Citation: Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(3): 221004. doi: 10.3866/PKU.WHXB202210043 shu

Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries

  • Corresponding author: Jiangfeng Qian, jfqian@whu.edu.cn
  • Received Date: 31 October 2022
    Revised Date: 27 November 2022
    Accepted Date: 2 December 2022
    Available Online: 9 December 2022

    Fund Project: the National Natural Science Foundation of China 22075216the National Natural Science Foundation of China 22279093the Natural Science Foundation of Hubei Province, China 2022CFB096the Fundamental Research Funds for the Central Universities, China 2042021kf0194

  • Lithium-ion batteries (LIBs) have attracted considerable attention owing to their high energy density and long cycle life. However, lithium resources have become scarcer with the rapid development of electric vehicles and smart grid technologies. Considering the inexpensive and abundant supply of sodium, sodium-ion batteries (SIBs) are expected to replace LIBs for large-scale energy storage systems. However, the development of high-energy SIBs is usually limited by the poor initial Coulombic efficiency (ICE) of the anode materials, although a series of advanced sodium storage electrode materials have been reported. This is because active sodium ions are all provided by the cathode material in a full cell. The low ICE of the anode indicates that numerous active sodium ions are irreversibly consumed during the first cycle, reducing the reversible capacity and shortening the cycle life of the full cell. The significant loss of active sodium ions is attributed to the formation of a solid electrolyte interface (SEI) on the anode side and irreversible sodium capture by defect sites and surface functional groups on the anode material. Consequently, excessive cathode material is required in the full cell, which significantly reduces the utilization rate of the cathode material and the energy density of the full cell. Furthermore, many reported cathode materials, such as Fe2S, are sodium-deficient and cannot be directly matched with anodes, limiting the selection of electrode materials. Presodiation technology is considered the most direct and effective method to solve the state-matching problem of cathode and anode materials by compensating for active sodium-ion loss and increasing the energy density, which are crucial for the commercial application of SIBs. The aim is to eliminate the irreversible capacity loss during the first cycle by incorporating additional active sodium ions to the electrode material in advance. This review comprehensively summarizes the latest research progress on various presodiation strategies, including short circuit with sodium metal, electrochemical presodiation, sodium metal addition, chemical presodiation, and cathode sacrificial additives. The advantages and challenges of existing methods are thoroughly analyzed and discussed from the perspective of their reaction mechanism, safety, compatibility, efficiency, and scalability. Emphasis is placed on the state-of-the-art advancements in chemical presodiation and cathode sacrificial additives, which are considered the two most promising methods for commercial applications. The unresolved scientific problems and technical difficulties are further discussed from a practical perspective. This review may provide guidance for the investigation of advanced presodiation technology and promote further development of high-energy SIBs.
  • 加载中
    1. [1]

      Gogotsi, Y.; Simon, P. Science 2011, 334, 917. doi: 10.1126/science.1213003  doi: 10.1126/science.1213003

    2. [2]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    3. [3]

      Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem. Int. Ed. 2015, 54, 3431. doi: 10.1002/anie.201410376  doi: 10.1002/anie.201410376

    4. [4]

      Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 102. doi: 10.1002/anie.201703772  doi: 10.1002/anie.201703772

    5. [5]

      Cao, X.; Zhou, J.; Pan, A.; Liang, S. Acta Phys. -Chim. Sin. 2020, 36, 1905018.  doi: 10.3866/PKU.WHXB201905018

    6. [6]

      Wu, C.; Qian, J.; Yang, H. Sci. Sin. Chim. 2017, 47, 603.  doi: 10.1360/N032016-00218

    7. [7]

      Qian, J. F.; Wu, C.; Cao, Y. L.; Ma, Z. F.; Huang, Y. H.; Ai, X. P.; Yang, H. X. Adv. Energy Mater. 2018, 8, 1702619. doi: 10.1002/aenm.201702619  doi: 10.1002/aenm.201702619

    8. [8]

