Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries
- Corresponding author: Jinping Liu, liujp@whut.edu.cn
Citation: Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 221101. doi: 10.3866/PKU.WHXB202211017
Liu, L.; Wu, Z. C.; Zheng, Z.; Zhou, Q. J.; Chen, K.; Yin, P. C. Chin. Chem. Lett. 2022, 33, 4326. doi: 10.1016/j.cclet.2021.12.031
doi: 10.1016/j.cclet.2021.12.031
Song, K. M.; Chen, W. H. Chem 2021, 7, 3195. doi: 10.1016/j.chempr.2021.11.016
doi: 10.1016/j.chempr.2021.11.016
Deysher, G.; Ridley, P.; Ham, S. Y.; Doux, J. M.; Chen, Y. T.; Wu, E. A.; Tan, D. H. S.; Cronk, A.; Jang, J.; Meng, Y. S. Mater. Today Phys. 2022, 24, 2542. doi: 10.1016/j.mtphys.2022.100679
doi: 10.1016/j.mtphys.2022.100679
Zhao, B. L.; Ma, L. X.; Wu, K.; Cao, M. X.; Xu, M. G.; Zhang, X. X.; Liu, W.; Chen, J. T. Chin. Chem. Lett. 2021, 32, 125. doi: 10.1016/j.cclet.2020.10.045
doi: 10.1016/j.cclet.2020.10.045
Zhao, T.; Li, S. W.; Liu, F.; Wang, Z. Q.; Wang, H. L.; Liu, Y. J.; Tang, X. Y.; Bai, M.; Zhang, M.; Ma, Y. Energy Storage Mater. 2022, 45, 796. doi: 10.1016/j.ensm.2021.12.032
doi: 10.1016/j.ensm.2021.12.032
Zhou, B. X.; Bonakdarpour, A.; Stosevski, I.; Fang, B. Z.; Wilkinson, D. P. Prog. Mater. Sci. 2022, 130, 79. doi: 10.1016/j.pmatsci.2022.100996
doi: 10.1016/j.pmatsci.2022.100996
Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S. Chem. Rev. 2020, 120, 6878. doi: 10.1021/acs.chemrev.0c00101
doi: 10.1021/acs.chemrev.0c00101
Wang, H.; An, H, W.; Shan, H. M. .; Zhao, L.; Wang, J. J. Acta Phys. -Chim. Sin. 2021, 36, 2007070.
doi: 10.3866/PKU.WHXB202007070
Zhang, Z. H.; Wu, L. P.; Zhou, D.; Weng, W.; Yao, X. Y. Nano Lett. 2021, 21, 5233. doi: 10.1021/acs.nanolett.1c01344
doi: 10.1021/acs.nanolett.1c01344
Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy 2016, 1, 7. doi: 10.1038/nenergy.2016.30
doi: 10.1038/nenergy.2016.30
Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. Nat. Mater. 2011, 10, 682. doi: 10.1038/nmat3066
doi: 10.1038/nmat3066
Lu, Y.; Li, L.; Zhang, Q.; Niu, Z.Q.; Chen, J. Joule 2018, 2, 1747. doi: 10.1016/j.joule.2018.07.028
doi: 10.1016/j.joule.2018.07.028
Wang, H. C.; Zhu, J. P.; Su, Y.; Gong, Z. L.; Yang, Y. Sci. China-Chem. 2021, 64, 879. doi: 10.1007/s11426-021-9985-x
doi: 10.1007/s11426-021-9985-x
Goodenough, J. B.; Kim, Y. Chem. Mat. 2010, 22, 587. doi: 10.1021/cm901452z
doi: 10.1021/cm901452z
Wenzel, S.; Leichtweiss, T.; Kruger, D.; Sann, J.; Janek, J. Solid State Ion. 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001
doi: 10.1016/j.ssi.2015.06.001
Rehnlund, D.; Wang, Z. H.; Nyholm, L. Adv. Mater. 2022, 34, 2108827. doi: 10.1002/adma.202108827
