Recent Progress of MXenes in Aqueous Zinc-Ion Batteries
- Corresponding author: Bin Xu, xubin@mail.buct.edu.cn
Citation: Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(5): 221002. doi: 10.3866/PKU.WHXB202210027
Yang, H.; Wang, S.; Wang, X.; Zhang, P.; Yan, C.; Luo, Y.; Chen, L.; Li, M.; Fan, F.; Zhou, Z.; et al. J. Colloid Interface Sci. 2022, 609, 139. doi: 10.1016/j.jcis.2021.11.105
doi: 10.1016/j.jcis.2021.11.105
Geng, C.; Chen, Y.; Shi, L.; Sun, Z.; Zhang, L.; Xiao, A.; Jiang, J.; Zhuang, Q.; Ju, Z. New Carbon Mater. 2022, 37, 461. doi: 10.1016/s1872-5805(22)60612-7
doi: 10.1016/s1872-5805(22)60612-7
Sun, Z.; Chen, Y.; Xi, B.; Geng, C.; Guo, W.; Zhuang, Q.; An, X.; Liu, J.; Ju, Z.; Xiong, S. Energy Storage Mater. 2022, 53, 482. doi: 10.1016/j.ensm.2022.09.031
doi: 10.1016/j.ensm.2022.09.031
Zhang, P.; Soomro, R. A.; Guan, Z.; Sun, N.; Xu, B. Energy Storage Mater. 2020, 29, 163. doi: 10.1016/j.ensm.2020.04.016
doi: 10.1016/j.ensm.2020.04.016
Yang, H.; Zhang, P.; Yi, X.; Yan, C.; Pang, D.; Chen, L.; Wang, S.; Wang, C.; Liu, B.; Zhang, G.; et al. Chem. Eng. J. 2022, 440, 135749. doi: 10.1016/j.cej.2022.135749
doi: 10.1016/j.cej.2022.135749
Chen, Y.; Xi, B.; Huang, M.; Shi, L.; Huang, S.; Guo, N.; Li, D.; Ju, Z.; Xiong, S. Adv. Mater. 2022, 34, e2108621. doi: 10.1002/adma.202108621
doi: 10.1002/adma.202108621
Sun, N.; Qiu, J.; Xu, B. Adv. Energy Mater. 2022, 12, 2200715. doi: 10.1002/aenm.202200715
doi: 10.1002/aenm.202200715
Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003.
doi: 10.3866/PKU.WHXB201905003
Fang, G.; Zhou, J.; Pan, A.; Liang, S. ACS Energy Lett. 2018, 3, 2480. doi: 10.1021/acsenergylett.8b01426
doi: 10.1021/acsenergylett.8b01426
Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C. Chem. Soc. Rev. 2020, 49, 180. doi: 10.1039/c9cs00131j
doi: 10.1039/c9cs00131j
Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S.; Zhou, T.; Mao, J.; Pang, W. K.; Guo, Z.; Li, A.; et al. Adv. Energy Mater. 2018, 8, 1801149. doi: 10.1002/aenm.201801149
doi: 10.1002/aenm.201801149
Cao, B.; Liu, H.; Zhang, P.; Sun, N.; Zheng, B.; Li, Y.; Du, H.; Xu, B. Adv. Funct. Mater. 2021, 31, 2102126. doi: 10.1002/adfm.202102126
doi: 10.1002/adfm.202102126
Liu, H.; Du, H.; Zhao, W.; Qiang, X.; Zheng, B.; Li, Y.; Cao, B. Energy Storage Mater. 2021, 40, 490. doi: 10.1016/j.ensm.2021.05.037
doi: 10.1016/j.ensm.2021.05.037
Wang, X.; Zhang, S.; Shan, Y.; Chen, L.; Gao, G.; Zhu, X.; Cao, B.; He, X. Energy Storage Mater. 2021, 37, 55. doi: 10.1016/j.ensm.2021.01.027
doi: 10.1016/j.ensm.2021.01.027
Zhang, P.; Peng, Y.; Zhu, Q.; Soomro, R. A.; Sun, N.; Xu, B. Energy Environ. Mater. accepted. doi: 10.1002/eem2.12379
Xu, C.; Li, B.; Du, H.; Kang, F. Angew. Chem. Int. Ed. 2012, 51, 933. doi: 10.1002/anie.201106307
