Citation: Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 221101. doi: 10.3866/PKU.WHXB202211017 shu

Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries

  • Corresponding author: Jinping Liu, liujp@whut.edu.cn
  • Received Date: 8 November 2022
    Revised Date: 5 December 2022
    Accepted Date: 12 December 2022
    Available Online: 19 December 2022

    Fund Project: the National Natural Science Foundation of China 51972257the National Natural Science Foundation of China 52172229the Fundamental Research Funds for the Central Universities 2022IVA197

  • With the rapid development of electric vehicles and intelligent electronics, Li-based batteries are required to have a higher specific capacity and better safety. To develop batteries with higher energy densities, Li may be used as an anode material owing to its higher theoretical capacity (3860 mAh·g−1, 10 times higher than graphite) and low redox potential (−3.04 V vs. the standard hydrogen electrode). However, uncontrolled Li dendrite growth may occur during electrochemical Li plating/stripping in the liquid electrolyte and may penetrate the separator, resulting in a short circuit of the battery. In addition, the conventional liquid organic electrolyte is flammable and easy to leak, posing safety concerns regarding fire and explosion risks. To address these issues, solid-state electrolytes are considered as a particularly ideal alternative because of their desirable mechanical properties, highly reduced flammability, and reduced risk of leakage. Such properties are expected to prevent Li dendrite growth, mitigate structural damage of the Li anode, and improve battery safety. Nonetheless, it is still a great challenge to manufacture solid-state batteries with high areal capacity and good rate performance stems from the high interfacial resistance between the electrolyte and electrode, which hinders Li-ion transport. Therefore, understanding and addressing the general interface issues in solid-state batteries is key to manufacturing high-performance solid-state lithium batteries. Interface issues in solid-state batteries are highly complex and may be broadly categorized into chemical/electrochemical interface and physical interface problems. The chemical/electrochemical interface problem comprises the narrow electrochemical stability window, elemental interdiffusion, and space charge layers, while the physical interface problem can be divided into rigid interfacial contact, volume change during cycling, and fracture and pulverization caused by stress accumulation. Previous reports represent a relatively comprehensive summary of the methods to solve the chemical/electrochemical interface problems but do not discuss in detail the influence of physical interfaces in solid-state batteries of different structures and the related addressing strategies. First, this review will briefly introduce the chemical/electrochemical interface problems and their solutions. Then, solid-state lithium batteries are divided into divided into the sandwich structure, powder composite structure, and 3D integrated structure, according to the key structural characteristics; the physical interface characteristics and optimization strategies of different battery structures are further analyzed in detail, and the advantages and disadvantages of each system are compared and analyzed. Finally, the future research direction of the electrode/electrolyte interface in solid-state lithium batteries is presented.
  • 加载中
    1. [1]

      Liu, L.; Wu, Z. C.; Zheng, Z.; Zhou, Q. J.; Chen, K.; Yin, P. C. Chin. Chem. Lett. 2022, 33, 4326. doi: 10.1016/j.cclet.2021.12.031  doi: 10.1016/j.cclet.2021.12.031

    2. [2]

      Song, K. M.; Chen, W. H. Chem 2021, 7, 3195. doi: 10.1016/j.chempr.2021.11.016  doi: 10.1016/j.chempr.2021.11.016

    3. [3]

      Deysher, G.; Ridley, P.; Ham, S. Y.; Doux, J. M.; Chen, Y. T.; Wu, E. A.; Tan, D. H. S.; Cronk, A.; Jang, J.; Meng, Y. S. Mater. Today Phys. 2022, 24, 2542. doi: 10.1016/j.mtphys.2022.100679  doi: 10.1016/j.mtphys.2022.100679

    4. [4]

      Zhao, B. L.; Ma, L. X.; Wu, K.; Cao, M. X.; Xu, M. G.; Zhang, X. X.; Liu, W.; Chen, J. T. Chin. Chem. Lett. 2021, 32, 125. doi: 10.1016/j.cclet.2020.10.045  doi: 10.1016/j.cclet.2020.10.045

