Citation: Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 221200. doi: 10.3866/PKU.WHXB202212009 shu

S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production

  • Corresponding author: Tao Sun, chemstst@nwu.edu.cn Enzhou Liu, liuenzhou@nwu.edu.cn
  • These authors contributed equally to this paper.
  • Received Date: 4 December 2022
    Revised Date: 2 January 2023
    Accepted Date: 3 January 2023
    Available Online: 6 January 2023

    Fund Project: the National Natural Science Foundation of China 11974276the National Natural Science Foundation of China 22078261Natural Science Basic Research Program of Shaanxi Province, China 2020JM-422Key Science and Technology Innovation Team of Shaanxi Province, China 2022TD-33National Innovation and Entrepreneurship Training Program for College Students, China 202210697148National Innovation and Entrepreneurship Training Program for College Students, China 202210697069Qin Chuangyuan Project of Shaanxi Province, China QCYRCXM-2022-213

  • The increased global demand for energy and the enhanced deterioration of the environment are the two urgent challenges of the 21st century on the way to sustainable development for human society. Currently, green and renewable energy conversion technology has received much attention as a substitute for limited and non-renewable fossil fuels. Hydrogen energy is advantageous because of its high energy capacity (142 MJ·kg−1) and its production by green conversion technology, consisting of H2 reacting with O2 to generate H2O. It can establish a clean and sustainable hydrogen economic system, as well as reduce the utilization of fossil fuels and carbon dioxide emissions. Water splitting technology is an efficient approach to acquire the featured H2 energy of the green reaction (2H2O → 2H2 + O2) through electrocatalytic and photocatalytic reactions. Photocatalysis technology, with the advantage of huge solar energy utilization, has been widely regarded as a promising method for the realization of this chemical synthesis. Among photocatalysis technologies, photocatalytic H2 production from water is considered a promising approach to obtain H2 energy due to its environmentally friendly energy conversion. However, the effectiveness of acquiring H2 energy through photocatalytic water splitting is intimately related with photocatalysts. In general, photocatalysts still face the big challenge of their low solar energy utilization efficiency, which restricts the large-scale application of photocatalytic technology to obtain H2 energy. Thus, developing highly efficient photocatalysts for H2 production is critical in promoting this technology moving forward, and obtaining renewable energy. Herein, we successfully construct the S-scheme MnCo2S4/g-C3N4 heterojunction through an expedient physical mixing process at a low temperature, which can be separately obtained via the pyrolysis process and hydrothermal method. The H2 production rate of MnCo2S4/g-C3N4 heterojunction can achieve up to 2979 µmol·g−1·h−1, which is 26.4 and 8.7 times higher than those of g-C3N4 (113 µmol·g−1·h−1) and MnCo2S4 (341 µmol·g−1·h−1), respectively, and presents a superior stability in three continuous cycles during H2 production tests. The high H2 production of MnCo2S4/g-C3N4 heterojunction is mainly ascribed to the following three reasons: i) The light absorption region of the heterojunction is extended to visible light. ii) MnCo2S4/g-C3N4 possesses low impedance during the reaction, high photocurrent density, and more exposed sites in solution. iii) The efficient reservation of active electron-hole pairs greatly enhances the ratio of electrons reacting with H* species to generate H2 over MnCo2S4/g-C3N4 heterojunction. This work provides an efficient approach to constructing advanced g-C3N4-based photocatalysts through hybridization with metal sulfides to form S-scheme heterojunctions.
  • 加载中
    1. [1]

      Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013  doi: 10.1016/j.chempr.2022.04.013

    2. [2]

      Li, A.; Zhu, W.; Li, C.; Wang, T.; Gong, J. Chem. Soc. Rev. 2019, 48, 1874. doi: 10.1039/C8CS00711J  doi: 10.1039/C8CS00711J

    3. [3]

      Chen, L.; Ren, J.; Yuan, Z. Green Chem. 2022, 24, 713. doi: 10.1039/D1GC03768D  doi: 10.1039/D1GC03768D