doi: 10.1002/anie.201106307
Huang, J.; Zhou, J.; Liang, S. Acta Phys. Chim. Sin. 2021, 37, 2005020
doi: 10.3866/PKU.WHXB202005020
Liu, W.; Zhang, X.; Huang, Y.; Jiang, B.; Chang, Z.; Xu, C.; Kang, F. J. Energy Chem. 2021, 56, 365. doi: 10.1016/j.jechem.2020.07.027
doi: 10.1016/j.jechem.2020.07.027
Shen, X.; Wang, X.; Zhou, Y.; Shi, Y.; Zhao, L.; Jin, H.; Di, J.; Li, Q. Adv. Funct. Mater. 2021, 31, 2101579. doi: 10.1002/adfm.202101579
doi: 10.1002/adfm.202101579
Zhang, S.; Chen, L.; Dong, D.; Kong, Y.; Zhang, J.; Liu, J.; Liu, Z. ACS Appl. Mater. Interfaces 2022, 14, 24415. doi: 10.1021/acsami.2c04252
doi: 10.1021/acsami.2c04252
Zhang, L.; Hu, J.; Zhang, B.; Liu, J.; Wan, H.; Miao, L.; Jiang, J. J. Mater. Chem. A 2021, 9, 7631. doi: 10.1039/d1ta00263e
doi: 10.1039/d1ta00263e
Zampardi, G.; La Mantia, F. Curr. Opin. Electrochem. 2020, 21, 84. doi: 10.1016/j.coelec.2020.01.014
doi: 10.1016/j.coelec.2020.01.014
Yi, H.; Qin, R.; Ding, S.; Wang, Y.; Li, S.; Zhao, Q.; Pan, F. Adv. Funct. Mater. 2020, 31, 2006970. doi: 10.1002/adfm.202006970
doi: 10.1002/adfm.202006970
Zhou, L. -F.; Gao, X. -W.; Du, T.; Gong, H.; Liu, L. -Y.; Luo, W. -B. J. Alloys Compd. 2022, 905, 163939. doi: 10.1016/j.jallcom.2022.163939
doi: 10.1016/j.jallcom.2022.163939
Zhou, L. F.; Gao, X. W.; Du, T.; Gong, H.; Liu, L. Y.; Luo, W. B. ACS Appl. Mater. Interfaces 2022, 14, 8888. doi: 10.1021/acsami.1c10380
doi: 10.1021/acsami.1c10380
Cheng, Y.; Luo, L.; Zhong, L.; Chen, J.; Li, B.; Wang, W.; Mao, S. X.; Wang, C.; Sprenkle, V. L.; Li, G.; et al. ACS Appl. Mater. Interfaces 2016, 8, 13673. doi: 10.1021/acsami.6b03197
doi: 10.1021/acsami.6b03197
Guo, C.; Zhang, K.; Zhao, Q.; Pei, L.; Chen, J. Chem. Commun. 2015, 51, 10244. doi: 10.1039/c5cc02251g
doi: 10.1039/c5cc02251g
Wang, X.; Wang, G.; He, X. J. Colloid Interface Sci. 2022, 629, 434. doi: 10.1016/j.jcis.2022.08.166
doi: 10.1016/j.jcis.2022.08.166
Chen, L.; An, Q.; Mai, L. Adv. Mater. Interfaces 2019, 6, 1900387. doi: 10.1002/admi.201900387
doi: 10.1002/admi.201900387
Qian, L.; Wei, T.; Ma, K.; Yang, G.; Wang, C. ACS Appl. Mater. Interfaces 2019, 11, 20888. doi: 10.1021/acsami.9b05362
doi: 10.1021/acsami.9b05362
Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.; Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 34108. doi: 10.1021/acsami.8b08297
doi: 10.1021/acsami.8b08297
Cao, T.; Zhang, F.; Chen, M.; Shao, T.; Li, Z.; Xu, Q.; Cheng, D.; Liu, H.; Xia, Y. ACS Appl. Mater. Interfaces 2021, 13, 26924. doi: 10.1021/acsami.1c04129
doi: 10.1021/acsami.1c04129
Wang, L.; Cao, Z.; Zhuang, P.; Li, J.; Chu, H.; Ye, Z.; Xu, D.; Zhang, H.; Shen, J.; Ye, M. ACS Appl. Mater. Interfaces 2021, 13, 13338. doi: 10.1021/acsami.1c01405
doi: 10.1021/acsami.1c01405
