du, R.; Hübner, R.; Hu, Y.; Eychmüller, A. Matter 2021, 4, 54. doi: 10.1016/j.matt.2020.10.001  doi: 10.1016/j.matt.2020.10.001

    38. [38]

      Wen, D.; Eychmüller, A. Chem. Commun. 2017, 53, 12608. doi: 10.1039/C7CC03862C  doi: 10.1039/C7CC03862C

    39. [39]

      Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33. doi: 10.1021/cr00099a003  doi: 10.1021/cr00099a003

    40. [40]

      dos Santos, D. I.; Aegerter, M. A.; Craievich, A. F.; Lours, T.; Zarzycki, J. J. Non-Cryst. Solids 1987, 95–96, 1143. doi: 10.1016/S0022-3093(87)80727-5  doi: 10.1016/S0022-3093(87)80727-5

    41. [41]

      Zhang, H.; Wang, D. Angew. Chem. Int. Ed. 2008, 47, 3984. doi: 10.1002/anie.200705537  doi: 10.1002/anie.200705537

    42. [42]

      Du, R.; Hu, Y.; Hübner, R.; Joswig, J. -O.; Fan, X.; Schneider, K.; Eychmüller, A. Sci. Adv. 2019, 5, eaaw4590. doi: 10.1126/sciadv.aaw4590  doi: 10.1126/sciadv.aaw4590

    43. [43]

      Sun, H.; Xu, Z.; Gao, C. Adv. Mater. 2013, 25, 2554. doi: 10.1002/adma.201204576  doi: 10.1002/adma.201204576

    44. [44]

      Schneider, K.; Melnyk, I.; Hiekel, K.; Fery, A.; Auernhammer, G. K.; Eychmüller, A. J. Phys. Chem. C 2019, 123, 27651. doi: 10.1021/acs.jpcc.9b08607  doi: 10.1021/acs.jpcc.9b08607

    45. [45]

      Gao, X.; Esteves, R. J.; Luong, T. T.; Jaini, R.; Arachchige, I. U. J. Am. Chem. Soc. 2014, 136, 7993. doi: 10.1021/ja5020037  doi: 10.1021/ja5020037

    46. [46]

      Gao, X.; Esteves, R. J.; Nahar, L.; Nowaczyk, J.; Arachchige, I. U. ACS Appl. Mater. Interfaces 2016, 8, 13076. doi: 10.1021/acsami.5b11582  doi: 10.1021/acsami.5b11582

    47. [47]

      Nahar, L.; Farghaly, A. A.; Esteves, R. J. A.; Arachchige, I. U. Chem. Mater. 2017, 29, 7704. doi: 10.1021/acs.chemmater.7b01731  doi: 10.1021/acs.chemmater.7b01731

    48. [48]

      Wen, D.; Liu, W.; Haubold, D.; Zhu, C.; Oschatz, M.; Holzschuh, M.; Wolf, A.; Simon, F.; Kaskel, S.; Eychmuller, A. ACS Nano 2016, 10, 2559. doi: 10.1021/acsnano.5b07505  doi: 10.1021/acsnano.5b07505

    49. [49]

      Benkovičová, M.; Wen, D.; Plutnar, J.; Čížková, M.; Eychmüller, A.; Michl, J. J. Phys. Chem. Lett. 2017, 8, 2339. doi: 10.1021/acs.jpclett.7b00296  doi: 10.1021/acs.jpclett.7b00296

    50. [50]

      Wu, Y.; Jiao, L.; Xu, W.; Gu, W.; Zhu, C.; Du, D.; Lin, Y. Small 2019, 15, e1900632. doi: 10.1002/smll.201900632  doi: 10.1002/smll.201900632

    51. [51]

      Liu, W.; Herrmann, A. K.; Geiger, D.; Borchardt, L.; Simon, F.; Kaskel, S.; Gaponik, N.; Eychmuller, A. Angew. Chem. Int. Ed. 2012, 51, 5743. doi: 10.1002/anie.201108575  doi: 10.1002/anie.201108575

    52. [52]

      Liu, W.; Rodriguez, P.; Borchardt, L.; Foelske, A.; Yuan, J.; Herrmann, A. K.; Geiger, D.; Zheng, Z.; Kaskel, S.; Gaponik, N.; et al. Angew. Chem. Int. Ed. 2013, 52, 9849. doi: 10.1002/anie.201303109  doi: 10.1002/anie.201303109

    53. [53]