    4. [4]

      Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521  doi: 10.1002/adma.202003521

    5. [5]

      Xu, Q.; Zhang, J.; Zhang, H.; Zhang, L.; Chen, L.; Hu, Y.; Jiang, H.; Li, C. Energy Environ. Sci. 2021, 14, 5228. doi: 10.1039/D1EE02105B  doi: 10.1039/D1EE02105B

    6. [6]

      Li, R.; Li, Y.; Yang, P.; Wang, D.; Xu, H.; Wang, B.; Meng, F.; Zhang, J.; An, M. J. Energy Chem. 2021, 57, 547. doi: 10.1016/j.jechem.2020.08.040  doi: 10.1016/j.jechem.2020.08.040

    7. [7]

      Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Chem. Soc. Rev. 2022, 51, 3561. doi: 10.1039/D1CS01182K  doi: 10.1039/D1CS01182K

    8. [8]

      Wang, Q.; Domen, K. Chem. Rev. 2020, 120, 919. doi: 10.1021/acs.chemrev.9b00201  doi: 10.1021/acs.chemrev.9b00201

    9. [9]

      Yang, L.; Fan, D.; Li, Z.; Cheng, Y.; Yang, X.; Zhang, T. Adv. Sustain. Syst. 2022, 6, 2100477. doi: 10.1002/adsu.202100477  doi: 10.1002/adsu.202100477

    10. [10]

      Che, S.; Zhang, L.; Wang, T.; Su, D.; Wang, C. Adv. Sustain. Syst. 2022, 6, 2100294. doi: 10.1002/adsu.202100294  doi: 10.1002/adsu.202100294

    11. [11]

      Ong, W.; Tan, L.; Ng, Y.; Yong, S.; Chai, S. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    12. [12]

      Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Chin. J. Catal. 2022, 43, 526. doi: 10.1016/S1872-2067(21)63872-X  doi: 10.1016/S1872-2067(21)63872-X

    13. [13]

      Zhang, Q.; Bai, X.; Hu, X.; Fan, J.; Liu, E. Appl. Surf. Sci. 2022, 579, 152224. doi: 10.1016/j.apsusc.2021.152224  doi: 10.1016/j.apsusc.2021.152224

    14. [14]

      Liang, J.; Yang, X.; Wang, Y.; He, P.; Fu, H.; Zhao, Y.; Zou, Q.; An, X. J. Mater. Chem. A 2021, 9, 12898. doi: 10.1039/D1TA00890K  doi: 10.1039/D1TA00890K

    15. [15]

      Jia, J.; Zhang, Q.; Li, K.; Zhang, Y.; Liu, E.; Li, X. Int. J. Hydrog. Energy 2023, 48, 196. doi: 10.1016/j.ijhydene.2022.09.272.  doi: 10.1016/j.ijhydene.2022.09.272

    16. [16]

      Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A.; Wageh, S.; Li, Y. Chin. J. Struc. Chem. 2022, 41, 2206006. doi: 10.14102/j.cnki.0254-5861.2022-0124  doi: 10.14102/j.cnki.0254-5861.2022-0124

    17. [17]

      Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2022, 38 (7), 2110049.
       

    18. [18]

      Tao, S.; Wan, S.; Huang, Q.; Li, C.; Yu, J.; Cao, S. Chin. J. Struc. Chem. 2022, 41, 2206048. doi: 10.14102/j.cnki.0254-5861.2022-0068  doi: 10.14102/j.cnki.0254-5861.2022-0068

    19. [19]

      Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed. 2022, 61, e202212045. doi: 10.1002/anie.202212045  doi: 10.1002/anie.202212045

    20. [20]

      Tian, N.; Huang, H.; Du, X.; Dong, F.; Zhang, Y. J. Mater. Chem. A 2019, 7, 11584. doi: 10.1039/C9TA01819K  doi: 10.1039/C9TA01819K

    21. [21]

