S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production
- Corresponding author: Tao Sun, chemstst@nwu.edu.cn Enzhou Liu, liuenzhou@nwu.edu.cn † These authors contributed equally to this paper.
Citation: Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 221200. doi: 10.3866/PKU.WHXB202212009
Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013
doi: 10.1016/j.chempr.2022.04.013
Li, A.; Zhu, W.; Li, C.; Wang, T.; Gong, J. Chem. Soc. Rev. 2019, 48, 1874. doi: 10.1039/C8CS00711J
doi: 10.1039/C8CS00711J
Chen, L.; Ren, J.; Yuan, Z. Green Chem. 2022, 24, 713. doi: 10.1039/D1GC03768D
doi: 10.1039/D1GC03768D
Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521
doi: 10.1002/adma.202003521
Xu, Q.; Zhang, J.; Zhang, H.; Zhang, L.; Chen, L.; Hu, Y.; Jiang, H.; Li, C. Energy Environ. Sci. 2021, 14, 5228. doi: 10.1039/D1EE02105B
doi: 10.1039/D1EE02105B
Li, R.; Li, Y.; Yang, P.; Wang, D.; Xu, H.; Wang, B.; Meng, F.; Zhang, J.; An, M. J. Energy Chem. 2021, 57, 547. doi: 10.1016/j.jechem.2020.08.040
doi: 10.1016/j.jechem.2020.08.040
Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Chem. Soc. Rev. 2022, 51, 3561. doi: 10.1039/D1CS01182K
doi: 10.1039/D1CS01182K
Wang, Q.; Domen, K. Chem. Rev. 2020, 120, 919. doi: 10.1021/acs.chemrev.9b00201
doi: 10.1021/acs.chemrev.9b00201
Yang, L.; Fan, D.; Li, Z.; Cheng, Y.; Yang, X.; Zhang, T. Adv. Sustain. Syst. 2022, 6, 2100477. doi: 10.1002/adsu.202100477
doi: 10.1002/adsu.202100477
Che, S.; Zhang, L.; Wang, T.; Su, D.; Wang, C. Adv. Sustain. Syst. 2022, 6, 2100294. doi: 10.1002/adsu.202100294
doi: 10.1002/adsu.202100294
Ong, W.; Tan, L.; Ng, Y.; Yong, S.; Chai, S. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075
doi: 10.1021/acs.chemrev.6b00075
Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Chin. J. Catal. 2022, 43, 526. doi: 10.1016/S1872-2067(21)63872-X
doi: 10.1016/S1872-2067(21)63872-X
Zhang, Q.; Bai, X.; Hu, X.; Fan, J.; Liu, E. Appl. Surf. Sci. 2022, 579, 152224. doi: 10.1016/j.apsusc.2021.152224
doi: 10.1016/j.apsusc.2021.152224
Liang, J.; Yang, X.; Wang, Y.; He, P.; Fu, H.; Zhao, Y.; Zou, Q.; An, X. J. Mater. Chem. A 2021, 9, 12898. doi: 10.1039/D1TA00890K
doi: 10.1039/D1TA00890K
Jia, J.; Zhang, Q.; Li, K.; Zhang, Y.; Liu, E.; Li, X. Int. J. Hydrog. Energy 2023, 48, 196. doi: 10.1016/j.ijhydene.2022.09.272.
doi: 10.1016/j.ijhydene.2022.09.272
Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A.; Wageh, S.; Li, Y. Chin. J. Struc. Chem. 2022, 41, 2206006. doi: 10.14102/j.cnki.0254-5861.2022-0124
doi: 10.14102/j.cnki.0254-5861.2022-0124
Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2022, 38 (7), 2110049.
Tao, S.; Wan, S.; Huang, Q.; Li, C.; Yu, J.; Cao, S. Chin. J. Struc. Chem. 2022, 41, 2206048. doi: 10.14102/j.cnki.0254-5861.2022-0068
doi: 10.14102/j.cnki.0254-5861.2022-0068
Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed. 2022, 61, e202212045. doi: 10.1002/anie.202212045
doi: 10.1002/anie.202212045
Tian, N.; Huang, H.; Du, X.; Dong, F.; Zhang, Y. J. Mater. Chem. A 2019, 7, 11584. doi: 10.1039/C9TA01819K
doi: 10.1039/C9TA01819K
Zhang, J.; Yang, G.; He, B.; Cheng, B.; Li, Y.; Liang, G.; Wang, L. Chin. J. Catal. 2022, 43, 2530. doi: 10.1016/S1872-2067(22)64108-1
doi: 10.1016/S1872-2067(22)64108-1
Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668
doi: 10.1002/adma.202107668
Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010
doi: 10.1016/j.chempr.2020.06.010
Yang, T.; Deng, P.; Wang, L.; Hu, J.; Liu, Q.; Tang, H. Chin. J. Struc. Chem. 2022, 41, 2206023. doi: 10.14102/j.cnki.0254-5861.2022-0062
doi: 10.14102/j.cnki.0254-5861.2022-0062
Liu, S.; Wang, K.; Yang, M.; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38 (7), 2109023.
Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J.; Yu, J. Chin. J. Struc. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150
doi: 10.14102/j.cnki.0254-5861.2022-0150
Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/S1872-2067(20)63784-6
doi: 10.1016/S1872-2067(20)63784-6
Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struc. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108
doi: 10.14102/j.cnki.0254-5861.2022-0108
Li, C.; Zhao, Y.; Fan, J.; Hu, X.; Liu, E.; Yu, Q. J. Alloy. Compd. 2022, 919, 165752. doi: 10.1016/j.jallcom.2022.165752
doi: 10.1016/j.jallcom.2022.165752
Sayed, M.; Zhu, B.; Kuang, P.; Liu, X.; Cheng, B.; Al-Ghamdi, A.; Wageh, S.; Zhang, L.; Yu, J. Adv. Sustain. Syst. 2022, 6, 2100264. doi: 10.1002/adsu.202100264
doi: 10.1002/adsu.202100264
Wang, L.; Yang, T.; Peng, L.; Zhang, Q.; She, X.; Tang, H.; Liu, Q. Chin. J. Catal. 2022, 43, 2720. doi: 10.1016/S1872-2067(22)64133-0
doi: 10.1016/S1872-2067(22)64133-0
Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Nano Energy 2021, 81, 105671. doi: 10.1016/j.nanoen.2020.105671
doi: 10.1016/j.nanoen.2020.105671
Dong, G.; Zhang, Y.; Wang, Y.; Deng, Q.; Qin, C.; Hu, Y.; Zhou, Y.; Tian, G. ACS Appl. Energy Mater. 2021, 4, 14342. doi: 10.1021/acsaem.1c03019
doi: 10.1021/acsaem.1c03019
Shang, Y.; Fan, H.; Sun, Y.; Wang, W. Sustain. Energy Fuels 2022, 6, 3729. doi: 10.1039/D2SE00916A
doi: 10.1039/D2SE00916A
Shang, Y.; Fang, H.; Sun, Y.; Wang, W. J. Mater. Chem. A 2022, 10, 20248. doi: 10.1039/D2TA06372G
doi: 10.1039/D2TA06372G
Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2022, 6, 2100498. doi: 10.1002/adsu.202100498
doi: 10.1002/adsu.202100498
Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38 (7), 2110014.
Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38 (7), 2108028.
Huang, W.; Xue, W.; Hu, X.; Fan, J.; Tang, C.; Shi, Y.; Liu, E.; Sun, T. J. Alloy. Compd. 2023, 930, 167368. doi: 10.1016/j.jallcom.2022.167368
doi: 10.1016/j.jallcom.2022.167368
Ren, D.; Zhang, W.; Ding, Y.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. RRL Sol. 2020, 4, 1900423. doi: 10.1002/solr.201900423
doi: 10.1002/solr.201900423
Zhu, Q.; Xu, Q.; Du, M.; Zeng, X.; Zhong, G.; Qiu, B.; Zhang, J. Adv. Mater. 2022, 34, 2202929. doi: 10.1002/adma.202202929
doi: 10.1002/adma.202202929
Zhang, G.; Guan, Z.; Yang, J.; Li, Q.; Zhou, Y.; Zou, Z. RRL Sol. 2022, 6, 2200587. doi: 10.1002/solr.202200587
doi: 10.1002/solr.202200587
Jia, L.; Tan, X.; Yu, T.; Ye, J. Energy Fuel. 2022, 36, 11308. doi: 10.1021/acs.energyfuels.2c01137
doi: 10.1021/acs.energyfuels.2c01137
Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; Xing, M.; Zhang, J. Angew. Chem. Int. Ed. 2017, 56, 2684. doi: 10.1002/ange.201612551
doi: 10.1002/ange.201612551
Jiang, L.; Wang, K.; Wu, X.; Zhang, G.; Yin, S. ACS Appl. Mater. Interfaces 2019, 11, 26898. doi: 10.1021/acsami.9b07311
doi: 10.1021/acsami.9b07311
Zhang, Y.; Shi, J.; Huang, Z.; Guan, X.; Zong, S.; Cheng, C.; Zheng, B.; Guo, L. Chem. Eng. J. 2020, 401, 126135. doi: 10.1016/j.cej.2020.126135
doi: 10.1016/j.cej.2020.126135
Wang, X.; Li, Y.; Li, T.; Jin, Z. Adv. Sustain. Syst. 2022, 6, 2200139. doi: 10.1002/adsu.202200139
doi: 10.1002/adsu.202200139
Tian, J.; Xue, W.; Li, M.; Sun, T.; Hu, X.; Fan, J.; Liu, E. Catal. Sci. Technol. 2022, 12, 3165. doi: 10.1039/D2CY00174H
doi: 10.1039/D2CY00174H