Zeng, Y.; Lai, Z.; Han, Y.; Zhang, H.; Xie, S.; Lu, X. Adv. Mater. 2018, 30, 1802396. doi: 10.1002/adma.201802396
doi: 10.1002/adma.201802396
Shen, C.; Li, X.; Li, N.; Xie, K.; Wang, J. G.; Liu, X.; Wei, B. ACS Appl. Mater. Interfaces 2018, 10, 25446. doi: 10.1021/acsami.8b07781
doi: 10.1021/acsami.8b07781
Wang, X.; Li, Y.; Wang, S.; Zhou, F.; Das, P.; Sun, C.; Zheng, S.; Wu, Z. S. Adv. Energy Mater. 2020, 10, 2000081. doi: 10.1002/aenm.202000081
doi: 10.1002/aenm.202000081
Chen, H.; Qin, H.; Chen, L.; Wu, J.; Yang, Z. J. Alloys Compd. 2020, 842, 155912. doi: 10.1016/j.jallcom.2020.155912
doi: 10.1016/j.jallcom.2020.155912
Yin, B.; Zhang, S.; Ke, K.; Xiong, T.; Wang, Y.; Lim, B. K. D.; Lee, W. S. V.; Wang, Z.; Xue, J. Nanoscale 2019, 11, 19723. doi: 10.1039/c9nr07458a
doi: 10.1039/c9nr07458a
Liu, S.; Zhu, H.; Zhang, B.; Li, G.; Zhu, H.; Ren, Y.; Geng, H.; Yang, Y.; Liu, Q.; Li, C. C. Adv. Mater. 2020, 32, 2001113. doi: 10.1002/adma.202001113
doi: 10.1002/adma.202001113
Zhang, T.; Tang, Y.; Guo, S.; Cao, X.; Pan, A.; Fang, G.; Zhou, J.; Liang, S. Energy Environ. Sci. 2020, 13, 4625. doi: 10.1039/d0ee02620d
doi: 10.1039/d0ee02620d
Liu, S.; Mao, J.; Pang, W. K.; Vongsvivut, J.; Zeng, X.; Thomsen, L.; Wang, Y.; Liu, J.; Li, D.; Guo, Z. Adv. Funct. Mater. 2021, 31, 2104281. doi: 10.1002/adfm.202104281
doi: 10.1002/adfm.202104281
Liu, M.; Yang, L.; Liu, H.; Amine, A.; Zhao, Q.; Song, Y.; Yang, J.; Wang, K.; Pan, F. ACS Appl. Mater. Interfaces 2019, 11, 32046. doi: 10.1021/acsami.9b11243
doi: 10.1021/acsami.9b11243
Yin, Y.; Wang, S.; Zhang, Q.; Song, Y.; Chang, N.; Pan, Y.; Zhang, H.; Li, X. Adv. Mater. 2020, 32, 1906803. doi: 10.1002/adma.201906803
doi: 10.1002/adma.201906803
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4207. doi: 10.1002/adma.201190147
doi: 10.1002/adma.201190147
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098. doi: 10.1038/natrevmats.2016.98
doi: 10.1038/natrevmats.2016.98
Yu, L. Y.; Hu, L. F.; Anasori, B.; Liu, Y. T.; Zhu, Q. Z.; Zhang, P.; Gogotsi, Y.; Xu, B. ACS Energy Lett. 2018, 3, 1597. doi: 10.1021/acsenergylett.8b00718
doi: 10.1021/acsenergylett.8b00718
Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B. Adv. Mater. 2018, 30, 1707334. doi: 10.1002/adma.201707334
doi: 10.1002/adma.201707334
Wang, X.; Wang, Y.; Jiang, Y.; Li, X.; Liu, Y.; Xiao, H.; Ma, Y.; Huang, Y. Y.; Yuan, G. Adv. Funct. Mater. 2021, 31, 2103210. doi: 10.1002/adfm.202103210
doi: 10.1002/adfm.202103210
Li, X.; Li, M.; Yang, Q.; Wang, D.; Ma, L.; Liang, G.; Huang, Z.; Dong, B.; Huang, Q.; Zhi, C. Adv. Energy Mater. 2020, 10, 2001394. doi: 10.1002/aenm.202001394
doi: 10.1002/aenm.202001394
Shi, W.; Lee, W. S. V.; Xue, J. ChemSusChem 2021, 14, 1634. doi: 10.1002/cssc.202002493
doi: 10.1002/cssc.202002493