      Zhang, J.; Yang, G.; He, B.; Cheng, B.; Li, Y.; Liang, G.; Wang, L. Chin. J. Catal. 2022, 43, 2530. doi: 10.1016/S1872-2067(22)64108-1  doi: 10.1016/S1872-2067(22)64108-1

    22. [22]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    23. [23]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    24. [24]

      Yang, T.; Deng, P.; Wang, L.; Hu, J.; Liu, Q.; Tang, H. Chin. J. Struc. Chem. 2022, 41, 2206023. doi: 10.14102/j.cnki.0254-5861.2022-0062  doi: 10.14102/j.cnki.0254-5861.2022-0062

    25. [25]

      Liu, S.; Wang, K.; Yang, M.; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38 (7), 2109023.
       

    26. [26]

      Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J.; Yu, J. Chin. J. Struc. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150  doi: 10.14102/j.cnki.0254-5861.2022-0150

    27. [27]

      Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/S1872-2067(20)63784-6  doi: 10.1016/S1872-2067(20)63784-6

    28. [28]

      Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struc. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108  doi: 10.14102/j.cnki.0254-5861.2022-0108

    29. [29]

      Li, C.; Zhao, Y.; Fan, J.; Hu, X.; Liu, E.; Yu, Q. J. Alloy. Compd. 2022, 919, 165752. doi: 10.1016/j.jallcom.2022.165752  doi: 10.1016/j.jallcom.2022.165752

    30. [30]

      Sayed, M.; Zhu, B.; Kuang, P.; Liu, X.; Cheng, B.; Al-Ghamdi, A.; Wageh, S.; Zhang, L.; Yu, J. Adv. Sustain. Syst. 2022, 6, 2100264. doi: 10.1002/adsu.202100264  doi: 10.1002/adsu.202100264

    31. [31]

      Wang, L.; Yang, T.; Peng, L.; Zhang, Q.; She, X.; Tang, H.; Liu, Q. Chin. J. Catal. 2022, 43, 2720. doi: 10.1016/S1872-2067(22)64133-0  doi: 10.1016/S1872-2067(22)64133-0

    32. [32]

      Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Nano Energy 2021, 81, 105671. doi: 10.1016/j.nanoen.2020.105671  doi: 10.1016/j.nanoen.2020.105671

    33. [33]

      Dong, G.; Zhang, Y.; Wang, Y.; Deng, Q.; Qin, C.; Hu, Y.; Zhou, Y.; Tian, G. ACS Appl. Energy Mater. 2021, 4, 14342. doi: 10.1021/acsaem.1c03019  doi: 10.1021/acsaem.1c03019

    34. [34]

      Shang, Y.; Fan, H.; Sun, Y.; Wang, W. Sustain. Energy Fuels 2022, 6, 3729. doi: 10.1039/D2SE00916A  doi: 10.1039/D2SE00916A

    35. [35]

      Shang, Y.; Fang, H.; Sun, Y.; Wang, W. J. Mater. Chem. A 2022, 10, 20248. doi: 10.1039/D2TA06372G  doi: 10.1039/D2TA06372G

    36. [36]

      Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2022, 6, 2100498. doi: 10.1002/adsu.202100498  doi: 10.1002/adsu.202100498

    37. [37]

      Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38 (7), 2110014.
       

    38. [38]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38 (7), 2108028.
       

    39. [39]

      Huang, W.; Xue, W.; Hu, X.; Fan, J.; Tang, C.; Shi, Y.; Liu, E.; Sun, T. J. Alloy. Compd. 2023, 930, 167368. doi: 10.1016/j.jallcom.2022.167368  doi: 10.1016/j.jallcom.2022.167368

    40. [40]

      Ren, D.; Zhang, W.; Ding, Y.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. RRL Sol. 2020, 4, 1900423. doi: 10.1002/solr.201900423  doi: 10.1002/solr.201900423

    41. [41]

      Zhu, Q.; Xu, Q.; Du, M.; Zeng, X.; Zhong, G.; Qiu, B.; Zhang, J. Adv. Mater. 2022, 34, 2202929. doi: 10.1002/adma.202202929  doi: 10.1002/adma.202202929