      Cao, B.; Li, X. Acta Phys. -Chim. Sin. 2020, 36, 1905003.  doi: 10.3866/PKU.WHXB201905003

    9. [9]

      Liang, J. -M.; Zhang, L. -J.; XiLi, D. -G.; Kang, J. Rare Met. 2020, 39, 1005. doi: 10.1007/s12598-020-01453-x  doi: 10.1007/s12598-020-01453-x

    10. [10]

      Delmas, C. Adv. Energy Mater. 2018, 8, 1703137. doi: 10.1002/aenm.201703137  doi: 10.1002/aenm.201703137

    11. [11]

      Qian, J.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. Nano Lett. 2014, 14, 1865. doi: 10.1021/nl404637q  doi: 10.1021/nl404637q

    12. [12]

      Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Chem. Commun. 2012, 48, 7070. doi: 10.1039/c2cc32730a  doi: 10.1039/c2cc32730a

    13. [13]

      Patra, J.; Huang, H. -T.; Xue, W.; Wang, C.; Helal, A. S.; Li, J.; Chang, J. -K. Energy Storage Mater. 2019, 16, 146. doi: 10.1016/j.ensm.2018.04.022  doi: 10.1016/j.ensm.2018.04.022

    14. [14]

      He, H.; Sun, D.; Tang, Y.; Wang, H.; Shao, M. Energy Storage Mater. 2019, 23, 233. doi: 10.1016/j.ensm.2019.05.008  doi: 10.1016/j.ensm.2019.05.008

    15. [15]

      Holtstiege, F.; Bärmann, P.; Nölle, R.; Winter, M.; Placke, T. Batteries 2018, 4, 4. doi: 10.3390/batteries4010004  doi: 10.3390/batteries4010004

    16. [16]

      Aravindan, V.; Lee, Y. -S.; Madhavi, S. Adv. Energy Mater. 2017, 7, 1602607. doi: 10.1002/aenm.201602607  doi: 10.1002/aenm.201602607

    17. [17]

      Zou, K.; Deng, W.; Cai, P.; Deng, X.; Wang, B.; Liu, C.; Li, J.; Hou, H.; Zou, G.; Ji, X. Adv. Funct. Mater. 2020, 31, 2005581. doi: 10.1002/adfm.202005581  doi: 10.1002/adfm.202005581

    18. [18]

      Dewar, D.; Glushenkov, A. M. Energy Environ. Sci. 2021, 14, 1380. doi: 10.1039/d0ee02782k  doi: 10.1039/d0ee02782k

    19. [19]

      Moeez, I.; Jung, H. G.; Lim, H. D.; Chung, K. Y. ACS Appl. Mater. Interfaces 2019, 11, 41394. doi: 10.1021/acsami.9b14381  doi: 10.1021/acsami.9b14381

    20. [20]

      Wu, J. X.; Lin, C.; Liang, Q. H.; Zhou, G. D.; Liu, J. P.; Liang, G. M.; Wang, M.; Li, B. H.; Hu, L.; Ciucci, F.; et al. Infomat 2022, 4, e12288. doi: 10.1002/inf2.12288  doi: 10.1002/inf2.12288

    21. [21]

      Yang, Y.; Wei, W. -F. Rare Met. 2020, 39, 332. doi: 10.1007/s12598-020-01403-7  doi: 10.1007/s12598-020-01403-7

    22. [22]

      Cohn, A. P.; Muralidharan, N.; Carter, R.; Share, K.; Pint, C. L. Nano Lett. 2017, 17, 1296. doi: 10.1021/acs.nanolett.6b05174  doi: 10.1021/acs.nanolett.6b05174

    23. [23]

      Wang, H.; Xiao, Y.; Sun, C.; Lai, C.; Ai, X. RSC Adv. 2015, 5, 106519. doi: 10.1039/c5ra21235a  doi: 10.1039/c5ra21235a

    24. [24]

      Pi, Y.; Gan, Z.; Yan, M.; Pei, C.; Yu, H.; Ge, Y.; An, Q.; Mai, L. Chem. Eng. J. 2021, 413, 127565. doi: 10.1016/j.cej.2020.127565  doi: 10.1016/j.cej.2020.127565