    5. [5]

      Zhao, T.; Li, S. W.; Liu, F.; Wang, Z. Q.; Wang, H. L.; Liu, Y. J.; Tang, X. Y.; Bai, M.; Zhang, M.; Ma, Y. Energy Storage Mater. 2022, 45, 796. doi: 10.1016/j.ensm.2021.12.032  doi: 10.1016/j.ensm.2021.12.032

    6. [6]

      Zhou, B. X.; Bonakdarpour, A.; Stosevski, I.; Fang, B. Z.; Wilkinson, D. P. Prog. Mater. Sci. 2022, 130, 79. doi: 10.1016/j.pmatsci.2022.100996  doi: 10.1016/j.pmatsci.2022.100996

    7. [7]

      Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S. Chem. Rev. 2020, 120, 6878. doi: 10.1021/acs.chemrev.0c00101  doi: 10.1021/acs.chemrev.0c00101

    8. [8]

      Wang, H.; An, H, W.; Shan, H. M. .; Zhao, L.; Wang, J. J. Acta Phys. -Chim. Sin. 2021, 36, 2007070.  doi: 10.3866/PKU.WHXB202007070

    9. [9]

      Zhang, Z. H.; Wu, L. P.; Zhou, D.; Weng, W.; Yao, X. Y. Nano Lett. 2021, 21, 5233. doi: 10.1021/acs.nanolett.1c01344  doi: 10.1021/acs.nanolett.1c01344

    10. [10]

      Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy 2016, 1, 7. doi: 10.1038/nenergy.2016.30  doi: 10.1038/nenergy.2016.30

    11. [11]

      Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. Nat. Mater. 2011, 10, 682. doi: 10.1038/nmat3066  doi: 10.1038/nmat3066

    12. [12]

      Lu, Y.; Li, L.; Zhang, Q.; Niu, Z.Q.; Chen, J. Joule 2018, 2, 1747. doi: 10.1016/j.joule.2018.07.028  doi: 10.1016/j.joule.2018.07.028

    13. [13]

      Wang, H. C.; Zhu, J. P.; Su, Y.; Gong, Z. L.; Yang, Y. Sci. China-Chem. 2021, 64, 879. doi: 10.1007/s11426-021-9985-x  doi: 10.1007/s11426-021-9985-x

    14. [14]

      Goodenough, J. B.; Kim, Y. Chem. Mat. 2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    15. [15]

      Wenzel, S.; Leichtweiss, T.; Kruger, D.; Sann, J.; Janek, J. Solid State Ion. 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001  doi: 10.1016/j.ssi.2015.06.001

    16. [16]

      Rehnlund, D.; Wang, Z. H.; Nyholm, L. Adv. Mater. 2022, 34, 2108827. doi: 10.1002/adma.202108827  doi: 10.1002/adma.202108827

    17. [17]

      Haruyama, J.; Sodeyama, K.; Tateyama, Y. ACS Appl. Mater. Interfaces 2017, 9, 286. doi: 10.1021/acsami.6b08435  doi: 10.1021/acsami.6b08435

    18. [18]

      Sakuda, A.; Hayashi, A.; Tatsumisago, M. Chem. Mat. 2010, 22, 949. doi: 10.1021/cm901819c  doi: 10.1021/cm901819c

    19. [19]

      Park, K.; Yu, B. C.; Jung, J. W.; Li, Y. T.; Zhou, W. D.; Gao, H. C.; Son, S.; Goodenough, J. B. Chem. Mat. 2016, 28, 8051. doi: 10.1021/acs.chemmater.6b03870  doi: 10.1021/acs.chemmater.6b03870

    20. [20]

      Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Chem. Mat. 2016, 28, 266. doi: 10.1021/acs.chemmater.5b04082  doi: 10.1021/acs.chemmater.5b04082

    21. [21]

      Lu, G.; Geng, F.; Gu, S.; Li, C.; Shen, M.; Hu, B. ACS Appl. Mater. Interfaces 2022, 14, 25556. doi: 10.1021/acsami.2c05239  doi: 10.1021/acsami.2c05239