    42. [42]

      Zhang, G.; Guan, Z.; Yang, J.; Li, Q.; Zhou, Y.; Zou, Z. RRL Sol. 2022, 6, 2200587. doi: 10.1002/solr.202200587  doi: 10.1002/solr.202200587

    43. [43]

      Jia, L.; Tan, X.; Yu, T.; Ye, J. Energy Fuel. 2022, 36, 11308. doi: 10.1021/acs.energyfuels.2c01137  doi: 10.1021/acs.energyfuels.2c01137

    44. [44]

      Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; Xing, M.; Zhang, J. Angew. Chem. Int. Ed. 2017, 56, 2684. doi: 10.1002/ange.201612551  doi: 10.1002/ange.201612551

    45. [45]

      Jiang, L.; Wang, K.; Wu, X.; Zhang, G.; Yin, S. ACS Appl. Mater. Interfaces 2019, 11, 26898. doi: 10.1021/acsami.9b07311  doi: 10.1021/acsami.9b07311

    46. [46]

      Zhang, Y.; Shi, J.; Huang, Z.; Guan, X.; Zong, S.; Cheng, C.; Zheng, B.; Guo, L. Chem. Eng. J. 2020, 401, 126135. doi: 10.1016/j.cej.2020.126135  doi: 10.1016/j.cej.2020.126135

    47. [47]

      Wang, X.; Li, Y.; Li, T.; Jin, Z. Adv. Sustain. Syst. 2022, 6, 2200139. doi: 10.1002/adsu.202200139  doi: 10.1002/adsu.202200139

    48. [48]

      Tian, J.; Xue, W.; Li, M.; Sun, T.; Hu, X.; Fan, J.; Liu, E. Catal. Sci. Technol. 2022, 12, 3165. doi: 10.1039/D2CY00174H  doi: 10.1039/D2CY00174H

    49. [49]

      Yendrapati, T.; Soumya, J.; Bojja, S.; Pal, U. J. Phys. Chem. C 2021, 125, 5099. doi: 10.1021/acs.jpcc.0c11554  doi: 10.1021/acs.jpcc.0c11554

    50. [50]

      Ma, M.; Cui, F.; Huang, Y.; Zhao, Y.; Lian, J.; Bao, J.; Zhang, B.; Yuan, S.; Li, H. Electrochim. Acta 2019, 323, 134770. doi: 10.1016/j.electacta.2019.134770  doi: 10.1016/j.electacta.2019.134770

    51. [51]

      Liu, S.; Jun, S. J. Power Sources 2017, 342, 629. doi: 10.1016/j.jpowsour.2016.12.057  doi: 10.1016/j.jpowsour.2016.12.057

    52. [52]

      Lee, D.; Lee, H.; Mathur, S.; Kim, K. J. Alloy. Compd. 2021, 868, 158850. doi: 10.1016/j.jallcom.2021.158850  doi: 10.1016/j.jallcom.2021.158850

    53. [53]

      Liu, T.; Li, Y.; Sun, H.; Zhang, M.; Xia, Z.; Yang, Q. Chin. J. Struc. Chem. 2022, 41, 2206055. doi: 10.14102/j.cnki.0254-5861.2022-0152  doi: 10.14102/j.cnki.0254-5861.2022-0152

    54. [54]

      Cheng, L.; Zhang, P.; Wenm, Q.; Fan, J.; Xiang, Q. Chin. J. Catal. 2022, 43, 451. doi: 10.1016/S1872-2067(21)63879-2  doi: 10.1016/S1872-2067(21)63879-2

    55. [55]

      Zhang, J.; Pan, Z.; Yang, Y.; Wang, P.; Pei, C.; Chen, W.; Huang, G. Chin. J. Catal. 2022, 43, 265. doi: 10.1016/S1872-2067(21)63801-9  doi: 10.1016/S1872-2067(21)63801-9

    56. [56]

      Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 359. doi: 10.1016/S1872-2067(21)63883-4  doi: 10.1016/S1872-2067(21)63883-4

    57. [57]

      Xiong, Z.; Hou, Y.; Yuan, R.; Ding, Z.; Ong, W.; Wang, S. Acta Phys. -Chim. Sin. 2022, 38 (7), 2111021.
       