      Fan, X.; Zerebecki, S.; Du, R.; Hubner, R.; Marzum, G.; Jiang, G.; Hu, Y.; Barcikowki, S.; Reichenberger, S.; Eychmuller, A. Angew. Chem. Int. Ed. 2020, 59, 5706. doi: 10.1002/anie.201913079  doi: 10.1002/anie.201913079

    54. [54]

      Du, R.; Wang, J.; Wang, Y.; Hubner, R.; Fan, X.; Senkovska, I.; Hu, Y.; Kaskel, S.; Eychmuller, A. Nat. Commun. 2020, 11, 1590. doi: 10.1038/s41467-020-15391-w  doi: 10.1038/s41467-020-15391-w

    55. [55]

      Lin, Z.; Liu, S.; Liu, Y.; Liu, Z.; Zhang, S.; Zhang, X.; Tian, Y.; Tang, Z. J. Power Sources 2021, 514, 230600. doi: 10.1016/j.jpowsour.2021.230600  doi: 10.1016/j.jpowsour.2021.230600

    56. [56]

      Yan, S.; Mahyoub, S. A.; Lin, J.; Zhang, C.; Hu, Q.; Chen, C.; Zhang, F.; Cheng, Z. Nanotechnology 2022, 33, 125705. doi: 10.1088/1361-6528/ac4287  doi: 10.1088/1361-6528/ac4287

    57. [57]

      Naskar, S.; Freytag, A.; Deutsch, J.; Wendt, N.; Behrens, P.; Köckritz, A.; Bigall, N. C. Chem. Mater. 2017, 29, 9208. doi: 10.1021/acs.chemmater.7b03088  doi: 10.1021/acs.chemmater.7b03088

    58. [58]

      Ranmohotti, K. G. S.; Gao, X.; Arachchige, I. U. Chem. Mater. 2013, 25, 3528. doi: 10.1021/cm401968j  doi: 10.1021/cm401968j

    59. [59]

      Wen, D.; Herrmann, A. K.; Borchardt, L.; Simon, F.; Liu, W.; Kaskel, S.; Eychmuller, A. J. Am. Chem. Soc. 2014, 136, 2727. doi: 10.1021/ja412062e  doi: 10.1021/ja412062e

    60. [60]

      Wu, Z.; Wu, H.; Cai, W.; Wen, Z.; Jia, B.; Wang, L.; Jin, W.; Ma, T. Angew. Chem. Int. Ed. 2021, 60, 12554. doi: 10.1002/anie.202102832  doi: 10.1002/anie.202102832

    61. [61]

      Du, R.; Jin, W.; Hübner, R.; Zhou, L.; Hu, Y.; Eychmüller, A. Adv. Energy Mater. 2020, 10, 1903857. doi: 10.1002/aenm.201903857  doi: 10.1002/aenm.201903857

    62. [62]

      López-León, T.; Santander-Ortega, M. J.; Ortega-Vinuesa, J. L.; Bastos-González, D. J. Phys. Chem. C 2008, 112, 16060. doi: 10.1021/jp803796a  doi: 10.1021/jp803796a

    63. [63]

      Cai, B.; Wen, D.; Liu, W.; Herrmann, A. K.; Benad, A.; Eychmuller, A. Angew. Chem. Int. Ed. 2015, 54, 13101. doi: 10.1002/anie.201505307  doi: 10.1002/anie.201505307

    64. [64]

      Zheng, Y.; Li, N.; Mukherjee, S.; Yang, Y.; Yan, J.; Liu, J.; Fang, Y. ACS Appl. Nano Mater. 2019, 2, 3012. doi: 10.1021/acsanm.9b00401  doi: 10.1021/acsanm.9b00401

    65. [65]

      Fan, X.; Cai, B.; Du, R.; Hübner, R.; Georgi, M.; Jiang, G.; Li, L.; Samadi Khoshkhoo, M.; Sun, H.; Eychmüller, A. Chem. Mater. 2019, 31, 10094. doi: 10.1021/acs.chemmater.9b03121  doi: 10.1021/acs.chemmater.9b03121

    66. [66]

      Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E.; et al. Chem. Rev. 2019, 119, 4819. doi: 10.1021/acs.chemrev.8b00733  doi: 10.1021/acs.chemrev.8b00733

    67. [67]

      Tang, S.; Vongehr, S.; Wang, Y.; Juan, C. S.; Xiangyu, W.; Meng, X. J. Mater. Chem. A 2014, 2, 3648. doi: 10.1039/c3ta14541g  doi: 10.1039/c3ta14541g

    68. [68]