    22. [22]

      Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z. L.; Zhang, X. Y.; He, P.; Zhou, H. S.; Wagemaker, M. Joule 2020, 4, 131. doi: 10.1016/j.joule.2020.04.002  doi: 10.1016/j.joule.2020.04.002

    23. [23]

      Liu, S. L.; Liu, W. Y.; Ba, D. L.; Zhao, Y. Z.; Ye, Y. H.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2022, 2110423. doi: 10.1002/adma.202110423  doi: 10.1002/adma.202110423

    24. [24]

      Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Energy Storage Mater. 2021, 38, 309. doi: 10.1016/j.ensm.2021.03.015  doi: 10.1016/j.ensm.2021.03.015

    25. [25]

      Kitsche, D.; Tang, Y. S.; Ma, Y.; Goonetilleke, D.; Sann, J.; Walther, F.; Bianchini, M.; Janek, J.; Brezesinski, T. ACS Appl. Energ. Mater. 2021, 4, 7338. doi: 10.1021/acsaem.1c01487  doi: 10.1021/acsaem.1c01487

    26. [26]

      Ma, Y.; Teo, J. H.; Walther, F.; Ma, Y. J.; Zhang, R. Z.; Mazilkin, A.; Tang, Y. S.; Goonetilleke, D.; Janek, J.; Bianchini, M.; et al. Adv. Funct. Mater. 2022, 15, 2111829. doi: 10.1002/adfm.202111829  doi: 10.1002/adfm.202111829

    27. [27]

      Peng, L. F.; Ren, H. T.; Zhang, J. Z.; Chen, S. J.; Yu, C.; Miao, X. F.; Zhang, Z. Q.; He, Z. Y.; Yu, M.; Zhang, L.; et al. Energy Storage Mater. 2021, 43, 53. doi: 10.1016/j.ensm.2021.08.028  doi: 10.1016/j.ensm.2021.08.028

    28. [28]

      Li, X.; Ren, Z. H.; Banis, M. N.; Deng, S. X.; Zhao, Y.; Sun, Q.; Wang, C. H.; Yang, X. F.; Li, W. H.; Liang, J. W.; et al. ACS Energy Lett. 2019, 4, 2480. doi: 10.1021/acsenergylett.9b01676  doi: 10.1021/acsenergylett.9b01676

    29. [29]

      Liu, Y. L.; Sun, Q.; Liu, J. R.; Banis, M. N.; Zhao, Y.; Wang, B. Q.; Adair, K.; Hu, Y. F.; Xiao, Q. F.; Zhang, C.; et al. ACS Appl. Mater. Interfaces 2020, 12, 2293. doi: 10.1021/acsami.9b16343  doi: 10.1021/acsami.9b16343

    30. [30]

      Tsai, W. Y.; Thundat, T.; Nanda, J. Matter 2021, 4, 2119. doi: 10.1016/j.matt.2021.06.014  doi: 10.1016/j.matt.2021.06.014

    31. [31]

      Gao, Y.; Du, X. Q.; Hou, Z.; Shen, X.; Mai, Y. W.; Tarascon, J. M.; Zhang, B. A. Joule 2021, 5, 1860. doi: 10.1016/j.joule.2021.05.015  doi: 10.1016/j.joule.2021.05.015

    32. [32]

      Krauskopf, T.; Richter, F. H.; Zeier, W. G.; Janek, J. Chem. Rev. 2020, 120, 7745. doi: 10.1021/acs.chemrev.0c00431  doi: 10.1021/acs.chemrev.0c00431

    33. [33]

      Xu, B. Y.; Li, X. Y.; Yang, C.; Li, Y. T.; Grundish, N. S.; Chien, P. H.; Dong, K.; Manke, I.; Fang, R. Y.; Wu, N.; et al. J. Am. Chem. Soc. 2021, 143, 6542. doi: 10.1021/jacs.1c00752  doi: 10.1021/jacs.1c00752

    34. [34]