    25. [25]

      Bublil, S.; Leifer, N.; Nanda, R.; Elias, Y.; Fayena-Greenstein, M.; Aurbach, D.; Goobes, G. J. Solid State Chem. 2021, 298, 122121. doi: 10.1016/j.jssc.2021.122121  doi: 10.1016/j.jssc.2021.122121

    26. [26]

      Ma, R.; Fan, L.; Chen, S.; Wei, Z.; Yang, Y.; Yang, H.; Qin, Y.; Lu, B. ACS Appl. Mater. Interfaces 2018, 10, 15751. doi: 10.1021/acsami.8b03648  doi: 10.1021/acsami.8b03648

    27. [27]

      de la Llave, E.; Borgel, V.; Park, K. J.; Hwang, J. Y.; Sun, Y. K.; Hartmann, P.; Chesneau, F. F.; Aurbach, D. ACS Appl. Mater. Interfaces 2016, 8, 1867. doi: 10.1021/acsami.5b09835  doi: 10.1021/acsami.5b09835

    28. [28]

      Shen, F.; Luo, W.; Dai, J.; Yao, Y.; Zhu, M.; Hitz, E.; Tang, Y.; Chen, Y.; Sprenkle, V. L.; Li, X.; et al. Adv. Energy Mater. 2016, 6, 1600377. doi: 10.1002/aenm.201600377  doi: 10.1002/aenm.201600377

    29. [29]

      Sun, D.; Zhu, X.; Luo, B.; Zhang, Y.; Tang, Y.; Wang, H.; Wang, L. Adv. Energy Mater. 2018, 8, 1801197. doi: 10.1002/aenm.201801197  doi: 10.1002/aenm.201801197

    30. [30]

      Jian, Z.; Sun, Y.; Ji, X. Chem. Commun. 2015, 51, 6381. doi: 10.1039/c5cc00944h  doi: 10.1039/c5cc00944h

    31. [31]

      Mirza, S.; Song, Z.; Zhang, H.; Hussain, A.; Zhang, H.; Li, X. J. Mater. Chem. A 2020, 8, 23368. doi: 10.1039/d0ta08186h  doi: 10.1039/d0ta08186h

    32. [32]

      Tang, J.; Kye, D. K.; Pol, V. G. J. Power Sources 2018, 396, 476. doi: 10.1016/j.jpowsour.2018.06.067  doi: 10.1016/j.jpowsour.2018.06.067

    33. [33]

      Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A. M.; Tarascon, J. M. Nat. Commun. 2016, 7, 10308. doi: 10.1038/ncomms10308  doi: 10.1038/ncomms10308

    34. [34]

      Liu, W.; Chen, X.; Zhang, C.; Xu, H.; Sun, X.; Zheng, Y.; Yu, Y.; Li, S.; Huang, Y.; Li, J. ACS Appl. Mater. Interfaces 2019, 11, 23207. doi: 10.1021/acsami.9b05005  doi: 10.1021/acsami.9b05005

    35. [35]

      Li, Y.; Fitch, B. Electrochem. Commun. 2011, 13, 664. doi: 10.1016/j.elecom.2011.04.003  doi: 10.1016/j.elecom.2011.04.003

    36. [36]

      Vaughey, J. T.; Liu, G.; Zhang, J. -G. MRS. Bull. 2014, 39, 429. doi: 10.1557/mrs.2014.88  doi: 10.1557/mrs.2014.88

    37. [37]

      Xiao, B.; Soto, F. A.; Gu, M.; Han, K. S.; Song, J.; Wang, H.; Engelhard, M. H.; Murugesan, V.; Mueller, K. T.; Reed, D.; et al. Adv. Energy Mater. 2018, 8, 1801441. doi: 10.1002/aenm.201801441  doi: 10.1002/aenm.201801441

    38. [38]