Li, H.; Ma, L.; Han, C.; Wang, Z.; Liu, Z.; Tang, Z.; Zhi, C. Nano Energy 2019, 62, 550. doi: 10.1016/j.nanoen.2019.05.059
doi: 10.1016/j.nanoen.2019.05.059
Li, Y.; Zhang, D.; Huang, S.; Yang, H. Y. Nano Energy 2021, 85, 105969. doi: 10.1016/j.nanoen.2021.105969
doi: 10.1016/j.nanoen.2021.105969
Zeng, X.; Hao, J.; Wang, Z.; Mao, J.; Guo, Z. Energy Storage Mater. 2019, 20, 410. doi: 10.1016/j.ensm.2019.04.022
doi: 10.1016/j.ensm.2019.04.022
Luo, S.; Xie, L.; Han, F.; Wei, W.; Huang, Y.; Zhang, H.; Zhu, M.; Schmidt, O. G.; Wang, L. Adv. Funct. Mater. 2019, 29, 1901336. doi: 10.1002/adfm.201901336
doi: 10.1002/adfm.201901336
Shi, M.; Wang, B.; Chen, C.; Lang, J.; Yan, C.; Yan, X. J. Mater. Chem. A 2020, 8, 24635. doi: 10.1039/d0ta09085a
doi: 10.1039/d0ta09085a
Shi, M.; Wang, B.; Shen, Y.; Jiang, J.; Zhu, W.; Su, Y.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q. Chem. Eng. J. 2020, 399, 125627. doi: 10.1016/j.cej.2020.125627
doi: 10.1016/j.cej.2020.125627
Xu, G.; Zhang, Y.; Gong, Z.; Lu, T.; Pan, L. J. Colloid Interface Sci. 2021, 593, 417. doi: 10.1016/j.jcis.2021.02.090
doi: 10.1016/j.jcis.2021.02.090
Liu, C.; Xu, W.; Mei, C.; Li, M. -C.; Xu, X.; Wu, Q. Chem. Eng. J. 2021, 405, 126737. doi: 10.1016/j.cej.2020.126737
doi: 10.1016/j.cej.2020.126737
Liu, H.; Jiang, L.; Cao, B.; Du, H.; Lu, H.; Ma, Y.; Wang, H.; Guo, H.; Huang, Q.; Xu, B.; et al. ACS Nano 2022, 16, 14539. doi: 10.1021/acsnano.2c04968
doi: 10.1021/acsnano.2c04968
Shi, Z.; Ru, Q.; Pan, Z.; Zheng, M.; Chi-Chun Ling, F.; Wei, L. ChemElectroChem 2021, 8, 1091. doi: 10.1002/celc.202100036
doi: 10.1002/celc.202100036
Liu, Y.; Dai, Z.; Zhang, W.; Jiang, Y.; Peng, J.; Wu, D.; Chen, B.; Wei, W.; Chen, X.; Liu, Z.; et al. ACS Nano 2021, 15, 9065. doi: 10.1021/acsnano.1c02215
doi: 10.1021/acsnano.1c02215
Li, M.; Li, X.; Qin, G.; Luo, K.; Lu, J.; Li, Y.; Liang, G.; Huang, Z.; Zhou, J.; Hultman, L.; et al. ACS Nano 2021, 15, 1077. doi: 10.1021/acsnano.0c07972
doi: 10.1021/acsnano.0c07972
Venkatkarthick, R.; Rodthongkum, N.; Zhang, X.; Wang, S.; Pattananuwat, P.; Zhao, Y.; Liu, R.; Qin, J. ACS Appl. Energy Mater. 2020, 3, 4677. doi: 10.1021/acsaem.0c00309
doi: 10.1021/acsaem.0c00309
Li, X.; Li, M.; Yang, Q.; Li, H.; Xu, H.; Chai, Z.; Chen, K.; Liu, Z.; Tang, Z.; Ma, L.; et al. ACS Nano 2020, 14, 541. doi: 10.1021/acsnano.9b06866
doi: 10.1021/acsnano.9b06866
Li, X.; Li, M.; Yang, Q.; Liang, G.; Huang, Z.; Ma, L.; Wang, D.; Mo, F.; Dong, B.; Huang, Q.; et al. Adv. Energy Mater. 2020, 10, 2001791. doi: 10.1002/aenm.202001791
doi: 10.1002/aenm.202001791
Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W.; Wu, D.; Zuo, S.; Zhang, J.; Chen, B.; Dai, Z.; et al. Adv. Funct. Mater. 2020, 31, 2008033. doi: 10.1002/adfm.202008033
