Citation: Jingjing Wang, Guiqiang Cao, Ruixian Duan, Xiangyang Li, Xifei Li. Advances in Single Metal Atom Catalysts Enhancing Kinetics of Sulfur Cathode[J]. Acta Physico-Chimica Sinica, ;2023, 39(5): 221200. doi: 10.3866/PKU.WHXB202212005 shu

Advances in Single Metal Atom Catalysts Enhancing Kinetics of Sulfur Cathode

  • Corresponding author: Xiangyang Li, liyang2039@163.com Xifei Li, xfli@xaut.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 3 December 2022
    Revised Date: 30 December 2022
    Accepted Date: 2 January 2023
    Available Online: 16 January 2023

    Fund Project: the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government 22JP056

  • Sulfur has been considered as an ideal cathode of lithium sulfur batteries (LSBs) owing to its high theoretical energy density (2600 Wh∙Kg-1), excellent discharge capacity (1672 mAh∙g-1), and low cost. During sulfur reduction and oxidation processes, nevertheless, the sluggish redox reaction kinetics of the sulfur cathode and severe shuttle effect of soluble lithium polysulfides intermediates significantly result in poor battery performance. It has been demonstrated that a sulfur host with high adsorption energy and excellent catalytic activity/selectivity can effectively enhance the cycle stability and rate capability of LSBs. As a result, a variety of hosts, such as metal compounds, heterojunctions, defect matrices, and single metal atom catalysts, have been widely developed. Interestingly, single metal atom catalysts with a unique electronic structure, low metal content, theoretical 100% atom utilization efficiency, and high catalytic performance can effectively promote the conversion of different lithium polysulfides intermediates and provide abundant absorption sites for sulfur-contained species, thereby optimizing the redox reaction kinetics of the sulfur cathode and shuttle behavior of the soluble lithium polysulfides. Various single metal atom catalysts, mainly including iron, cobalt, nickel, zinc, tungsten, vanadium, molybdenum, and manganese, have been developed via atomic bonding, spatial confinement, and defect engineering strategies to solve the key challenges of sulfur cathode since single metal atom catalysts were for the first time to be utilized as catalytic agents for LSBs. In this review, the interaction among support materials in single metal atom catalysts, atomically dispersed metal catalytic sites, and the sulfur cathode were addressed in detail, providing a basis for the development of high-performance single metal atom catalysts. Furthermore, advanced characterization techniques such as in situ Raman spectroscopy, X-ray absorption spectroscopy, cyclic voltammograms, and electrochemical impedance spectroscopy, were employed to investigate the catalytic effect of single metal atom catalysts. Notably, the effects of the coordination environment on the catalytic activity and selectivity of single metal atom catalysts were systematically discussed. Simultaneously, the catalytic mechanism of single metal atom catalysts with different metal/nonmetallic atoms and coordination configurations was elucidated using theoretical calculations. In addition, some significant challenges of single metal atom catalyst in LSBs were proposed. It is believed that this review will provide a novel insight into the optimization of atomic catalysts with high activity and catalytic selectivity toward long-lifespan LSBs.
  • 加载中
    1. [1]

      Liang, Z. W.; Shen, J. D.; Xu, X. J.; Li, F. K.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Adv. Mater. 2022, 34, e2200102. doi: 10.1002/adma.202200102  doi: 10.1002/adma.202200102

    2. [2]

      Zhou, L.; Danilov, D. L.; Qiao, F.; Wang, J. F.; Li, H. T.; Eichel, R. A.; Notten, P. H. L. Adv. Energy Mater. 2022, 12, 2202094. doi: 10.1002/aenm.202202094  doi: 10.1002/aenm.202202094

    3. [3]

      Yang, X. F.; Li, X.; Adair, K.; Zhang, H. M.; Sun, X. L. Electrochem. Energy Rev. 2018, 1, 239. doi: 10.1007/s41918-018-0010-3  doi: 10.1007/s41918-018-0010-3

    4. [4]

      Liu, A. M.; Liang, X. Y.; Ren, X. F.; Guan, W. X.; Ma, T. L. Electrochem. Energy Rev. 2022, 5, 112. doi: org/10.1007/s41918-021-00110-w

    5. [5]

      Liu, S.; Yao, L.; Zhang, Q.; Li, L. L.; Hu, N. T.; Wei, L. M.; Wei, H. Acta Phys. -Chim. Sin. 2017, 33, 2339.  doi: 10.3866/PKU.WHXB201706021

    6. [6]