      Cai, B.; Dianat, A.; Hubner, R.; Liu, W.; Wen, D.; Benad, A.; Sonntag, L.; Gemming, T.; Cuniberti, G.; Eychmuller, A. Adv. Mater. 2017, 29, 1605254. doi: 10.1002/adma.201605254  doi: 10.1002/adma.201605254

    69. [69]

      Zhu, C.; Shi, Q.; Fu, S.; Song, J.; Du, D.; Su, D.; Engelhard, M. H.; Lin, Y. J. Mater. Chem. A 2018, 6, 7517. doi: 10.1039/c7ta11233e  doi: 10.1039/c7ta11233e

    70. [70]

      Burpo, F. J.; Nagelli, E. A.; Morris, L. A.; McClure, J. P.; Ryu, M. Y.; Palmer, J. L. J. Mater. Res. 2017, 32, 4153. doi: 10.1557/jmr.2017.412  doi: 10.1557/jmr.2017.412

    71. [71]

      Jiang, B.; Wan, Z.; Kang, Y.; Guo, Y.; Henzie, J.; Na, J.; Li, H.; Wang, S.; Bando, Y.; Sakka, Y.; Yamauchi, Y. Nano Energy 2021, 81, 105644. doi: 10.1016/j.nanoen.2020.105644  doi: 10.1016/j.nanoen.2020.105644

    72. [72]

      Yazdan-Abad, M. Z.; Noroozifar, M.; Modaresi Alam, A. R.; Saravani, H. J. Mater. Chem. A 2017, 5, 10244. doi: 10.1039/c7ta03208k  doi: 10.1039/c7ta03208k

    73. [73]

      Yazdan-Abad, M. Z.; Noroozifar, M.; Douk, A. S.; Modarresi-Alam, A. R.; Saravani, H. Appl. Catal. B-Environ. 2019, 250, 242. doi: 10.1016/j.apcatb.2019.02.064  doi: 10.1016/j.apcatb.2019.02.064

    74. [74]

      Song, T.; Xue, H.; Sun, J.; Guo, N.; Sun, J.; Wang, Q. Chem. Commun. 2021, 57, 7140. doi: 10.1039/d1cc02038b  doi: 10.1039/d1cc02038b

    75. [75]

      Xu, X.; Wang, R.; Nie, P.; Cheng, Y.; Lu, X.; Shi, L.; Sun, J. ACS Appl. Mater. Interfaces 2017, 9, 14273. doi: 10.1021/acsami.7b02087  doi: 10.1021/acsami.7b02087

    76. [76]

      Yan, S.; Zhong, M.; Wang, C.; Lu, X. Chem. Eng. J. 2022, 430, 132955. doi: 10.1016/j.cej.2021.132955  doi: 10.1016/j.cej.2021.132955

    77. [77]

      Shi, Q.; Zhu, C.; Zhong, H.; Su, D.; Li, N.; Engelhard, M. H.; Xia, H.; Zhang, Q.; Feng, S.; Beckman, S. P.; et al. ACS Energy Lett. 2018, 3, 2038. doi: 10.1021/acsenergylett.8b01338  doi: 10.1021/acsenergylett.8b01338

    78. [78]

      Shafaei Douk, A.; Saravani, H.; Noroozifar, M. Electrochim. Acta 2018, 275, 182. doi: 10.1016/j.electacta.2018.04.073  doi: 10.1016/j.electacta.2018.04.073

    79. [79]

      Qian, F.; Troksa, A.; Fears, T. M.; Nielsen, M. H.; Nelson, A. J.; Baumann, T. F.; Kucheyev, S. O.; Han, T. Y.; Bagge-Hansen, M. Nano Lett. 2020, 20, 131. doi: 10.1021/acs.nanolett.9b03445  doi: 10.1021/acs.nanolett.9b03445

    80. [80]

      Freytag, A.; Sánchez-Paradinas, S.; Naskar, S.; Wendt, N.; Colombo, M.; Pugliese, G.; Poppe, J.; Demirci, C.; Kretschmer, I.; Bahnemann, D. W.; et al. Angew. Chem. Int. Ed. 2016, 55, 1200. doi: 10.1002/anie.201508972  doi: 10.1002/anie.201508972

    81. [81]

      Tang, Y.; Yeo, K. L.; Chen, Y.; Yap, L. W.; Xiong, W.; Cheng, W. J. Mater. Chem. A 2013, 1, 6723. doi: 10.1039/C3TA10969K  doi: 10.1039/C3TA10969K

    82. [82]