doi: 10.1002/adma.202108827
Haruyama, J.; Sodeyama, K.; Tateyama, Y. ACS Appl. Mater. Interfaces 2017, 9, 286. doi: 10.1021/acsami.6b08435
doi: 10.1021/acsami.6b08435
Sakuda, A.; Hayashi, A.; Tatsumisago, M. Chem. Mat. 2010, 22, 949. doi: 10.1021/cm901819c
doi: 10.1021/cm901819c
Park, K.; Yu, B. C.; Jung, J. W.; Li, Y. T.; Zhou, W. D.; Gao, H. C.; Son, S.; Goodenough, J. B. Chem. Mat. 2016, 28, 8051. doi: 10.1021/acs.chemmater.6b03870
doi: 10.1021/acs.chemmater.6b03870
Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Chem. Mat. 2016, 28, 266. doi: 10.1021/acs.chemmater.5b04082
doi: 10.1021/acs.chemmater.5b04082
Lu, G.; Geng, F.; Gu, S.; Li, C.; Shen, M.; Hu, B. ACS Appl. Mater. Interfaces 2022, 14, 25556. doi: 10.1021/acsami.2c05239
doi: 10.1021/acsami.2c05239
Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z. L.; Zhang, X. Y.; He, P.; Zhou, H. S.; Wagemaker, M. Joule 2020, 4, 131. doi: 10.1016/j.joule.2020.04.002
doi: 10.1016/j.joule.2020.04.002
Liu, S. L.; Liu, W. Y.; Ba, D. L.; Zhao, Y. Z.; Ye, Y. H.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2022, 2110423. doi: 10.1002/adma.202110423
doi: 10.1002/adma.202110423
Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Energy Storage Mater. 2021, 38, 309. doi: 10.1016/j.ensm.2021.03.015
doi: 10.1016/j.ensm.2021.03.015
Kitsche, D.; Tang, Y. S.; Ma, Y.; Goonetilleke, D.; Sann, J.; Walther, F.; Bianchini, M.; Janek, J.; Brezesinski, T. ACS Appl. Energ. Mater. 2021, 4, 7338. doi: 10.1021/acsaem.1c01487
doi: 10.1021/acsaem.1c01487
Ma, Y.; Teo, J. H.; Walther, F.; Ma, Y. J.; Zhang, R. Z.; Mazilkin, A.; Tang, Y. S.; Goonetilleke, D.; Janek, J.; Bianchini, M.; et al. Adv. Funct. Mater. 2022, 15, 2111829. doi: 10.1002/adfm.202111829
doi: 10.1002/adfm.202111829
Peng, L. F.; Ren, H. T.; Zhang, J. Z.; Chen, S. J.; Yu, C.; Miao, X. F.; Zhang, Z. Q.; He, Z. Y.; Yu, M.; Zhang, L.; et al. Energy Storage Mater. 2021, 43, 53. doi: 10.1016/j.ensm.2021.08.028
doi: 10.1016/j.ensm.2021.08.028
Li, X.; Ren, Z. H.; Banis, M. N.; Deng, S. X.; Zhao, Y.; Sun, Q.; Wang, C. H.; Yang, X. F.; Li, W. H.; Liang, J. W.; et al. ACS Energy Lett. 2019, 4, 2480. doi: 10.1021/acsenergylett.9b01676
doi: 10.1021/acsenergylett.9b01676
Liu, Y. L.; Sun, Q.; Liu, J. R.; Banis, M. N.; Zhao, Y.; Wang, B. Q.; Adair, K.; Hu, Y. F.; Xiao, Q. F.; Zhang, C.; et al. ACS Appl. Mater. Interfaces 2020, 12, 2293. doi: 10.1021/acsami.9b16343
doi: 10.1021/acsami.9b16343
Tsai, W. Y.; Thundat, T.; Nanda, J. Matter 2021, 4, 2119. doi: 10.1016/j.matt.2021.06.014
doi: 10.1016/j.matt.2021.06.014
Gao, Y.; Du, X. Q.; Hou, Z.; Shen, X.; Mai, Y. W.; Tarascon, J. M.; Zhang, B. A. Joule 2021, 5, 1860. doi: 10.1016/j.joule.2021.05.015