      Mi, J.S.; Ma, J.B.; Chen, L.K.; Lai, C.; Yang, K.; Biao, J.; Xia, H.Y.; Song, X.; Lv, W.; Zhong, G.M. Energy Storage Mater. 2022, 48, 375. doi: 10.1016/j.ensm.2022.02.048  doi: 10.1016/j.ensm.2022.02.048

    35. [35]

      Arrese-Igor, M.; Martinez-Ibanez, M.; Pavlenko, E.; Forsyth, M.; Zhu, H.; Armand, M.; Aguesse, F.; Lopez-Aranguren, P. ACS Energy Lett. 2022, 7, 1473. doi: 10.1021/acsenergylett.2c00488  doi: 10.1021/acsenergylett.2c00488

    36. [36]

      Wang, P.; Qu, W. J.; Song, W. L.; Chen, H. S.; Chen, R. J.; Fang, D. N. Adv. Funct. Mater. 2019, 29, 29. doi: 10.1002/adfm.201900950  doi: 10.1002/adfm.201900950

    37. [37]

      Tian, H. K.; Qi, Y. J. Electrochem. Soc. 2017, 16, 3512. doi: 10.1149/2.0481711jes  doi: 10.1149/2.0481711jes

    38. [38]

      Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; Boston, R.; Corr, S. A.; De Volder, M. F. L.; Inkson, B. J.; Fleck, N. A. Joule 2022, 6, 984. doi: 10.1016/j.joule.2022.04.001  doi: 10.1016/j.joule.2022.04.001

    39. [39]

      Liu, Y. Y.; Tzeng, Y. K.; Lin, D. C.; Pei, A.; Lu, H. Y.; Melosh, N. A.; Shen, Z. X.; Chu, S.; Cui, Y. Joule 2018, 2, 1595. doi: 10.1016/j.joule.2018.05.007  doi: 10.1016/j.joule.2018.05.007

    40. [40]

      Kasemchainan, J.; Zekoll, S.; Jolly, D. S.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Nat. Mater. 2019, 18, 1105. doi: 10.1038/s41563-019-0438-9  doi: 10.1038/s41563-019-0438-9

    41. [41]

      Yamada, H.; Ito, T.; Basappa, R. H.; Bekarevich, R.; Mitsuishi, K. J. Power Sources 2017, 368, 97. doi: 10.1016/j.jpowsour.2017.09.076  doi: 10.1016/j.jpowsour.2017.09.076

    42. [42]

      Zhang, W. B.; Schroder, D.; Arlt, T.; Manke, I.; Koerver, R.; Pinedo, R.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. J. Mater. Chem. A 2017, 5, 9929. doi: 10.1039/c7ta02730c  doi: 10.1039/c7ta02730c

    43. [43]

      Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Zuo, T. T.; Yan, M.; Yin, Y. X.; Shi, J. L.; Wu, X. W.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2019, 141, 9165. doi: 10.1021/jacs.9b03517  doi: 10.1021/jacs.9b03517

    44. [44]

      Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 14, 82. doi: 10.1021/jacs.7b10864  doi: 10.1021/jacs.7b10864

    45. [45]

      Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Marschilok, A. C.; Takeuchi, K. J.; Wang, H. L.; Takeuchi, E. S.; Yu, G. H. Adv. Mater. 2022, 34, 2202780. doi: 10.1002/adma.202202780  doi: 10.1002/adma.202202780

    46. [46]

      Deng, C. L.; Chen, N.; Hou, C. Y.; Liu, H. X.; Zhou, Z. M.; Chen, R. J. Small 2021, 17, 9. doi: 10.1002/smll.202006578  doi: 10.1002/smll.202006578

    47. [47]

      Guo, S. J.; Li, Y. T.; Li, B.; Grundish, N. S.; Cao, A. M.; Sun, Y. G.; Xu, Y. S.; Ji, Y. L. M.; Qiao, Y.; Zhang, Q. H.; et al. J. Am. Chem. Soc. 2022, 144, 2179. doi: 10.1021/jacs.1c10872  doi: 10.1021/jacs.1c10872

    48. [48]