      Du, R.; Joswig, J. O.; Hubner, R.; Zhou, L.; Wei, W.; Hu, Y.; Eychmuller, A. Angew. Chem. Int. Ed. 2020, 59, 8293. doi: 10.1002/anie.201916484  doi: 10.1002/anie.201916484

    83. [83]

      Du, R.; Joswig, J. O.; Fan, X.; Hubner, R.; Spittel, D.; Hu, Y.; Eychmuller, A. Matter 2020, 2, 908. doi: 10.1016/j.matt.2020.01.002  doi: 10.1016/j.matt.2020.01.002

    84. [84]

      Pan, W.; Liang, C.; Sui, Y.; Wang, J.; Liu, P.; Zou, P.; Guo, Z.; Wang, F.; Ren, X.; Yang, C. Adv. Funct. Mater. 2022, 32, 2204166. doi: 10.1002/adfm.202204166  doi: 10.1002/adfm.202204166

    85. [85]

      Liu, W.; Haubold, D.; Rutkowski, B.; Oschatz, M.; Hübner, R.; Werheid, M.; Ziegler, C.; Sonntag, L.; Liu, S.; Zheng, Z.; et al. Chem. Mater. 2016, 28, 6477. doi: 10.1021/acs.chemmater.6b01394  doi: 10.1021/acs.chemmater.6b01394

    86. [86]

      Herrmann, A. -K.; Formanek, P.; Borchardt, L.; Klose, M.; Giebeler, L.; Eckert, J.; Kaskel, S.; Gaponik, N.; Eychmüller, A. Chem. Mater. 2014, 26, 1074. doi: 10.1021/cm4033258  doi: 10.1021/cm4033258

    87. [87]

      Shi, Q.; Zhu, C.; Du, D.; Bi, C.; Xia, H.; Feng, S.; Engelhard, M. H.; Lin, Y. J. Mater. Chem. A 2017, 5, 19626. doi: 10.1039/c7ta06375j  doi: 10.1039/c7ta06375j

    88. [88]

      Gilbert, D. A.; Burks, E. C.; Ushakov, S. V.; Abellan, P.; Arslan, I.; Felter, T. E.; Navrotsky, A.; Liu, K. Chem. Mater. 2017, 29, 9814. doi: 10.1021/acs.chemmater.7b03978  doi: 10.1021/acs.chemmater.7b03978

    89. [89]

      Qian, F.; Lan, P. C.; Freyman, M. C.; Chen, W.; Kou, T.; Olson, T. Y.; Zhu, C.; Worsley, M. A.; Duoss, E. B.; Spadaccini, C. M.; Baumann, T.; Han, T. Y. Nano Lett. 2017, 17, 7171. doi: 10.1021/acs.nanolett.7b02790  doi: 10.1021/acs.nanolett.7b02790

    90. [90]

      Fears, T. M.; Hammons, J. A.; Sain, J. D.; Nielsen, M. H.; Braun, T.; Kucheyev, S. O. APL Mater. 2018, 6, 091103. doi: 10.1063/1.5039521  doi: 10.1063/1.5039521

    91. [91]

      Müller, D.; Klepzig, L. F.; Schlosser, A.; Dorfs, D.; Bigall, N. C. Langmuir 2021, 37, 5109. doi: 10.1021/acs.langmuir.0c03619  doi: 10.1021/acs.langmuir.0c03619

    92. [92]

      Müller, D.; Zámbó, D.; Dorfs, D.; Bigall, N. C. Small 2021, 17, 2007908. doi: 10.1002/smll.202007908  doi: 10.1002/smll.202007908

    93. [93]

      Liang, C.; Pan, W.; Zou, P.; Liu, P.; Liu, K.; Zhao, G.; Fan, H. J.; Yang, C. Small 2022, 18, e2203663. doi: 10.1002/smll.202203663  doi: 10.1002/smll.202203663

    94. [94]

      Zhao, H.; Yuan, Y.; Zhang, D.; Qin, Y.; Han, Y.; Li, H.; Wang, Z.; Li, S. -X.; Lai, J.; Wang, L. ACS Appl. Nano Mater. 2021, 4, 11221. doi: 10.1021/acsanm.1c02746  doi: 10.1021/acsanm.1c02746

    95. [95]

      Cai, B.; Hübner, R.; Sasaki, K.; Zhang, Y.; Su, D.; Ziegler, C.; Vukmirovic, M. B.; Rellinghaus, B.; Adzic, R. R.; Eychmüller, A. Angew. Chem. Int. Ed. 2018, 57, 2963. doi: 10.1002/anie.201710997  doi: 10.1002/anie.201710997