Yendrapati, T.; Soumya, J.; Bojja, S.; Pal, U. J. Phys. Chem. C 2021, 125, 5099. doi: 10.1021/acs.jpcc.0c11554
doi: 10.1021/acs.jpcc.0c11554
Ma, M.; Cui, F.; Huang, Y.; Zhao, Y.; Lian, J.; Bao, J.; Zhang, B.; Yuan, S.; Li, H. Electrochim. Acta 2019, 323, 134770. doi: 10.1016/j.electacta.2019.134770
doi: 10.1016/j.electacta.2019.134770
Liu, S.; Jun, S. J. Power Sources 2017, 342, 629. doi: 10.1016/j.jpowsour.2016.12.057
doi: 10.1016/j.jpowsour.2016.12.057
Lee, D.; Lee, H.; Mathur, S.; Kim, K. J. Alloy. Compd. 2021, 868, 158850. doi: 10.1016/j.jallcom.2021.158850
doi: 10.1016/j.jallcom.2021.158850
Liu, T.; Li, Y.; Sun, H.; Zhang, M.; Xia, Z.; Yang, Q. Chin. J. Struc. Chem. 2022, 41, 2206055. doi: 10.14102/j.cnki.0254-5861.2022-0152
doi: 10.14102/j.cnki.0254-5861.2022-0152
Cheng, L.; Zhang, P.; Wenm, Q.; Fan, J.; Xiang, Q. Chin. J. Catal. 2022, 43, 451. doi: 10.1016/S1872-2067(21)63879-2
doi: 10.1016/S1872-2067(21)63879-2
Zhang, J.; Pan, Z.; Yang, Y.; Wang, P.; Pei, C.; Chen, W.; Huang, G. Chin. J. Catal. 2022, 43, 265. doi: 10.1016/S1872-2067(21)63801-9
doi: 10.1016/S1872-2067(21)63801-9
Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 359. doi: 10.1016/S1872-2067(21)63883-4
doi: 10.1016/S1872-2067(21)63883-4
Xiong, Z.; Hou, Y.; Yuan, R.; Ding, Z.; Ong, W.; Wang, S. Acta Phys. -Chim. Sin. 2022, 38 (7), 2111021.
Jin, Z.; Li, H.; Li, J. Chin. J. Catal. 2022, 43, 303. doi: 10.1016/S1872-2067(21)63818-4
doi: 10.1016/S1872-2067(21)63818-4
Qi, K.; Wang, Y.; Rengaraj, S.; Wahaibi, B.; Jahangir, A. Mater. Chem. Phys. 2017, 193, 177. doi: 10.1016/j.matchemphys.2017.02.023
doi: 10.1016/j.matchemphys.2017.02.023
Arul, N.; Cavalcante, L.; Han, J. J. Solid State Electr. 2018, 22, 303. doi: 10.1007/s10008-017-3782-1
doi: 10.1007/s10008-017-3782-1
Hua, S.; Qu, D.; An, L.; Jiang, W.; Wen, Y.; Wang, X.; Sun, Z. Appl. Catal. B: Environ. 2019, 240, 253. doi: 10.1016/j.apcatb.2018.09.010
doi: 10.1016/j.apcatb.2018.09.010
Liao, Y.; Wang, G.; Wang, J.; Wang, K.; Yan, S.; Su, Y. J. Colloid Interface Sci. 2021, 587, 110. doi: 10.1016/j.jcis.2020.12.009
doi: 10.1016/j.jcis.2020.12.009
Huang, W.; Xue, W.; Hu, X.; Fan, J.; Tang, C.; Liu, E. Appl. Surf. Sci. 2022, 599, 153900. doi: 10.1016/j.apsusc.2022.153900
doi: 10.1016/j.apsusc.2022.153900
Sun, T.; Wang, J.; Chi, X.; Lin, Y.; Chen, Z.; Ling, X.; Qiu, C.; Xu, Y.; Song, L.; Chen, W.; et al. ACS Catal. 2018, 8, 7585. doi: 10.1021/acscatal.8b00783
doi: 10.1021/acscatal.8b00783
Feng, K.; Sun, T.; Hu, X.; Fan, J.; Yang, D.; Liu, E. Catal. Sci. Technol. 2022, 12, 4893. doi: 10.1039/D2CY00858K
doi: 10.1039/D2CY00858K
Chu, S.; Hu, Y.; Zhang, J.; Cui, Z.; Shi, J.; Wang, Y.; Zou, Z. Int. J. Hydrog. Energy 2021, 46, 9064. doi: 10.1016/j.ijhydene.2020.12.225
doi: 10.1016/j.ijhydene.2020.12.225
Zhang, W.; Xu, C.; Liu, E.; Fan, J.; Hu, X. Appl. Surf. Sci. 2020, 515, 146039. doi: 10.1016/j.apsusc.2020.146039
doi: 10.1016/j.apsusc.2020.146039
Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016
doi: 10.1016/j.jmst.2021.10.016
Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13, 8462. doi: 10.1021/acs.jpclett.2c02125
doi: 10.1021/acs.jpclett.2c02125
Shao, X.; Wang, K.; Peng, L.; Li, K.; Wen, H.; Le, X.; Wu, X.; Wang, G. Colloid Surface A 2022, 652, 129846. doi: 10.1016/j.colsurfa.2022.129846
doi: 10.1016/j.colsurfa.2022.129846
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014