      Liu, Y. Q.; Wang, X.; Ghosh, S. K.; Zou, M.; Zhou, H.; Xiao, X. H.; Meng, X. B. Dalton Trans. 2022, 51, 2737. doi: 10.1039/d1dt03600a  doi: 10.1039/d1dt03600a

    49. [49]

      Deng, T.; Ji, X.; Zhao, Y.; Cao, L. S.; Li, S.; Hwang, S.; Luo, C.; Wang, P. F.; Jia, H. P.; Fan, X. L.; et al. Adv. Mater. 2020, 32, 2000030. doi: 10.1002/adma.202000030  doi: 10.1002/adma.202000030

    50. [50]

      Shao, Y. J.; Wang, H. C.; Gong, Z. L.; Wang, D. W.; Zheng, B. Z.; Zhu, J. P.; Lu, Y. X.; Hu, Y. S.; Guo, X. X.; Li, H.; et al. ACS Energy Lett. 2018, 3, 1212. doi: 10.1021/acsenergylett.8b00453  doi: 10.1021/acsenergylett.8b00453

    51. [51]

      Zhao, J. H.; Xie, M. L.; Zhang, H. Y.; Yi, R. W.; Hu, C. J.; Kang, T.; Zheng, L.; Cui, R. G.; Chen, H. W.; Shen, Y. B.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2104003.  doi: 10.3866/PKU.WHXB202104003

    52. [52]

      Strauss, F.; Bartsch, T.; de Biasi, L.; Kim, A. Y.; Janek, J.; Hartmann, P.; Brezesinski, T. ACS Energy Lett. 2018, 3, 992. doi: 10.1021/acsenergylett.8b00275  doi: 10.1021/acsenergylett.8b00275

    53. [53]

      Shi, T.; Tu, Q. S.; Tian, Y. S.; Xiao, Y. H.; Miara, L. J.; Kononova, O.; Ceder, G. Adv. Energy Mater. 2020, 10, 1902881. doi: 10.1002/aenm.201902881  doi: 10.1002/aenm.201902881

    54. [54]

      Zhao, J.; Zhao, C.; Zhu, J. P.; Liu, X. S.; Yao, J. M.; Wang, B.; Dai, Q. S.; Wang, Z. F.; Chen, J. Z.; Jia, P.; et al. Nano Lett. 2022, 2, 411. doi: 10.1021/acs.nanolett.1c04076  doi: 10.1021/acs.nanolett.1c04076

    55. [55]

      Jiang, W.; Zhu, X. X.; Huang, R. Z.; Zhao, S.; Fan, X. M.; Ling, M.; Liang, C. D.; Wang, L. G. Adv. Energy Mater. 2022, 2103473. doi: 10.1002/aenm.202103473  doi: 10.1002/aenm.202103473

    56. [56]

      Yang, C.P.; Wu, Q.S.; Xie, W.Q.; Zhang, X.; Brozena, A.; Zheng, J.; Garaga, M. N.; Ko, B. H.; Mao, Y.M.; He, S.M.; et al. Nature 2021, 598, 590. doi: 10.1038/s41586-021-03885-6  doi: 10.1038/s41586-021-03885-6

    57. [57]

      Li, Z.; Zhou, X. Y.; Guo, X. Energy Storage Mater. 2020, 29, 149. doi: 10.1016/j.ensm.2020.04.015  doi: 10.1016/j.ensm.2020.04.015

    58. [58]

      Bi, Z. J.; Mu, S.; Zhao, N.; Sun, W. H.; Huang, W. L.; Guo, X. X. Energy Storage Mater. 2021, 35, 512. doi: 10.1016/j.ensm.2020.11.038  doi: 10.1016/j.ensm.2020.11.038

    59. [59]

      Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. ACS Appl. Energ. Mater. 2018, 1, 3622. doi: 10.1021/acsaem.8b00280  doi: 10.1021/acsaem.8b00280

    60. [60]