    96. [96]

      Shi, Q.; Zhu, C.; Tian, M.; Su, D.; Fu, M.; Engelhard, M. H.; Chowdhury, I.; Feng, S.; Du, D.; Lin, Y. Nano Energy 2018, 53, 206. doi: 10.1016/j.nanoen.2018.08.047  doi: 10.1016/j.nanoen.2018.08.047

    97. [97]

      Wang, J.; Chen, F.; Jin, Y.; Guo, L.; Gong, X.; Wang, X.; Johnston, R. L. Nanoscale 2019, 11, 14174. doi: 10.1039/c9nr03266e  doi: 10.1039/c9nr03266e

    98. [98]

      Wang, C.; Gao, W.; Wan, X.; Yao, B.; Mu, W.; Gao, J.; Fu, Q.; Wen, D. Chem. Sci. 2022, 13, 13956. doi: 10.1039/D2SC05425F  doi: 10.1039/D2SC05425F

    99. [99]

      Sosnick, B. Process for Making Foamlike Mass of Metal. US2434775A, 1948.

    100. [100]

      Forty, A. J. Nature 1979, 282, 597. doi: 10.1038/282597a0  doi: 10.1038/282597a0

    101. [101]

      Takale, B. S.; Feng, X.; Lu, Y. -M.; Bao, M.; Jin, T.; Minato, T.; Yamamoto, Y. J. Am. Chem. Soc. 2016, 138, 10356. doi: 10.1021/jacs.6b06569  doi: 10.1021/jacs.6b06569

    102. [102]

      Cattarin, S.; Kramer, D.; Lui, A.; Musiani, M. M. J. Phys. Chem. C 2007, 111, 12643. doi: 10.1021/jp072405c  doi: 10.1021/jp072405c

    103. [103]

      Xu, C.; Su, J.; Xu, X.; Liu, P.; Zhao, H.; Tian, F.; Ding, Y. J. Am. Chem. Soc. 2007, 129, 42. doi: 10.1021/ja0675503  doi: 10.1021/ja0675503

    104. [104]

      Wang, C.; Chen, Q. Chem. Mater. 2018, 30, 3894. doi: 10.1021/acs.chemmater.8b01431  doi: 10.1021/acs.chemmater.8b01431

    105. [105]

      Ron, R.; Gachet, D.; Rechav, K.; Salomon, A. Adv. Mater. 2017, 29, 1604018. doi: 10.1002/adma.201604018  doi: 10.1002/adma.201604018

    106. [106]

      Khan, F.; Eswaramoorthy, M.; Rao, C. N. R. Solid State Sci. 2007, 9, 27. doi: 10.1016/j.solidstatesciences.2006.11.002  doi: 10.1016/j.solidstatesciences.2006.11.002

    107. [107]

      Nyce, G. W.; Hayes, J. R.; Hamza, A. V.; Satcher, J. H. Chem. Mater. 2007, 19, 344. doi: 10.1021/CM062569Q  doi: 10.1021/CM062569Q

    108. [108]

      Walsh, D.; Arcelli, L.; Ikoma, T.; Tanaka, J.; Mann, S. Nat. Mater. 2003, 2, 386. doi: 10.1038/nmat903  doi: 10.1038/nmat903

    109. [109]

      Jiang, B.; Yang, X.; Niu, W.; He, C.; Shi, C.; Zhao, N. Scr. Mater. 2016, 117, 68. doi: 10.1016/j.scriptamat.2016.02.024  doi: 10.1016/j.scriptamat.2016.02.024

    110. [110]

      Leventis, N.; Chandrasekaran, N.; Sadekar, A. G.; Mulik, S.; Sotiriou-Leventis, C. J. Mater. Chem. 2010, 20, 7456. doi: 10.1039/C0JM00856G  doi: 10.1039/C0JM00856G

    111. [111]

      Leventis, N.; Donthula, S.; Mandal, C.; Ding, M. S.; Sotiriou-Leventis, C. Chem. Mater. 2015, 27, 8126. doi: 10.1021/acs.chemmater.5b03898  doi: 10.1021/acs.chemmater.5b03898

    112. [112]

      Chen, K.; Bao, Z.; Shen, J.; Wu, G.; Zhou, B.; Sandhage, K. H. J. Mater. Chem. 2012, 22, 16196. doi: 10.1039/C2JM31662E  doi: 10.1039/C2JM31662E

    113. [113]