doi: 10.1016/j.joule.2021.05.015
Krauskopf, T.; Richter, F. H.; Zeier, W. G.; Janek, J. Chem. Rev. 2020, 120, 7745. doi: 10.1021/acs.chemrev.0c00431
doi: 10.1021/acs.chemrev.0c00431
Xu, B. Y.; Li, X. Y.; Yang, C.; Li, Y. T.; Grundish, N. S.; Chien, P. H.; Dong, K.; Manke, I.; Fang, R. Y.; Wu, N.; et al. J. Am. Chem. Soc. 2021, 143, 6542. doi: 10.1021/jacs.1c00752
doi: 10.1021/jacs.1c00752
Mi, J.S.; Ma, J.B.; Chen, L.K.; Lai, C.; Yang, K.; Biao, J.; Xia, H.Y.; Song, X.; Lv, W.; Zhong, G.M. Energy Storage Mater. 2022, 48, 375. doi: 10.1016/j.ensm.2022.02.048
doi: 10.1016/j.ensm.2022.02.048
Arrese-Igor, M.; Martinez-Ibanez, M.; Pavlenko, E.; Forsyth, M.; Zhu, H.; Armand, M.; Aguesse, F.; Lopez-Aranguren, P. ACS Energy Lett. 2022, 7, 1473. doi: 10.1021/acsenergylett.2c00488
doi: 10.1021/acsenergylett.2c00488
Wang, P.; Qu, W. J.; Song, W. L.; Chen, H. S.; Chen, R. J.; Fang, D. N. Adv. Funct. Mater. 2019, 29, 29. doi: 10.1002/adfm.201900950
doi: 10.1002/adfm.201900950
Tian, H. K.; Qi, Y. J. Electrochem. Soc. 2017, 16, 3512. doi: 10.1149/2.0481711jes
doi: 10.1149/2.0481711jes
Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; Boston, R.; Corr, S. A.; De Volder, M. F. L.; Inkson, B. J.; Fleck, N. A. Joule 2022, 6, 984. doi: 10.1016/j.joule.2022.04.001
doi: 10.1016/j.joule.2022.04.001
Liu, Y. Y.; Tzeng, Y. K.; Lin, D. C.; Pei, A.; Lu, H. Y.; Melosh, N. A.; Shen, Z. X.; Chu, S.; Cui, Y. Joule 2018, 2, 1595. doi: 10.1016/j.joule.2018.05.007
doi: 10.1016/j.joule.2018.05.007
Kasemchainan, J.; Zekoll, S.; Jolly, D. S.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Nat. Mater. 2019, 18, 1105. doi: 10.1038/s41563-019-0438-9
doi: 10.1038/s41563-019-0438-9
Yamada, H.; Ito, T.; Basappa, R. H.; Bekarevich, R.; Mitsuishi, K. J. Power Sources 2017, 368, 97. doi: 10.1016/j.jpowsour.2017.09.076
doi: 10.1016/j.jpowsour.2017.09.076
Zhang, W. B.; Schroder, D.; Arlt, T.; Manke, I.; Koerver, R.; Pinedo, R.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. J. Mater. Chem. A 2017, 5, 9929. doi: 10.1039/c7ta02730c
doi: 10.1039/c7ta02730c
Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Zuo, T. T.; Yan, M.; Yin, Y. X.; Shi, J. L.; Wu, X. W.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2019, 141, 9165. doi: 10.1021/jacs.9b03517
doi: 10.1021/jacs.9b03517
Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 14, 82. doi: 10.1021/jacs.7b10864
doi: 10.1021/jacs.7b10864
Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Marschilok, A. C.; Takeuchi, K. J.; Wang, H. L.; Takeuchi, E. S.; Yu, G. H. Adv. Mater. 2022, 34, 2202780. doi: 10.1002/adma.202202780