doi: 10.1002/adfm.202008033
Tian, Y.; An, Y.; Wei, H.; Wei, C.; Tao, Y.; Li, Y.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Chem. Mater. 2020, 32, 4054. doi: 10.1021/acs.chemmater.0c00787
doi: 10.1021/acs.chemmater.0c00787
Narayanasamy, M.; Kirubasankar, B.; Shi, M.; Velayutham, S.; Wang, B.; Angaiah, S.; Yan, C. Chem. Commun. 2020, 56, 6412. doi: 10.1039/d0cc01802c
doi: 10.1039/d0cc01802c
Zhu, X.; Wang, W.; Cao, Z.; Gao, S.; Chee, M. O. L.; Zhang, X.; Dong, P.; Ajayan, P. M.; Ye, M.; Shen, J. J. Mater. Chem. A 2021, 9, 17994. doi: 10.1039/d1ta05526g
doi: 10.1039/d1ta05526g
Zhu, X.; Cao, Z.; Wang, W.; Li, H.; Dong, J.; Gao, S.; Xu, D.; Li, L.; Shen, J.; Ye, M. ACS Nano 2021, 15, 2971. doi: 10.1021/acsnano.0c09205
doi: 10.1021/acsnano.0c09205
Zhang, Y.; Cao, J.; Li, J.; Yuan, Z.; Li, D.; Wang, L.; Han, W. Chem. Eng. J. 2022, 430, 132992. doi: 10.1016/j.cej.2021.132992
doi: 10.1016/j.cej.2021.132992
Byeon, A.; Glushenkov, A. M.; Anasori, B.; Urbankowski, P.; Li, J.; Byles, B. W.; Blake, B.; Van Aken, K. L.; Kota, S.; Pomerantseva, E.; et al. J. Power Sources 2016, 326, 686. doi: 10.1016/j.jpowsour.2016.03.066
doi: 10.1016/j.jpowsour.2016.03.066
Li, X.; Ma, X.; Hou, Y.; Zhang, Z.; Lu, Y.; Huang, Z.; Liang, G.; Li, M.; Yang, Q.; Ma, J.; et al. Joule 2021, 5, 2993. doi: 10.1016/j.joule.2021.09.006
doi: 10.1016/j.joule.2021.09.006
Wang, T.; Li, C.; Xie, X.; Lu, B.; He, Z.; Liang, S.; Zhou, J. ACS Nano 2020, 14, 16321. doi: 10.1021/acsnano.0c07041
doi: 10.1021/acsnano.0c07041
Wang, L.; Han, S.; Zhang, H.; Wang, W.; Zhang, L. Acta Chim. Sin. 2021, 79, 158.
doi: 10.6023/a20090409
Cao, Z.; Zhuang, P.; Zhang, X.; Ye, M.; Shen, J.; Ajayan, P. M. Adv. Energy Mater. 2020, 10, 2001599. doi: 10.1002/aenm.202001599
doi: 10.1002/aenm.202001599
Zeng, Y.; Zhang, X.; Qin, R.; Liu, X.; Fang, P.; Zheng, D.; Tong, Y.; Lu, X. Adv. Mater. 2019, 31, e1903675. doi: 10.1002/adma.201903675
doi: 10.1002/adma.201903675
Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Energy Storage Mater. 2020, 27, 205. doi: 10.1016/j.ensm.2020.01.032
doi: 10.1016/j.ensm.2020.01.032
Lu, W.; Zhang, C.; Zhang, H.; Li, X. ACS Energy Lett. 2021, 6, 2765. doi: 10.1021/acsenergylett.1c00939
doi: 10.1021/acsenergylett.1c00939
Wan, F.; Zhou, X.; Lu, Y.; Niu, Z.; Chen, J. ACS Energy Lett. 2020, 5, 3569. doi: 10.1021/acsenergylett.0c02028
doi: 10.1021/acsenergylett.0c02028
Tian, Y.; An, Y.; Wei, C.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. ACS Nano 2019, 13, 11676. doi: 10.1021/acsnano.9b05599
doi: 10.1021/acsnano.9b05599
Zhou, J.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y.; Li, L.; Chen, R. Adv. Mater. 2022, 34, 2106897. doi: 10.1002/adma.202106897
doi: 10.1002/adma.202106897