      Shen, Y.; Zhang, J.; Pu, Y.; Wang, H.; Wang, B.; Qian, J.; Cao, Y.; Zhong, F.; Ai, X.; Yang, H. ACS Energy Lett. 2019, 4, 1717. doi: 10.1021/acsenergylett.9b00889  doi: 10.1021/acsenergylett.9b00889

    39. [39]

      Wu, C.; Hu, J.; Ye, L.; Su, Z.; Fang, X.; Zhu, X.; Zhuang, L.; Ai, X.; Yang, H.; Qian, J. ACS Sustain. Chem. Eng. 2021, 9, 16384. doi: 10.1021/acssuschemeng.1c06278  doi: 10.1021/acssuschemeng.1c06278

    40. [40]

      Cao, Y.; Zhang, T.; Zhong, X.; Zhai, T.; Li, H. Chem. Commun. 2019, 55, 14761. doi: 10.1039/c9cc06581d  doi: 10.1039/c9cc06581d

    41. [41]

      Liu, X.; Tan, Y.; Liu, T.; Wang, W.; Li, C.; Lu, J.; Sun, Y. Adv. Funct. Mater. 2019, 29, 1903795. doi: 10.1002/adfm.201903795  doi: 10.1002/adfm.201903795

    42. [42]

      Liu, M.; Zhang, J.; Guo, S.; Wang, B.; Shen, Y.; Ai, X.; Yang, H.; Qian, J. ACS Appl. Mater. Interfaces 2020, 12, 17620. doi: 10.1021/acsami.0c02230  doi: 10.1021/acsami.0c02230

    43. [43]

      Liu, M.; Yang, Z.; Shen, Y.; Guo, S.; Zhang, J.; Ai, X.; Yang, H.; Qian, J. J. Mater. Chem. A 2021, 9, 5639. doi: 10.1039/d0ta10880d  doi: 10.1039/d0ta10880d

    44. [44]

      Li, F. F.; Yu, X. F.; Tang, K.; Peng, X. Y.; Zhao, Q. Q.; Li, B. J. Appl. Electrochem. 2022, doi: 10.1007/s10800-022-01754-2  doi: 10.1007/s10800-022-01754-2

    45. [45]

      Sun, Y. M.; Li, Y. B.; Sun, J.; Li, Y. Z.; Pei, A.; Cui, Y. Energy Storage Mater. 2017, 6, 119. doi: 10.1016/j.ensm.2016.10.004  doi: 10.1016/j.ensm.2016.10.004

    46. [46]

      Singh, G.; Acebedo, B.; Cabanas, M. C.; Shanmukaraj, D.; Armand, M.; Rojo, T. Electrochem. Commun. 2013, 37, 61. doi: 10.1016/j.elecom.2013.10.008  doi: 10.1016/j.elecom.2013.10.008

    47. [47]

      Martinez De Ilarduya, J.; Otaegui, L.; López del Amo, J. M.; Armand, M.; Singh, G. J. Power Sources 2017, 337, 197. doi: 10.1016/j.jpowsour.2016.10.084  doi: 10.1016/j.jpowsour.2016.10.084

    48. [48]

      Guo, Y. J.; Niu, Y. B.; Wei, Z.; Zhang, S. Y.; Meng, Q.; Li, H.; Yin, Y. X.; Guo, Y. G. ACS Appl. Mater. Interfaces 2021, 13, 2772. doi: 10.1021/acsami.0c20870  doi: 10.1021/acsami.0c20870

    49. [49]

      Zhang, Q.; Gao, X. -W.; Shi, Y.; Luo, W. -B.; Li, Y.; Gu, Q. -F.; Fan, H. -N.; Li, F.; Liu, H. -K. Energy Storage Mater. 2021, 39, 54. doi: 10.1016/j.ensm.2021.04.011  doi: 10.1016/j.ensm.2021.04.011

    50. [50]

      Sathiya, M.; Thomas, J.; Batuk, D.; Pimenta, V.; Gopalan, R.; Tarascon, J. -M. Chem. Mater. 2017, 29, 5948. doi: 10.1021/acs.chemmater.7b01542  doi: 10.1021/acs.chemmater.7b01542