      Zhang, M. D.; Chen, B.; Wu, M. B. Acta Phys. -Chim. Sin. 2022, 38, 2101001.  doi: 10.3866/PKU.WHXB202101001

    7. [7]

      Xue, W. J.; Shi, Z.; Suo, L. M.; Wang, C.; Wang, Z. Q.; Wang, H. Z.; So, K. P.; Maurano, A.; Yu, D. W.; Chen, Y. M.; et al. Nat. Energy 2019, 4, 374. doi: 10.1038/s41560-019-0351-0  doi: 10.1038/s41560-019-0351-0

    8. [8]

      Zhou, G. M.; Xu, L.; Hu, G. W.; Mai, L. Q.; Cui, Y. Chem. Rev. 2019, 119, 11042. doi: 10.1021/acs.chemrev.9b00326  doi: 10.1021/acs.chemrev.9b00326

    9. [9]

      Han, Z. L.; Li, S. P.; Wu, Y. K.; Yu, C.; Cheng, S. J.; Xie, J. J. Mater. Chem. A 2021, 9, 24215. doi: 10.1039/d1ta06499a  doi: 10.1039/d1ta06499a

    10. [10]

      Cao, G. Q.; Duan, R. X.; Li, X. F. EnergyChem 2022, 5, 100096. doi: 10.1016/j.enchem.2022.100096  doi: 10.1016/j.enchem.2022.100096

    11. [11]

      Zhao, G. X.; Ahmed, W. H. Z.; Zhu, F. L. J. Electrochem. 2021, 27, 614. doi: 10.13208/j.electrochem.201210  doi: 10.13208/j.electrochem.201210

    12. [12]

      Gao, R. H.; Zhang, Q.; Zhao, Y.; Han, Z. Y.; Sun, C. B.; Sheng, J. Z.; Zhong, X. W.; Chen, B.; Li, C.; Ni, S. Y.; et al. Adv. Funct. Mater. 2021, 32, 2110313. doi: 10.1002/adfm.202110313  doi: 10.1002/adfm.202110313

    13. [13]

      Cheng, M. H.; Yan, R.; Yang, Z.; Tao, X. F.; Ma, T.; Cao, S. J.; Ran, F.; Li, S.; Yang, W.; Cheng, C. Adv. Sci. 2022, 9, 2102217. doi: 10.1002/advs.202102217  doi: 10.1002/advs.202102217

    14. [14]

      Han, Z. Y.; Gao, R. H.; Jia, Y. Y.; Zhang, M. T.; Lao, Z. J.; Chen, B.; Zhang, Q.; Li, C.; Lv, W.; Zhou, G. M. Mater. Today 2022, 57, 84. doi: 10.1016/j.mattod.2022.05.017  doi: 10.1016/j.mattod.2022.05.017

    15. [15]

      Zhang, T. T.; Yang, C. Y.; Qu, J.; Chang, W.; Liu, Y. H.; Zhai, X. Z.; Liu, H. J.; Jiang, Z. G.; Yu, Z. Z. Chem. Eur. J. 2022, 28, e202200363. doi: 10.1002/chem.202200363  doi: 10.1002/chem.202200363

    16. [16]

      Zhang, T.; Zhang, L.; Zhao, L.; Huang, X. X.; Hou, Y. L. EnergyChem 2020, 2, 100036. doi: 10.1016/j.enchem.2020.100036  doi: 10.1016/j.enchem.2020.100036

    17. [17]

      Chen, L. P.; Xu, Y. H.; Cao, G. Q.; Sari, H. M. K.; Duan, R. X.; Wang, J. J.; Xie, C.; Li, W. B.; Li, X. F. Adv. Funct. Mater. 2021, 32, 2107838. doi: 10.1002/adfm.202107838  doi: 10.1002/adfm.202107838

    18. [18]

      Mahankali, K.; Gottumukkala, S. V.; Masurkar, N.; Thangavel, N. K.; Jayan, R.; Sawas, A.; Nagarajan, S.; Islam, M. M.; Arava, L. M. R. ACS Appl. Mater. Interfaces 2022, 14, 24486. doi: 10.1021/acsami.2c05508  doi: 10.1021/acsami.2c05508

    19. [19]

      Guo, J.; Wang, H. Y.; Luo, Y. H.; An, H. L.; Zhang, Z. S.; Liu, G. H.; Li, J. D. Nanoscale 2021, 13, 17929. doi: 10.1039/d1nr04876g  doi: 10.1039/d1nr04876g

    20. [20]