      Xiao, Y. R.; Turcheniuk, K.; Narla, A.; Song, A. Y.; Ren, X. L.; Magasinski, A.; Jain, A.; Huang, S.; Lee, H.; Yushin, G. Nat. Mater. 2021, 20, 984. doi: 10.1038/s41563-021-00943-2  doi: 10.1038/s41563-021-00943-2

    61. [61]

      Geng, Z.; Huang, Y. L.; Sun, G. C.; Chen, R. S.; Cao, W. Z.; Zheng, J. Y.; Li, H. Nano Energy 2022, 91, 2211. doi: 10.1016/j.nanoen.2021.106679  doi: 10.1016/j.nanoen.2021.106679

    62. [62]

      Gao, X.W.; Liu, B.Y.; Hu, B.K.; Ning, Z.Y.; Jolly, D. S.; Zhang, S.M.; Perera, J.; Bu, J.; Liu, J.L.; Doerrer, C.; et al. Joule 2022, 6, 636. doi: 10.1016/j.joule.2022.02.008  doi: 10.1016/j.joule.2022.02.008

    63. [63]

      Zhu, G. L.; Zhao, C. Z.; Yuan, H.; Nan, H. X.; Zhao, B. C.; Hou, L. P.; He, C. X.; Liu, Q. B.; Huang, J. Q. Acta Phys. -Chim. Sin. 2021, 37, 2005003.  doi: 10.3866/PKU.WHXB202005003

    64. [64]

      Doux, J. M.; Yang, Y. Y. C.; Tan, D. H. S.; Nguyen, H.; Wu, E. A.; Wang, X. F.; Banerjee, A.; Meng, Y. S. J. Mater. Chem. A 2020, 8, 5049. doi: 10.1039/c9ta12889a  doi: 10.1039/c9ta12889a

    65. [65]

      Li, L. P.; Liu, W. Y.; Dong, H. Y.; Gui, Q. Y.; Hu, Z. Q.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2021, 33, 20204959. doi: 10.1002/adma.202004959  doi: 10.1002/adma.202004959

    66. [66]

      Nie, L.; Chen, S. J.; Zhang, C.; Dong, L.; He, Y. J.; Gao, T. Y.; Yu, J. M.; Liu, W. Cell Rep. Phys. Sci. 2022, 3, 100851. doi: 10.1016/j.xcrp.2022.100851  doi: 10.1016/j.xcrp.2022.100851

    67. [67]

      Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Angew. Chem. Int. Edit. 2021, 60, 12931. doi: 10.1002/anie.202101537  doi: 10.1002/anie.202101537

    68. [68]

      Xia, Q. Y.; Zhang, Q. H.; Sun, S.; Hussain, F.; Zhang, C. C.; Zhu, X. H.; Meng, F. Q.; Liu, K. M.; Geng, H.; Xu, J.; et al. Adv. Mater. 2021, 33, 2003524. doi: 10.1002/adma.202003524  doi: 10.1002/adma.202003524

    69. [69]

      Salian, G. D.; Lebouin, C.; Demoulin, A.; Lepihin, M. S.; Maria, S.; Galeyeva, A. K.; Kurbatov, A. P.; Djenizian, T. J. Power Sources 2017, 340, 242. doi: 10.1016/j.jpowsour.2016.11.078  doi: 10.1016/j.jpowsour.2016.11.078

    70. [70]

      Matsuda, Y.; Kuwata, N.; Kawamura, J. Solid State Ion. 2018, 320, 38. doi: 10.1016/j.ssi.2018.02.024  doi: 10.1016/j.ssi.2018.02.024

    71. [71]

      Zhou, X.; Zhang, Y.; Shen, M.; Fang, Z.; Kong, T. Y.; Feng, W. L.; Xie, Y. H.; Wang, F.; Hu, B. W.; Wang, Y. G. Adv. Energy Mater. 2022, 12, 2103932. doi: 10.1002/aenm.202103932  doi: 10.1002/aenm.202103932

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    3. [3]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    4. [4]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    8. [8]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    9. [9]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    15. [15]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    16. [16]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    18. [18]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    19. [19]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(26)
  • Abstract views(844)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return