    51. [51]

      Jo, C. -H.; Choi, J. U.; Yashiro, H.; Myung, S. -T. J. Mater. Chem. A 2019, 7, 3903. doi: 10.1039/c8ta09833f  doi: 10.1039/c8ta09833f

    52. [52]

      Jeżowski, P.; Crosnier, O.; Brousse, T. Open Chem. 2021, 19, 432. doi: 10.1515/chem-2021-0040  doi: 10.1515/chem-2021-0040

    53. [53]

      Jeżowski, P.; Chojnacka, A.; Pan, X.; Béguin, F. Electrochim. Acta 2021, 375, 137980. doi: 10.1016/j.electacta.2021.137980  doi: 10.1016/j.electacta.2021.137980

    54. [54]

      Park, K.; Yu, B. -C.; Goodenough, J. B. Chem. Mater. 2015, 27, 6682. doi: 10.1021/acs.chemmater.5b02684  doi: 10.1021/acs.chemmater.5b02684

    55. [55]

      Shen, B.; Zhan, R.; Dai, C.; Li, Y.; Hu, L.; Niu, Y.; Jiang, J.; Wang, Q.; Xu, M. J. Colloid Interface Sci. 2019, 553, 524. doi: 10.1016/j.jcis.2019.06.056  doi: 10.1016/j.jcis.2019.06.056

    56. [56]

      Pan, X.; Chojnacka, A.; Jeżowski, P.; Béguin, F. Electrochim. Acta 2019, 318, 471. doi: 10.1016/j.electacta.2019.06.086  doi: 10.1016/j.electacta.2019.06.086

    57. [57]

      Liu, X.; Tan, Y.; Wang, W.; Wei, P.; Seh, Z. W.; Sun, Y. ACS Appl. Mater. Interfaces 2021, 13, 27057. doi: 10.1021/acsami.1c05144  doi: 10.1021/acsami.1c05144

    58. [58]

      Zou, K.; Cai, P.; Tian, Y.; Li, J.; Liu, C.; Zou, G.; Hou, H.; Ji, X. Small Methods 2020, 4, 1900763. doi: 10.1002/smtd.201900763  doi: 10.1002/smtd.201900763

    59. [59]

      Marelli, E.; Marino, C.; Bolli, C.; Villevieille, C. J. Power Sources 2020, 450, 227617. doi: 10.1016/j.jpowsour.2019.227617  doi: 10.1016/j.jpowsour.2019.227617

    60. [60]

      Zou, K.; Song, Z.; Gao, X.; Liu, H.; Luo, Z.; Chen, J.; Deng, X.; Chen, L.; Zou, G.; Hou, H.; et al. Angew. Chem. Int. Ed. 2021, 60, 17070. doi: 10.1002/anie.202103569  doi: 10.1002/anie.202103569

    61. [61]

      Zou, K.; Song, Z.; Liu, H.; Wang, Y.; Massoudi, A.; Deng, W.; Hou, H.; Zou, G.; Ji, X. J. Phys. Chem. Lett. 2021, 12, 11968. doi: 10.1021/acs.jpclett.1c03078  doi: 10.1021/acs.jpclett.1c03078

    62. [62]

      Jo, J. H.; Choi, J. U.; Park, Y. J.; Zhu, J.; Yashiro, H.; Myung, S. T. ACS Appl. Mater. Interfaces 2019, 11, 5957. doi: 10.1021/acsami.8b18488  doi: 10.1021/acsami.8b18488

    63. [63]

      Jo, J. H.; Choi, J. U.; Park, Y. J.; Ko, J. K.; Yashiro, H.; Myung, S. -T. Energy Storage Mater. 2020, 32, 281. doi: 10.1016/j.ensm.2020.07.002  doi: 10.1016/j.ensm.2020.07.002

    64. [64]