      Cai, J. S.; Sun, Z. T.; Cai, W. L.; Wei, N.; Fan, Y.; Liu, Z. F.; Zhang, Q.; Sun, J. Y. Adv. Funct. Mater. 2021, 31, 2100586. doi: 10.1002/adfm.202100586  doi: 10.1002/adfm.202100586

    21. [21]

      Wang, R. C.; Luo, C.; Wang, T. S.; Zhou, G. M.; Deng, Y. Q.; He, Y. B.; Zhang, Q. F.; Kang, F. Y.; Lv, W.; Yang, Q. H. Adv. Mater. 2020, 32, e2000315. doi: 10.1002/adma.202000315  doi: 10.1002/adma.202000315

    22. [22]

      Liu, B. T.; Li, H.; Shi, C. L.; Sun, J. L.; Xiao, S. H.; Pang, Y. Y.; Yang, J. W.; Li, Y. W. Nanoscale 2022, 14, 4557. doi: 10.1039/d1nr08292b  doi: 10.1039/d1nr08292b

    23. [23]

      Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H.; et al. Nat. Catal. 2019, 2, 688. doi: 10.1038/s41929-019-0297-4  doi: 10.1038/s41929-019-0297-4

    24. [24]

      Dong, Y. T.; Zhang, R.; Peng, H. Q.; Han, D. D.; Zheng, X. F.; Han, Y. M.; Zhang, J. M. ACS Appl. Mater. Interfaces 2022, 14, 32474. doi: 10.1021/acsami.2c06067  doi: 10.1021/acsami.2c06067

    25. [25]

      Zou, K. Y.; Chen, X. X.; Jing, W. T.; Dai, X.; Wang, P. F.; Liu, Y.; Qiao, R.; Shi, M.; Chen, Y. Z.; Sun, J. J.; et al. Energy Storage Mater. 2022, 48, 133. doi: 10.1016/j.ensm.2022.03.003  doi: 10.1016/j.ensm.2022.03.003

    26. [26]

      Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X.; et al. J. Am. Chem. Soc. 2019, 141, 3977. doi: 10.1021/jacs.8b12973  doi: 10.1021/jacs.8b12973

    27. [27]

      Zhang, Y. G.; Liu, J. B.; Wang, J. Y.; Zhao, Y.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Angew. Chem. Int. Ed. 2021, 60, 26622. doi: 10.1002/anie.202108882  doi: 10.1002/anie.202108882

    28. [28]

      Liu, Y.; Wei, Z. Y.; Zhong, B.; Wang, H. T.; Xia, L.; Zhang, T.; Duan, X. M.; Jia, D. C.; Zhou, Y.; Huang, X. X. Energy Storage Mater. 2021, 35, 12. doi: 10.1016/j.ensm.2020.11.011  doi: 10.1016/j.ensm.2020.11.011

    29. [29]

      Fang, L. Z.; Feng, Z.; Cheng, L.; Winans, R. E.; Li, T. Small Methods 2020, 4, 2000315. doi: 10.1002/smtd.202000315  doi: 10.1002/smtd.202000315

    30. [30]

      Qin, R. X.; Liu, P. X.; Fu, G.; Zheng, N. F. Small Methods 2018, 2, 1700286. doi: 10.1002/smtd.201700286  doi: 10.1002/smtd.201700286

    31. [31]

      Wang, J.; Li, Z. J.; Wu, Y.; Li, Y. D. Adv. Mater. 2018, 30, e1801649. doi: 10.1002/adma.201801649  doi: 10.1002/adma.201801649

    32. [32]

      Jiao, D. X.; Liu, Y. J.; Cai, Q. H.; Zhao, J. X. J. Mater. Chem. A 2021, 9, 1240. doi: 10.1039/d0ta09496j  doi: 10.1039/d0ta09496j

    33. [33]

      Qiao, S. M.; Lei, D.; Wang, Q.; Shi, X. S.; Zhang, Q.; Huang, C. H.; Liu, A. M.; He, G. H.; Zhang, F. X. Chem. Eng. J. 2022, 442, 136258. doi: 10.1016/j.cej.2022.136258  doi: 10.1016/j.cej.2022.136258

    34. [34]

      Liu, P. T.; Wang, Y. Y.; Liu, J. H. J. Energy Chem. 2019, 34, 171. doi: 10.1016/j.jechem.2018.10.005  doi: 10.1016/j.jechem.2018.10.005

    35. [35]

      Zhang, L. L.; Wang, Y. J.; Niu, Z. Q.; Chen, J. Carbon 2019, 141, 400. doi: 10.1016/j.carbon.2018.09.067  doi: 10.1016/j.carbon.2018.09.067