      Chen, K.; Xu, W.; Du, A.; Shen, J.; Wu, G.; Bao, Z.; Zhou, B. Mater. Lett. 2014, 116, 31. doi: 10.1016/j.matlet.2013.10.079  doi: 10.1016/j.matlet.2013.10.079

    114. [114]

      Xu, W.; Du, A.; Xiong, J.; Zhang, Z.; Shen, J.; Zhou, B. Mater. Des. 2016, 97, 93. doi: 10.1016/j.matdes.2016.02.070  doi: 10.1016/j.matdes.2016.02.070

    115. [115]

      Tappan, B. C.; Steiner Iii, S. A.; Luther, E. P. Angew. Chem. Int. Ed. 2010, 49, 4544. doi: 10.1002/anie.200902994  doi: 10.1002/anie.200902994

    116. [116]

      Yan, P.; Brown, E.; Su, Q.; Li, J.; Wang, J.; Xu, C.; Zhou, C.; Lin, D. Small 2017, 13, 1701756. doi: 10.1002/smll.201701756  doi: 10.1002/smll.201701756

    117. [117]

      Zhu, C.; Qi, Z.; Beck, V. A.; Luneau, M.; Lattimer, J.; Chen, W.; Worsley, M. A.; Ye, J.; Duoss, E. B.; Spadaccini, C. M.; et al. Sci. Adv. 2018, 4, eaas9459. doi: 10.1126/sciadv.aas9459  doi: 10.1126/sciadv.aas9459

    118. [118]

      Tappan, B. C.; Huynh, M. H.; Hiskey, M. A.; Chavez, D. E.; Luther, E. P.; Mang, J. T.; Son, S. F. J. Am. Chem. Soc. 2006, 128, 6589. doi: 10.1021/ja056550k  doi: 10.1021/ja056550k

    119. [119]

      Gao, D.; Yang, G.; Zhu, Z.; Zhang, J.; Yang, Z.; Zhang, Z.; Xue, D. J. Mater. Chem. 2012, 22, 9462. doi: 10.1039/C2JM30548H  doi: 10.1039/C2JM30548H

    120. [120]

      Tappan, B. C.; Steiner Iii, S. A.; Dervishi, E.; Mueller, A. H.; Scott, B. L.; Sheehan, C.; Luther, E. P.; Lichthardt, J. P.; Dirmyer, M. R. ACS Appl. Mater. Interfaces 2021, 13, 1204. doi: 10.1021/acsami.0c17624  doi: 10.1021/acsami.0c17624

    121. [121]

      Shafaei Douk, A.; Saravani, H. ACS Omega 2020, 5, 22031. doi: 10.1021/acsomega.0c01661  doi: 10.1021/acsomega.0c01661

    122. [122]

      Shafaei Douk, A.; Saravani, H.; Yazdan Abad, M. Z.; Noroozifar, M. ACS Appl. Energy Mater. 2020, 3, 7527. doi: 10.1021/acsaem.0c00928  doi: 10.1021/acsaem.0c00928

    123. [123]

      Wang, H.; Wu, Y.; Luo, X.; Jiao, L.; Wei, X.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Nanoscale 2019, 11, 10575. doi: 10.1039/c9nr02712b  doi: 10.1039/c9nr02712b

    124. [124]

      Fang, Q.; Wang, H.; Lv, X.; Wei, X.; Luo, X.; Huang, J.; Jiao, L.; Gu, W.; Song, W.; Zhu, C. ACS Sustain. Chem. Eng. 2021, 9, 13039. doi: 10.1021/acssuschemeng.1c04765  doi: 10.1021/acssuschemeng.1c04765

    125. [125]

      Zhu, L.; Zhang, R.; Liu, X.; Zhu, J.; Guo, Z.; Zhao, Y. Appl. Surf. Sci. 2022, 592, 153219. doi: 10.1016/j.apsusc.2022.153219  doi: 10.1016/j.apsusc.2022.153219

    126. [126]

      Sarkar, R.; Farghaly, A. A.; Arachchige, I. U. Chem. Mater. 2022, 34, 5874. doi: 10.1021/acs.chemmater.2c00717  doi: 10.1021/acs.chemmater.2c00717

    127. [127]

      Tie, X.; Sun, X.; Li, Q.; Min, Y.; Xu, Q. J. Electrochem. Soc. 2022, 169, 026517. doi: 10.1149/1945-7111/ac519c  doi: 10.1149/1945-7111/ac519c

    128. [128]