doi: 10.1002/adma.202202780
Deng, C. L.; Chen, N.; Hou, C. Y.; Liu, H. X.; Zhou, Z. M.; Chen, R. J. Small 2021, 17, 9. doi: 10.1002/smll.202006578
doi: 10.1002/smll.202006578
Guo, S. J.; Li, Y. T.; Li, B.; Grundish, N. S.; Cao, A. M.; Sun, Y. G.; Xu, Y. S.; Ji, Y. L. M.; Qiao, Y.; Zhang, Q. H.; et al. J. Am. Chem. Soc. 2022, 144, 2179. doi: 10.1021/jacs.1c10872
doi: 10.1021/jacs.1c10872
Liu, Y. Q.; Wang, X.; Ghosh, S. K.; Zou, M.; Zhou, H.; Xiao, X. H.; Meng, X. B. Dalton Trans. 2022, 51, 2737. doi: 10.1039/d1dt03600a
doi: 10.1039/d1dt03600a
Deng, T.; Ji, X.; Zhao, Y.; Cao, L. S.; Li, S.; Hwang, S.; Luo, C.; Wang, P. F.; Jia, H. P.; Fan, X. L.; et al. Adv. Mater. 2020, 32, 2000030. doi: 10.1002/adma.202000030
doi: 10.1002/adma.202000030
Shao, Y. J.; Wang, H. C.; Gong, Z. L.; Wang, D. W.; Zheng, B. Z.; Zhu, J. P.; Lu, Y. X.; Hu, Y. S.; Guo, X. X.; Li, H.; et al. ACS Energy Lett. 2018, 3, 1212. doi: 10.1021/acsenergylett.8b00453
doi: 10.1021/acsenergylett.8b00453
Zhao, J. H.; Xie, M. L.; Zhang, H. Y.; Yi, R. W.; Hu, C. J.; Kang, T.; Zheng, L.; Cui, R. G.; Chen, H. W.; Shen, Y. B.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2104003.
doi: 10.3866/PKU.WHXB202104003
Strauss, F.; Bartsch, T.; de Biasi, L.; Kim, A. Y.; Janek, J.; Hartmann, P.; Brezesinski, T. ACS Energy Lett. 2018, 3, 992. doi: 10.1021/acsenergylett.8b00275
doi: 10.1021/acsenergylett.8b00275
Shi, T.; Tu, Q. S.; Tian, Y. S.; Xiao, Y. H.; Miara, L. J.; Kononova, O.; Ceder, G. Adv. Energy Mater. 2020, 10, 1902881. doi: 10.1002/aenm.201902881
doi: 10.1002/aenm.201902881
Zhao, J.; Zhao, C.; Zhu, J. P.; Liu, X. S.; Yao, J. M.; Wang, B.; Dai, Q. S.; Wang, Z. F.; Chen, J. Z.; Jia, P.; et al. Nano Lett. 2022, 2, 411. doi: 10.1021/acs.nanolett.1c04076
doi: 10.1021/acs.nanolett.1c04076
Jiang, W.; Zhu, X. X.; Huang, R. Z.; Zhao, S.; Fan, X. M.; Ling, M.; Liang, C. D.; Wang, L. G. Adv. Energy Mater. 2022, 2103473. doi: 10.1002/aenm.202103473
doi: 10.1002/aenm.202103473
Yang, C.P.; Wu, Q.S.; Xie, W.Q.; Zhang, X.; Brozena, A.; Zheng, J.; Garaga, M. N.; Ko, B. H.; Mao, Y.M.; He, S.M.; et al. Nature 2021, 598, 590. doi: 10.1038/s41586-021-03885-6
doi: 10.1038/s41586-021-03885-6
Li, Z.; Zhou, X. Y.; Guo, X. Energy Storage Mater. 2020, 29, 149. doi: 10.1016/j.ensm.2020.04.015
doi: 10.1016/j.ensm.2020.04.015
Bi, Z. J.; Mu, S.; Zhao, N.; Sun, W. H.; Huang, W. L.; Guo, X. X. Energy Storage Mater. 2021, 35, 512. doi: 10.1016/j.ensm.2020.11.038
doi: 10.1016/j.ensm.2020.11.038
Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. ACS Appl. Energ. Mater. 2018, 1, 3622. doi: 10.1021/acsaem.8b00280
doi: 10.1021/acsaem.8b00280