    36. [36]

      Xiang, Y. Y.; Lu, L. Q.; Kottapalli, A. G. P.; Pei, Y. T. Carbon Energy 2022, 4, 346. doi: 10.1002/cey2.185  doi: 10.1002/cey2.185

    37. [37]

      Sui, X. L.; Zhang, L.; Li, J. J.; Doyle-Davis, K.; Li, R. Y.; Wang, Z. B.; Sun, X. L. Adv. Energy Mater. 2021, 12, 2102556. doi: 10.1002/aenm.202102556  doi: 10.1002/aenm.202102556

    38. [38]

      Zeng, Z. H.; Nong, W.; Li, Y.; Wang, C. X. Adv. Sci. 2021, 8, 2102809. doi: 10.1002/advs.202102809  doi: 10.1002/advs.202102809

    39. [39]

      Zhang, D.; Wang, S.; Hu, R. M.; Gu, J.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Adv. Funct. Mater. 2020, 30, 2002471. doi: 10.1002/adfm.202002471  doi: 10.1002/adfm.202002471

    40. [40]

      Chen, K.; Sun, Z. H.; Fang, R. P.; Shi, Y.; Cheng, H. M.; Li, F. Adv. Funct. Mater. 2018, 28, 1707592. doi: 10.1002/adfm.201707592  doi: 10.1002/adfm.201707592

    41. [41]

      Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Adv. Mater. 2017, 29, 1601759. doi: 10.1002/adma.201601759  doi: 10.1002/adma.201601759

    42. [42]

      Wang, F.; Zuo, Z. C.; Li, L.; He, F.; Li, Y. L. Nano Energy 2020, 68, 104307. doi: 10.1016/j.nanoen.2019.104307  doi: 10.1016/j.nanoen.2019.104307

    43. [43]

      Xiao, Q.; Yang, J. L.; Wang, X. D.; Deng, Y. R.; Han, P.; Yuan, N.; Zhang, L.; Feng, M.; Wang, C. A.; Liu, R. P. Carbon Energy 2021, 3, 271. doi: 10.1002/cey2.96  doi: 10.1002/cey2.96

    44. [44]

      Wu, J. L.; Chen, J. M.; Huang, Y.; Feng, K.; Deng, J.; Huang, W.; Wu, Y. L.; Zhong, J.; Li, Y. G. Sci. Bull. 2019, 64, 1875. doi: 10.1016/j.scib.2019.08.016  doi: 10.1016/j.scib.2019.08.016

    45. [45]

      Li, Y. J.; Chen, G. L.; Mou, J. R.; Liu, Y. Z.; Xue, S. F.; Tan, T.; Zhong, W. T.; Deng, Q.; Li, T.; Hu, J. H.; et al. Energy Storage Mater. 2020, 28, 196. doi: 10.1016/j.ensm.2020.03.008  doi: 10.1016/j.ensm.2020.03.008

    46. [46]

      Huang, T.; Sun, Y. J.; Wu, J. H.; Jin, J.; Wei, C. H.; Shi, Z. X.; Wang, M. L.; Cai, J. S.; An, X. T.; Wang, P.; et al. ACS Nano 2021, 15, 14105. doi: 10.1021/acsnano.1c04642  doi: 10.1021/acsnano.1c04642

    47. [47]

      Liu, Z. Z.; Zhou, L.; Ge, Q.; Chen, R. J.; Ni, M.; Utetiwabo, W.; Zhang, X. L.; Yang, W. ACS Appl. Mater. Interfaces 2018, 10, 19311. doi: 10.1021/acsami.8b03830  doi: 10.1021/acsami.8b03830

    48. [48]

      Ding, Y. F.; Cheng, Q. S.; Wu, J. H.; Yan, T. R.; Shi, Z. X.; Wang, M. L.; Yang, D. Z.; Wang, P.; Zhang, L.; Sun, J. Y. Adv. Mater. 2022, 34, 2202256. doi: 10.1002/adma.202202256  doi: 10.1002/adma.202202256

    49. [49]

      Fan, X. Y.; Chen, S.; Gong, W. B.; Meng, X. D.; Jia, Y. C.; Wang, Y. L.; Hong, S.; Zheng, L.; Zheng, L. R.; Bielawski, C. W.; et al. Energy Storage Mater. 2021, 41, 14. doi: 10.1016/j.ensm.2021.05.043  doi: 10.1016/j.ensm.2021.05.043

    50. [50]

      Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Nano Lett. 2021, 21, 9691. doi: 10.1021/acs.nanolett.1c03499  doi: 10.1021/acs.nanolett.1c03499

    51. [51]

      Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Adv. Energy Mater. 2020, 10, 2002271. doi: 10.1002/aenm.202002271  doi: 10.1002/aenm.202002271

    52. [52]

      Wang, P.; Xi, B. J.; Zhang, Z.; Huang, M.; Feng, J. K.; Xiong, S. L. Angew. Chem. Int. Ed. 2021, 60, 15563. doi: 10.1002/anie.202104053  doi: 10.1002/anie.202104053

    53. [53]

      Andritsos, E. I.; Lekakou, C.; Cai, Q. J. Phys. Chem. C 2021, 125, 18108. doi: 10.1021/acs.jpcc.1c04491  doi: 10.1021/acs.jpcc.1c04491

    54. [54]

      Guo, D. Y.; Zhang, X.; Liu, M. L.; Yu, Z. S.; Chen, X. A.; Yang, B.; Zhou, Z.; Wang, S. Adv. Funct. Mater. 2022, 32, 2204458. doi: 10.1002/adfm.202204458  doi: 10.1002/adfm.202204458

    55. [55]

      Wang, C. G.; Song, H. W.; Yu, C. C.; Ullah, Z. K.; Guan, Z. X.; Chu, R. R.; Zhang, Y. F.; Zhao, L. Y.; Li, Q.; Liu, L. W. J. Mater. Chem. A 2020, 8, 3421. doi: 10.1039/c9ta11680j  doi: 10.1039/c9ta11680j

    56. [56]

      Gorlin, Y.; Patel, M. U. M.; Freiberg, A.; He, Q.; Piana, M.; Tromp, M.; Gasteiger, H. A. J. Electrochem. Soc. 2016, 163, A930. doi: 10.1149/2.0631606jes  doi: 10.1149/2.0631606jes

    57. [57]

      Cuisinier, M.; Cabelguen, P. -E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F. J. Phys. Chem. Lett. 2013, 4, 3227. doi: 10.1021/jz401763d  doi: 10.1021/jz401763d

    58. [58]

      Li, Y. J.; Wu, J. B.; Zhang, B.; Wang, W. Y.; Zhang, G. Q.; Seh, Z. W.; Zhang, N.; Sun, J.; Huang, L.; Jiang, J. J.; et al. Energy Storage Mater. 2020, 30, 250. doi: 10.1016/j.ensm.2020.05.022  doi: 10.1016/j.ensm.2020.05.022

    59. [59]

      Li, Y. X.; Zeng, Y. X.; Chen, Y.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Angew. Chem. Int. Ed. 2022, 61, e202212680. doi: 10.1002/anie.202212680  doi: 10.1002/anie.202212680

    60. [60]

      Xie, S.; Chen, X. J.; Wang, C.; Lu, Y. R.; Chan, T. S.; Chuang, C. H.; Zhang, J.; Yan, W. S.; Jin, S.; Jin, H. C.; et al. Small 2022, 18, 2200395. doi: 10.1002/smll.202200395  doi: 10.1002/smll.202200395

    61. [61]

      Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C.; et al. Nano Lett. 2020, 20, 1252. doi: 10.1021/acs.nanolett.9b04719  doi: 10.1021/acs.nanolett.9b04719

    62. [62]

      Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Angew. Chem. Int. Ed. 2021, 60, 7607. doi: 10.1002/anie.202016219  doi: 10.1002/anie.202016219

    63. [63]

      Tang, H.; Gu, H. F.; Li, Z. Y.; Chai, J.; Qin, F. J.; Lu, C. Q.; Yu, J. Y.; Zhai, H. Z.; Zhang, L.; Li, X. Y.; et al. ACS Appl. Mater. Interfaces 2022, 14, 46401. doi: 10.1021/acsami.2c09107  doi: 10.1021/acsami.2c09107

    64. [64]

      Wang, J. Y.; Qiu, W. B.; Li, G. R.; Liu, J. B.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Wang, X.; et al. Energy Storage Mater. 2022, 46, 269. doi: 10.1016/j.ensm.2021.12.040  doi: 10.1016/j.ensm.2021.12.040

    65. [65]

      Zhou, W. L.; Su, H.; Li, Y. L.; Liu, M. H.; Zhang, H.; Zhang, X. X.; Sun, X.; Xu, Y. Z.; Liu, Q. H.; Wei, S. Q. ACS Energy Lett. 2021, 6, 3359. doi: 10.1021/acsenergylett.1c01316  doi: 10.1021/acsenergylett.1c01316