      Yang, N.; Chen, D.; Cui, P.; Lu, T.; Liu, H.; Hu, C.; Xu, L.; Yang, J. SmartMat 2021, 2, 234. doi: 10.1002/smm2.1032  doi: 10.1002/smm2.1032

    129. [129]

      Jin, Y.; Chen, F.; Wang, J.; Guo, L.; Jin, T.; Liu, H. J. Power Sources 2019, 435, 226798. doi: 10.1016/j.jpowsour.2019.226798  doi: 10.1016/j.jpowsour.2019.226798

    130. [130]

      Douk, A. S.; Farsadrooh, M.; Damanigol, F.; Moghaddam, A. A.; Saravani, H.; Noroozifar, M. RSC Adv. 2018, 8, 23539. doi: 10.1039/c8ra03718c  doi: 10.1039/c8ra03718c

    131. [131]

      Douk, A. S.; Saravani, H.; Yazdan Abad, M. Z.; Noroozifar, M. Compos. Part B-Eng. 2019, 172, 309. doi: 10.1016/j.compositesb.2019.05.021  doi: 10.1016/j.compositesb.2019.05.021

    132. [132]

      Zhang, R.; Zhu, L.; Liu, X.; Zhu, J.; Zhao, Y. ACS Sustain. Chem. Eng. 2021, 9, 7837. doi: 10.1021/acssuschemeng.1c01498  doi: 10.1021/acssuschemeng.1c01498

    133. [133]

      Wen, D.; Liu, W.; Herrmann, A. K.; Eychmuller, A. Chemistry 2014, 20, 4380. doi: 10.1002/chem.201304635  doi: 10.1002/chem.201304635

    134. [134]

      Wang, J.; Chen, F.; Jin, Y.; Johnston, R. L. ChemSusChem 2018, 11, 1354. doi: 10.1002/cssc.201800052  doi: 10.1002/cssc.201800052

    135. [135]

      Wang, Y. -J.; Long, W.; Wang, L.; Yuan, R.; Ignaszak, A.; Fang, B.; Wilkinson, D. P. J. E.; Science, E. Energy Environ. Sci. 2018, 11, 258. doi: 10.1039/C7EE02444D  doi: 10.1039/C7EE02444D

    136. [136]

      Wang, Y.; Wang, D.; Li, Y. SmartMat 2021, 2, 56. doi: 10.1002/smm2.1023  doi: 10.1002/smm2.1023

    137. [137]

      Henning, S.; Kühn, L.; Herranz, J.; Durst, J.; Binninger, T.; Nachtegaal, M.; Werheid, M.; Liu, W.; Adam, M.; Kaskel, S.; et al. J. J. Electrochem. Soc. 2016, 163, F998. doi: 10.1149/2.0251609jes  doi: 10.1149/2.0251609jes

    138. [138]

      Henning, S.; Ishikawa, H.; Kuhn, L.; Herranz, J.; Muller, E.; Eychmuller, A.; Schmidt, T. J. Angew. Chem. Int. Ed. 2017, 56, 10707. doi: 10.1002/anie.201704253  doi: 10.1002/anie.201704253

    139. [139]

      Shi, Q.; Zhu, C.; Li, Y.; Xia, H.; Engelhard, M. H.; Fu, S.; Du, D.; Lin, Y. Chem. Mater. 2016, 28, 7928. doi: 10.1021/acs.chemmater.6b03549  doi: 10.1021/acs.chemmater.6b03549

    140. [140]

      Gao, W.; Fan, H.; Li, L.; Lei, M.; Wen, D. Appl. Surf. Sci. 2023, 611, 155639. doi: 10.1016/j.apsusc.2022.155639  doi: 10.1016/j.apsusc.2022.155639

    141. [141]

      Li, Y.; Peng, C. K.; Hu, H.; Chen, S. Y.; Choi, J. H.; Lin, Y. G.; Lee, J. M. Nat. Commun. 2022, 13, 1143. doi: 10.1038/s41467-022-28805-8  doi: 10.1038/s41467-022-28805-8

    142. [142]

      Lu, L.; Sun, X.; Ma, J.; Yang, D.; Wu, H.; Zhang, B.; Zhang, J.; Han, B. Angew. Chem. Int. Ed. 2018, 57, 14149. doi: 10.1002/anie.201808964  doi: 10.1002/anie.201808964

    143. [143]

      Zhong, D.; Zhang, L.; Zhao, Q.; Cheng, D.; Deng, W.; Liu, B.; Zhang, G.; Dong, H.; Yuan, X.; Zhao, Z.; Li, J.; Gong, J. J. Chem. Phys. 2020, 152, 204703. doi: 10.1063/5.0007207  doi: 10.1063/5.0007207