      Shanmukaraj, D.; Kretschmer, K.; Sahu, T.; Bao, W.; Rojo, T.; Wang, G.; Armand, M. ChemSusChem 2018, 11, 3286. doi: 10.1002/cssc.201801099  doi: 10.1002/cssc.201801099

    65. [65]

      Martínez De Ilarduya, J.; Otaegui, L.; Galcerán, M.; Acebo, L.; Shanmukaraj, D.; Rojo, T.; Armand, M. Electrochim. Acta 2019, 321, 134693. doi: 10.1016/j.electacta.2019.134693  doi: 10.1016/j.electacta.2019.134693

    66. [66]

      Shen, X.; Zhao, J.; Li, Y.; Sun, X.; Yang, C.; Liu, H.; Hu, Y. -S. ACS Appl. Energy Mater. 2019, 2, 7474. doi: 10.1021/acsaem.9b01458  doi: 10.1021/acsaem.9b01458

    67. [67]

      Pan, X.; Chojnacka, A.; Béguin, F. Energy Storage Mater. 2021, 40, 22. doi: 10.1016/j.ensm.2021.04.048  doi: 10.1016/j.ensm.2021.04.048

    68. [68]

      Niu, Y. B.; Guo, Y. J.; Yin, Y. X.; Zhang, S. Y.; Wang, T.; Wang, P.; Xin, S.; Guo, Y. G. Adv. Mater. 2020, 32, e2001419. doi: 10.1002/adma.202001419  doi: 10.1002/adma.202001419

    69. [69]

      Fernandez-Ropero, A. J.; Zarrabeitia, M.; Baraldi, G.; Echeverria, M.; Rojo, T.; Armand, M.; Shanmukaraj, D. ACS Appl. Mater. Interfaces 2021, 13, 11814. doi: 10.1021/acsami.0c20542  doi: 10.1021/acsami.0c20542

    70. [70]

      Chen, J.; Chen, W. L.; Zhang, X.; Zhou, Y. W.; Zhang, W. X. Energy Storage Sci. Technol. 2022, 11, 3487.  doi: 10.19799/j.cnki.2095-4239.2022.0332

    71. [71]

      Song, Z.; Zou, K.; Xiao, X.; Deng, X.; Li, S.; Hou, H.; Lou, X.; Zou, G.; Ji, X. Chem 2021, 27, 16082. doi: 10.1002/chem.202102433  doi: 10.1002/chem.202102433

    72. [72]

      Zhang, T.; Wang, R.; He, B.; Jin, J.; Gong, Y.; Wang, H. Electrochem. Commun. 2021, 129, 107090. doi: 10.1016/j.elecom.2021.107090  doi: 10.1016/j.elecom.2021.107090

    73. [73]

      Liu, X.; Liu, T.; Wang, R.; Cai, Z.; Wang, W.; Yuan, Y.; Shahbazian-Yassar, R.; Li, X.; Wang, S.; Hu, E.; et al. ACS Energy Lett. 2020, 6, 320. doi: 10.1021/acsenergylett.0c02487  doi: 10.1021/acsenergylett.0c02487

    74. [74]

      Feng, J.; Ci, L.; Xiong, S. RSC Adv. 2015, 5, 96649. doi: 10.1039/C5RA19988C  doi: 10.1039/C5RA19988C

    75. [75]

      Nie, P, ; Xu, G. Y.; Jiang, J. M.; Wang, J.; Fu, R. R.; Fang, S.; Dou, H.; Zhang, X. G. Energy Storage Sci. Technol. 2017, 6, 889.  doi: 10.12028/j.issn.2095-4239.2017.0088

    76. [76]

      Jin, L.; Shen, C.; Shellikeri, A.; Wu, Q.; Zheng, J.; Andrei, P.; Zhang, J. -G.; Zheng, J. P. Energy Environ. Sci. 2020, 13, 2341. doi: 10.1039/D0EE00807A  doi: 10.1039/D0EE00807A

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    15. [15]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    16. [16]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    17. [17]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    18. [18]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

Metrics
  • PDF Downloads(97)
  • Abstract views(1336)
  • HTML views(360)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return