    66. [66]

      Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X.; et al. Angew. Chem. Int. Ed. 2018, 57, 1944. doi: 10.1002/anie.201712451  doi: 10.1002/anie.201712451

    67. [67]

      Zhou, Y. Z.; Tao, X. F.; Chen, G. B.; Lu, R. H.; Wang, D.; Chen, M. X.; Jin, E. Q.; Yang, J.; Liang, H. W.; Zhao, Y.; et al. Nat. Commun. 2020, 11, 5892. doi: 10.1038/s41467-020-19599-8  doi: 10.1038/s41467-020-19599-8

    68. [68]

      Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. J. Am. Chem. Soc. 2018, 140, 11594. doi: 10.1021/jacs.8b07294  doi: 10.1021/jacs.8b07294

    69. [69]

      Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J.; Yao, X. D. Chem 2018, 4, 285. doi: 10.1016/j.chempr.2017.12.005  doi: 10.1016/j.chempr.2017.12.005

    70. [70]

      Tsounis, C.; Subhash, B.; Kumar, P. V.; Bedford, N. M.; Zhao, Y. F.; Shenoy, J.; Ma, Z. P.; Zhang, D.; Toe, C. Y.; Cheong, S.; et al. Adv. Funct. Mater. 2022, 32, 2203067. doi: 10.1002/adfm.202203067  doi: 10.1002/adfm.202203067

    71. [71]

      Wang, X. P.; Ding, S. S.; Yue, T.; Zhu, Y.; Fang, M. W.; Li, X. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M. Nano Energy 2021, 82, 105689. doi: 10.1016/j.nanoen.2020.105689  doi: 10.1016/j.nanoen.2020.105689

    72. [72]

      Chen, X.; Ma, D. D.; Chen, B.; Zhang, K. X.; Zou, R. Q.; Wu, X. T.; Zhu, Q. L. Appl. Catal. B: Environ. 2020, 267, 118720. doi: 10.1016/j.apcatb.2020.118720  doi: 10.1016/j.apcatb.2020.118720

    73. [73]

      Zhuo, H. Y.; Zhang, X.; Liang, J. X.; Yu, Q.; Xiao, H.; Li, J. Chem. Rev. 2020, 120, 12315. doi: 10.1021/acs.chemrev.0c00818  doi: 10.1021/acs.chemrev.0c00818

    74. [74]

      Jiang, Q.; Zhang, J. F.; Huang, H. J.; Wu, Y. P.; Ao, Z. M. J. Mater. Chem. A 2020, 8, 287. doi: 10.1039/c9ta08525d  doi: 10.1039/c9ta08525d

    75. [75]

      Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q.; Huang, J. Q. InfoMat 2019, 1, 533. doi: 10.1002/inf2.12056  doi: 10.1002/inf2.12056

    76. [76]

      Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J. Q. Adv. Mater. 2019, 31, 1903813. doi: 10.1002/adma.201903813  doi: 10.1002/adma.201903813

    77. [77]

      Zeng, Q. W.; Hu, R. M.; Chen, Z. B.; Shang, J. X. Mater. Res. Express 2019, 6, 095620. doi: 10.1088/2053-1591/ab33ad  doi: 10.1088/2053-1591/ab33ad

    78. [78]

      Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 3212. doi: 10.1002/anie.202012798  doi: 10.1002/anie.202012798

    79. [79]

      Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y.; et al. J. Am. Chem. Soc. 2018, 140, 4218. doi: 10.1021/jacs.8b00814  doi: 10.1021/jacs.8b00814

    80. [80]

      Chen, H. H.; Guo, X.; Kong, X. D.; Xing, Y. L.; Liu, Y.; Yu, B. L.; Li, Q. X.; Geng, Z. G.; Si, R.; Zeng, J. Green Chem. 2020, 22, 7529. doi: 10.1039/d0gc02689a  doi: 10.1039/d0gc02689a

    81. [81]

      Lin, H. B.; Zhang, S. L.; Zhang, T. R.; Ye, H. L.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Adv. Energy Mater. 2018, 8, 1801868. doi: 10.1002/aenm.201801868  doi: 10.1002/aenm.201801868

    82. [82]

      Qiu, Y.; Fan, L. S.; Wang, M. X.; Yin, X. J.; Wu, X.; Sun, X.; Tian, D.; Guan, B.; Tang, D. Y.; Zhang, N. Q. ACS Nano 2020, 14, 16105. doi: 10.1021/acsnano.0c08056  doi: 10.1021/acsnano.0c08056