    144. [144]

      Wang, W.; Gong, S.; Liu, J.; Ge, Y.; Wang, J.; Lv, X. J. Colloid Interface Sci. 2021, 595, 159. doi: 10.1016/j.jcis.2021.03.120  doi: 10.1016/j.jcis.2021.03.120

    145. [145]

      Chauhan, P.; Hiekel, K.; Diercks, J. S.; Herranz, J.; Saveleva, V. A.; Khavlyuk, P.; Eychmuller, A.; Schmidt, T. J. ACS Mater. Au 2022, 2, 278. doi: 10.1021/acsmaterialsau.1c00067  doi: 10.1021/acsmaterialsau.1c00067

    146. [146]

      Xu, Y.; Ren, K.; Ren, T.; Wang, M.; Liu, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Chem. Commun. 2021, 57, 7525. doi: 10.1039/d1cc02105b  doi: 10.1039/d1cc02105b

    147. [147]

      Wang, N.; Miao, R. K.; Lee, G.; Vomiero, A.; Sinton, D.; Ip, A. H.; Liang, H.; Sargent, E. H. SmartMat 2021, 2, 12. doi: 10.1002/smm2.1018  doi: 10.1002/smm2.1018

    148. [148]

      Zeng, Y.; Li, Y.; Tan, X.; Gong, J.; Wang, Z.; An, Y.; Wang, Z.; Li, H. ACS Appl. Mater. Interfaces 2021, 13, 36816. doi: 10.1021/acsami.1c07987  doi: 10.1021/acsami.1c07987

    149. [149]

      Tan, X.; Yang, Q.; Sun, X.; Sun, P.; Li, H. ACS Appl. Mater. Interfaces 2022, 14, 10047. doi: 10.1021/acsami.1c22625  doi: 10.1021/acsami.1c22625

    150. [150]

      Yang, Y.; Zhang, H.; Wang, J.; Yang, S.; Liu, T.; Tao, K.; Chang, H. J. Mater. Chem. A 2019, 7, 11497. doi: 10.1039/c9ta01963d  doi: 10.1039/c9ta01963d

    151. [151]

      Guan, S.; Xu, B.; Yang, Y.; Zhu, X.; Chen, R.; Ye, D.; Liao, Q. ACS Appl. Nano Mater. 2022, 5, 11091. doi: 10.1021/acsanm.2c02272  doi: 10.1021/acsanm.2c02272

    152. [152]

      Li, G.; Hao, J.; Li, W.; Ma, F.; Ma, T.; Gao, W.; Yu, Y.; Wen, D. Anal. Chem. 2021, 93, 14068. doi: 10.1021/acs.analchem.1c01581  doi: 10.1021/acs.analchem.1c01581

    153. [153]

      Gao, W.; Wen, D. VIEW. 2021, 2, 20200124. doi: 10.1002/VIW.20200124  doi: 10.1002/VIW.20200124

    154. [154]

      Xiao, Y.; Wang, C.; Liu, K.; Wei, L.; Luo, Z.; Zeng, M.; Yi, Y. J. Solgel Sci. Technol. 2021, 99, 614. doi: 10.1007/s10971-021-05597-9  doi: 10.1007/s10971-021-05597-9

    155. [155]

      Zhou, L.; Peng, Y.; Zhang, N.; Du, R.; Hübner, R.; Wen, X.; Li, D.; Hu, Y.; Eychmüller, A. Adv. Optical. Mater. 2021, 9, 2100352. doi: 10.1002/adom.202100352  doi: 10.1002/adom.202100352

    156. [156]

      Phattharasupakun, N.; Wutthiprom, J.; Duangdangchote, S.; Sawangphruk, M. Chem. Commun. 2019, 55, 5689. doi: 10.1039/C9CC01528K  doi: 10.1039/C9CC01528K

    157. [157]

      Zhang, L.; An, L.; Wang, Y.; Lee, A.; Schuman, Y.; Ural, A.; Fleischer, A. S.; Feng, G. Chem. Eng. J. 2019, 373, 857. doi: 10.1016/j.cej.2019.05.10  doi: 10.1016/j.cej.2019.05.10

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    13. [13]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    14. [14]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    17. [17]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    18. [18]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    19. [19]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    20. [20]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

Metrics
  • PDF Downloads(66)
  • Abstract views(1458)
  • HTML views(381)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return