    58. [58]

      Jin, Z.; Li, H.; Li, J. Chin. J. Catal. 2022, 43, 303. doi: 10.1016/S1872-2067(21)63818-4  doi: 10.1016/S1872-2067(21)63818-4

    59. [59]

      Qi, K.; Wang, Y.; Rengaraj, S.; Wahaibi, B.; Jahangir, A. Mater. Chem. Phys. 2017, 193, 177. doi: 10.1016/j.matchemphys.2017.02.023  doi: 10.1016/j.matchemphys.2017.02.023

    60. [60]

      Arul, N.; Cavalcante, L.; Han, J. J. Solid State Electr. 2018, 22, 303. doi: 10.1007/s10008-017-3782-1  doi: 10.1007/s10008-017-3782-1

    61. [61]

      Hua, S.; Qu, D.; An, L.; Jiang, W.; Wen, Y.; Wang, X.; Sun, Z. Appl. Catal. B: Environ. 2019, 240, 253. doi: 10.1016/j.apcatb.2018.09.010  doi: 10.1016/j.apcatb.2018.09.010

    62. [62]

      Liao, Y.; Wang, G.; Wang, J.; Wang, K.; Yan, S.; Su, Y. J. Colloid Interface Sci. 2021, 587, 110. doi: 10.1016/j.jcis.2020.12.009  doi: 10.1016/j.jcis.2020.12.009

    63. [63]

      Huang, W.; Xue, W.; Hu, X.; Fan, J.; Tang, C.; Liu, E. Appl. Surf. Sci. 2022, 599, 153900. doi: 10.1016/j.apsusc.2022.153900  doi: 10.1016/j.apsusc.2022.153900

    64. [64]

      Sun, T.; Wang, J.; Chi, X.; Lin, Y.; Chen, Z.; Ling, X.; Qiu, C.; Xu, Y.; Song, L.; Chen, W.; et al. ACS Catal. 2018, 8, 7585. doi: 10.1021/acscatal.8b00783  doi: 10.1021/acscatal.8b00783

    65. [65]

      Feng, K.; Sun, T.; Hu, X.; Fan, J.; Yang, D.; Liu, E. Catal. Sci. Technol. 2022, 12, 4893. doi: 10.1039/D2CY00858K  doi: 10.1039/D2CY00858K

    66. [66]

      Chu, S.; Hu, Y.; Zhang, J.; Cui, Z.; Shi, J.; Wang, Y.; Zou, Z. Int. J. Hydrog. Energy 2021, 46, 9064. doi: 10.1016/j.ijhydene.2020.12.225  doi: 10.1016/j.ijhydene.2020.12.225

    67. [67]

      Zhang, W.; Xu, C.; Liu, E.; Fan, J.; Hu, X. Appl. Surf. Sci. 2020, 515, 146039. doi: 10.1016/j.apsusc.2020.146039  doi: 10.1016/j.apsusc.2020.146039

    68. [68]

      Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016  doi: 10.1016/j.jmst.2021.10.016

    69. [69]

      Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13, 8462. doi: 10.1021/acs.jpclett.2c02125  doi: 10.1021/acs.jpclett.2c02125

    70. [70]

      Shao, X.; Wang, K.; Peng, L.; Li, K.; Wen, H.; Le, X.; Wu, X.; Wang, G. Colloid Surface A 2022, 652, 129846. doi: 10.1016/j.colsurfa.2022.129846  doi: 10.1016/j.colsurfa.2022.129846

  • 加载中
    1. [1]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    2. [2]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    3. [3]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    4. [4]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    5. [5]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    6. [6]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    7. [7]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    8. [8]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    9. [9]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

Metrics
  • PDF Downloads(21)
  • Abstract views(807)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return