    83. [83]

      Ma, F.; Wan, Y. Y.; Wang, X. M.; Wang, X. C.; Liang, J. S.; Miao, Z. P.; Wang, T. Y.; Ma, C.; Lu, G.; Han, J. T.; et al. ACS Nano 2020, 14, 10115. doi: 10.1021/acsnano.0c03325  doi: 10.1021/acsnano.0c03325

    84. [84]

      Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D.; et al. J. Am. Chem. Soc. 2019, 141, 20118. doi: 10.1021/jacs.9b09352  doi: 10.1021/jacs.9b09352

    85. [85]

      Wang, M. R.; Yang, W. J.; Li, X. Z.; Xu, Y. S.; Zheng, L. R.; Su, C. L.; Liu, B. ACS Energy Lett. 2021, 6, 379. doi: 10.1021/acsenergylett.0c02484  doi: 10.1021/acsenergylett.0c02484

    86. [86]

      Yu, J.; Li, J.; Xu, C. Y.; Li, Q. Q.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Zhu, J. H.; Wang, J. Nano Energy 2022, 98, 107266. doi: 10.1016/j.nanoen.2022.107266  doi: 10.1016/j.nanoen.2022.107266

    87. [87]

      Yuan, K.; Lutzenkirchen Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W.; Scherf, U. J. Am. Chem. Soc. 2020, 142, 2404. doi: 10.1021/jacs.9b11852  doi: 10.1021/jacs.9b11852

    88. [88]

      Liu, G. L.; Wang, W. M.; Zeng, P.; Yuan, C.; Wang, L.; Li, H. T.; Zhang, H.; Sun, X. H.; Dai, K. H.; Mao, J.; Li, X.; Zhang, L. Nano Lett. 2022, 22, 6366. doi: 10.1021/acs.nanolett.2c02183  doi: 10.1021/acs.nanolett.2c02183

    89. [89]

      Huang, T.; Sun, Y. J.; Wu, J. H.; Shi, Z. X.; Ding, Y. F.; Wang, M. L.; Su, C. L.; Li, Y. Y.; Sun, J. Y. Adv. Funct. Mater. 2022, 32, 2203902. doi: 10.1002/adfm.202203902  doi: 10.1002/adfm.202203902

    90. [90]

      Zhao, H.; Tian, B. B.; Su, C. L.; Li, Y. ACS Appl. Mater. Interfaces 2021, 13, 7171. doi: 10.1021/acsami.0c20446  doi: 10.1021/acsami.0c20446

    91. [91]

      Zhang, S. J.; Shao, Q. J.; Su, Y.; Xu, L.; Jiang, Q. K.; Chen, J. J. Alloys Compd. 2022, 910, 164799. doi: 10.1016/j.jallcom.2022.164799  doi: 10.1016/j.jallcom.2022.164799

    92. [92]

      Faheem, M.; Yin, X.; Shao, R. W.; Zhou, L.; Zeng, C. Y.; Ahmad, N.; Tufail, M. K.; Yang, W. J. Alloys Compd. 2022, 922, 166132. doi: 10.1016/j.jallcom.2022.166132  doi: 10.1016/j.jallcom.2022.166132

    93. [93]

      Yu, H.; Zeng, P.; Zhou, X.; Guo, C. M.; Liu, X. L.; Wang, K. F.; Guo, X. W.; Chang, B. B.; Chen, M. F.; Wang, X. Y. ACS Appl. Mater. Interfaces 2021, 13, 54113. doi: 10.1021/acsami.1c18645  doi: 10.1021/acsami.1c18645

    94. [94]

      Zhu, J.; Wang, X. Y.; Ke, T.; Jia, M. J.; Jin, B. Y.; Li, Y. Y.; Yang, Q. W.; Ren, L. H.; Ren, Y. Y.; Cheng, D. G.; et al. J. Energy Chem. 2022, 78, 203. doi: 10.1016/j.jechem.2022.08.041  doi: 10.1016/j.jechem.2022.08.041

    95. [95]

      Liu, K.; Wang, X. Y.; Gu, S.; Yuan, H. M.; Jiang, F.; Li, Y. Z.; Tan, W.; Long, Q. R.; Chen, J. J.; Xu, Z. H.; et al. Small 2022, 18, 2204707. doi: 10.1002/smll.202204707  doi: 10.1002/smll.202204707

    96. [96]