Xiao, Y. R.; Turcheniuk, K.; Narla, A.; Song, A. Y.; Ren, X. L.; Magasinski, A.; Jain, A.; Huang, S.; Lee, H.; Yushin, G. Nat. Mater. 2021, 20, 984. doi: 10.1038/s41563-021-00943-2
doi: 10.1038/s41563-021-00943-2
Geng, Z.; Huang, Y. L.; Sun, G. C.; Chen, R. S.; Cao, W. Z.; Zheng, J. Y.; Li, H. Nano Energy 2022, 91, 2211. doi: 10.1016/j.nanoen.2021.106679
doi: 10.1016/j.nanoen.2021.106679
Gao, X.W.; Liu, B.Y.; Hu, B.K.; Ning, Z.Y.; Jolly, D. S.; Zhang, S.M.; Perera, J.; Bu, J.; Liu, J.L.; Doerrer, C.; et al. Joule 2022, 6, 636. doi: 10.1016/j.joule.2022.02.008
doi: 10.1016/j.joule.2022.02.008
Zhu, G. L.; Zhao, C. Z.; Yuan, H.; Nan, H. X.; Zhao, B. C.; Hou, L. P.; He, C. X.; Liu, Q. B.; Huang, J. Q. Acta Phys. -Chim. Sin. 2021, 37, 2005003.
doi: 10.3866/PKU.WHXB202005003
Doux, J. M.; Yang, Y. Y. C.; Tan, D. H. S.; Nguyen, H.; Wu, E. A.; Wang, X. F.; Banerjee, A.; Meng, Y. S. J. Mater. Chem. A 2020, 8, 5049. doi: 10.1039/c9ta12889a
doi: 10.1039/c9ta12889a
Li, L. P.; Liu, W. Y.; Dong, H. Y.; Gui, Q. Y.; Hu, Z. Q.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2021, 33, 20204959. doi: 10.1002/adma.202004959
doi: 10.1002/adma.202004959
Nie, L.; Chen, S. J.; Zhang, C.; Dong, L.; He, Y. J.; Gao, T. Y.; Yu, J. M.; Liu, W. Cell Rep. Phys. Sci. 2022, 3, 100851. doi: 10.1016/j.xcrp.2022.100851
doi: 10.1016/j.xcrp.2022.100851
Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Angew. Chem. Int. Edit. 2021, 60, 12931. doi: 10.1002/anie.202101537
doi: 10.1002/anie.202101537
Xia, Q. Y.; Zhang, Q. H.; Sun, S.; Hussain, F.; Zhang, C. C.; Zhu, X. H.; Meng, F. Q.; Liu, K. M.; Geng, H.; Xu, J.; et al. Adv. Mater. 2021, 33, 2003524. doi: 10.1002/adma.202003524
doi: 10.1002/adma.202003524
Salian, G. D.; Lebouin, C.; Demoulin, A.; Lepihin, M. S.; Maria, S.; Galeyeva, A. K.; Kurbatov, A. P.; Djenizian, T. J. Power Sources 2017, 340, 242. doi: 10.1016/j.jpowsour.2016.11.078
doi: 10.1016/j.jpowsour.2016.11.078
Matsuda, Y.; Kuwata, N.; Kawamura, J. Solid State Ion. 2018, 320, 38. doi: 10.1016/j.ssi.2018.02.024
doi: 10.1016/j.ssi.2018.02.024
Zhou, X.; Zhang, Y.; Shen, M.; Fang, Z.; Kong, T. Y.; Feng, W. L.; Xie, Y. H.; Wang, F.; Hu, B. W.; Wang, Y. G. Adv. Energy Mater. 2022, 12, 2103932. doi: 10.1002/aenm.202103932
doi: 10.1002/aenm.202103932
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Hui Li , Wei Cheng , Meng Yu , Yi Li . Improving Postgraduate Cultivation in Chemistry Discipline: A Case Study of the Chemistry Program in Jilin University. University Chemistry, 2024, 39(6): 17-22. doi: 10.3866/PKU.DXHX202403047
Peiqi Gao , Jiao Zheng , LiMiao Chen , Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030