Xie, F.; Li, H.; Wang, X.; Zhi, X.; Chao, D.; Davey, K.; Qiao, S. Z. Adv. Energy Mater. 2021, 11, 2003419. doi: 10.1002/aenm.202003419
doi: 10.1002/aenm.202003419
Zhang, Y.; Howe, J. D.; Ben-Yoseph, S.; Wu, Y.; Liu, N. ACS Energy Lett. 2021, 6, 404. doi: 10.1021/acsenergylett.0c02343
doi: 10.1021/acsenergylett.0c02343
Tian, Y.; An, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Energy Storage Mater. 2021, 41, 343. doi: 10.1016/j.ensm.2021.06.019
doi: 10.1016/j.ensm.2021.06.019
Li, X.; Li, Q.; Hou, Y.; Yang, Q.; Chen, Z.; Huang, Z.; Liang, G.; Zhao, Y.; Ma, L.; Li, M.; et al. ACS Nano 2021, 15, 14631. doi: 10.1021/acsnano.1c04354
doi: 10.1021/acsnano.1c04354
Zhang, N.; Huang, S.; Yuan, Z.; Zhu, J.; Zhao, Z.; Niu, Z. Angew. Chem. Int. Ed. 2021, 60, 2861. doi: 10.1002/anie.202012322
doi: 10.1002/anie.202012322
Li, X.; Li, M.; Luo, K.; Hou, Y.; Li, P.; Yang, Q.; Huang, Z.; Liang, G.; Chen, Z.; Du, S.; et al. ACS Nano 2021, 16, 813. doi: 10.1021/acsnano.1c08358
doi: 10.1021/acsnano.1c08358
An, Y.; Tian, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. ACS Nano 2021, 15, 15259. doi: 10.1021/acsnano.1c05934
doi: 10.1021/acsnano.1c05934
Wu, K.; Huang, J.; Yi, J.; Liu, X.; Liu, Y.; Wang, Y.; Zhang, J.; Xia, Y. Adv. Energy Mater. 2020, 10, 1903977. doi: 10.1002/aenm.201903977
doi: 10.1002/aenm.201903977
Kang, L.; Cui, M.; Zhang, Z.; Jiang, F. Batteries Supercaps 2020, 3, 966. doi: 10.1002/batt.202000060
doi: 10.1002/batt.202000060
Du, Y.; Li, Y.; Xu, B. B.; Liu, T. X.; Liu, X.; Ma, F.; Gu, X.; Lai, C. Small 2022, 18, 2104640. doi: 10.1002/smll.202104640
doi: 10.1002/smll.202104640
Wang, Y.; Wang, Z.; Yang, F.; Liu, S.; Zhang, S.; Mao, J.; Guo, Z. Small 2022, 18, 2107033. doi: 10.1002/smll.202107033
doi: 10.1002/smll.202107033
Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods 2019, 3, 1800272. doi: 10.1002/smtd.201800272
doi: 10.1002/smtd.201800272
Pan, Q.; Zheng, Y.; Kota, S.; Huang, W.; Wang, S.; Qi, H.; Kim, S.; Tu, Y.; Barsoum, M. W.; Li, C. Y. Nanoscale Adv. 2019, 1, 395. doi: 10.1039/c8na00206a
doi: 10.1039/c8na00206a
Sun, C.; Wu, C.; Gu, X.; Wang, C.; Wang, Q. Nano-Micro Lett. 2021, 13, 89. doi: 10.1007/s40820-021-00612-8
doi: 10.1007/s40820-021-00612-8
Ma, L.; Li, Q.; Ying, Y.; Ma, F.; Chen, S.; Li, Y.; Huang, H.; Zhi, C. Adv. Mater. 2021, 33, 2007406. doi: 10.1002/adma.202007406
doi: 10.1002/adma.202007406
Yuan, D.; Manalastas, W., Jr.; Zhang, L.; Chan, J. J.; Meng, S.; Chen, Y.; Srinivasan, M. ChemSusChem 2019, 12, 4889. doi: 10.1002/cssc.201901409
doi: 10.1002/cssc.201901409
Chen, Z.; Li, X.; Wang, D.; Yang, Q.; Ma, L.; Huang, Z.; Liang, G.; Chen, A.; Guo, Y.; Dong, B.; et al. Energy Environ. Sci. 2021, 14, 3492. doi: 10.1039/d1ee00409c
doi: 10.1039/d1ee00409c
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065