      Lu, C.; Chen, Y.; Yang, Y.; Chen, X. Nano Lett. 2020, 20, 5522. doi: 10.1021/acs.nanolett.0c02167  doi: 10.1021/acs.nanolett.0c02167

    97. [97]

      Wang, J.; Jia, L. J.; Zhong, J.; Xiao, Q. B.; Wang, C.; Zang, K. T.; Liu, H. T.; Zheng, H. C.; Luo, J.; Yang, J.; et al. Energy Storage Mater. 2019, 18, 246. doi: 10.1016/j.ensm.2018.09.006  doi: 10.1016/j.ensm.2018.09.006

    98. [98]

      Li, S.; Lin, J. D.; Chang, B.; Yang, D. W.; Wu, D. Y.; Wang, J. H.; Zhou, W. J.; Liu, H.; Sun, S. H.; Zhang, L. Energy Storage Mater. 2023, 55, 94. doi: 10.1016/j.ensm.2022.11.045  doi: 10.1016/j.ensm.2022.11.045

    99. [99]

      Tian, W. Z.; Xi, B. J.; Feng, Z. Y.; Li, H. B.; Feng, J. K.; Xiong, S. L. Adv. Energy Mater. 2019, 9, 1901896. doi: 10.1002/aenm.201901896  doi: 10.1002/aenm.201901896

    100. [100]

      Li, Z.; Zhang, J. T.; Lou, X. W. Angew. Chem. Int. Ed. 2015, 127, 13078. doi: 10.1002/anie.201506972  doi: 10.1002/anie.201506972

    101. [101]

      Pang, Q.; Kundu, D. P.; Cuisinier, M.; Nazar, L. F. Nat. Commun. 2014, 5, 4759. doi: 10.1038/ncomms5759  doi: 10.1038/ncomms5759

    102. [102]

      Wang, S. Z.; Wang, Y.; Song, Y. C.; Jia, X. H.; Yang, J.; Li, Y.; Liao, J. X.; Song, H. J. Energy Storage Mater. 2021, 43, 422. doi: 10.1016/j.ensm.2021.09.020  doi: 10.1016/j.ensm.2021.09.020

    103. [103]

      Niu, L. Q.; Wu, T. L.; Zhou, D.; Qi, J.; Xiao, Z. B. Energy Storage Mater. 2022, 45, 840. doi: 10.1016/j.ensm.2021.12.039  doi: 10.1016/j.ensm.2021.12.039

    104. [104]

      Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J.; et al. Proc. Natl. Acad. Sci. USA 2017, 114, 840. doi: 10.1073/pnas.1615837114  doi: 10.1073/pnas.1615837114

    105. [105]

      Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Nat. Commun. 2017, 8, 14627. doi: 10.1038/ncomms14627  doi: 10.1038/ncomms14627

    106. [106]

      Zhou, K. L.; Wang, Z. L.; Han, C. B.; Ke, X. X.; Wang, C. H.; Jin, Y. H.; Zhang, Q. Q.; Liu, J. B.; Wang, H.; Yan, H. Nat. Commun. 2021, 12, 3783. doi: 10.1038/s41467-021-24079-8  doi: 10.1038/s41467-021-24079-8

    107. [107]

      Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Nat. Catal. 2018, 1, 985. doi: 10.1038/s41929-018-0195-1  doi: 10.1038/s41929-018-0195-1

    108. [108]

      Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; De Groot, F. M. F.; Tan, Y. W. Nat. Commun. 2019, 10, 1743. doi: 10.1038/s41467-019-09765-y  doi: 10.1038/s41467-019-09765-y

    109. [109]

      Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H.; et al. Nat. Energy 2019, 4, 512. doi: 10.1038/s41560-019-0402-6  doi: 10.1038/s41560-019-0402-6

    110. [110]

      Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    111. [111]

      Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D.; et al. Science 2016, 352, 797. doi: 10.1126/science.aaf5251  doi: 10.1126/science.aaf5251

    112. [112]

      Zheng, J. W.; Lebedev, K.; Wu, S.; Huang, C.; Ayvalı, T. C. E.; Wu, T. S.; Li, Y. Y.; Ho, P. L.; Soo, Y. L.; Kirkland, A.; et al. J. Am. Chem. Soc. 2021, 143, 7979. doi: 10.1021/jacs.1c01097  doi: 10.1021/jacs.1c01097

    113. [113]

      Nahian, M. S.; Jayan, R.; Islam, M. M. ACS Catal. 2022, 12, 7664. doi: 10.1021/acscatal.2c01174  doi: 10.1021/acscatal.2c01174

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(35)
  • Abstract views(785)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return