Citation: Qian Yin, Huiting Song, Ming Xu, Hong Yan, Yufei Zhao, Xue Duan. Thermal Decomposition of Carbonates Coupled with Dry Reforming of Methane to Synthesize High-Value Products: A Perspective[J]. Acta Physico-Chimica Sinica, ;2023, 39(3): 221002. doi: 10.3866/PKU.WHXB202210026 shu

Thermal Decomposition of Carbonates Coupled with Dry Reforming of Methane to Synthesize High-Value Products: A Perspective

  • Corresponding author: Hong Yan, zhaoyufei@mail.buct.edu.cn Yufei Zhao, yanhong@buct.edu.cn
  • Received Date: 20 October 2022
    Revised Date: 28 November 2022
    Accepted Date: 29 November 2022
    Available Online: 2 December 2022

    Fund Project: the National Natural Science Foundation of China 22288102the National Natural Science Foundation of China 21922801Beijing Natural Science Foundation, China 2202036

  • Traditional industries, such as the production of cement, steel, refractory materials, and calcium carbide, involve the thermal decomposition of carbonates. Large amounts of carbon dioxide (CO2) emitted by these processes comprise more than 50% of the total industrial carbon emissions in China. Furthermore, to ensure the complete decomposition of carbonates, the input of excess heat is required, leading to the generation of residual heat. Notably, the reduction in CO2 emissions and complete utilization of the produced residual heat in the above processes are considerable challenges. However, co-thermal coupling of carbonate decomposition with H2, CH4, and other gases containing hydrogen molecules enables the production of high-value-added products such as syngas. Furthermore, this approach is environmentally friendly and economical, with potential for realization in the near future. This paper summarizes recent advances in the coupling of the thermal decomposition of carbonates with dry reforming of methane, dry reforming of alcohols, and CO2 capture. Combining CO2-emitting thermal decomposition of carbonates with the CO2-consuming methane reforming reaction allows the simultaneous reduction of CO2 emissions and syngas production. Although many experimental studies have been conducted on the coupling of the thermal decomposition of carbonates with dry reforming of methane, few reports have revealed the mechanism theoretically. At present, the theoretical research is limited to the adsorption of methane on carbonate surfaces without a clearly understood mechanism; this paper briefly introduces recent research progress in the thermal decomposition of carbonates coupled with H2 reduction and dry reforming of methane. Notably, alcohols are promising hydrogen donors for coupling with the thermal decomposition of carbonates because they can be produced by fermentation of biomass or renewable raw materials, including energy plants, waste materials from agro-industry or forestry residue materials, and organic municipal solid waste. In addition, CO2 can also be captured and converted using metal oxides (e.g., CaO, MgO); these are typical CO2 solid sorbents, which can capture CO2 by calcium looping and be regenerated in CH4. Our group has also recently made progress in the co-thermal coupling of the decomposition of carbonates with dry reforming of methane. By regulating the concentration of CH4, adding O2 to the CH4 atmosphere, and using catalysts, CO2 emissions can be decreased with the evolution of syngas. In this perspective, we summarize the latest results on the coupling of the thermal decomposition of carbonates with dry reforming of methane, including the results obtained by our research group, which allows efficient utilization of CO2 and emissions reduction.
  • 加载中
    1. [1]

      Wu, S. Q.; Wang, J. B.; Li, Q. C.; Huang, Z. A.; Rao, Z. Q.; Zhou, Y. Trans. Tianjin Univ. 2021, 27, 155. doi: 10.1007/s12209-020-00280-6  doi: 10.1007/s12209-020-00280-6

    2. [2]

      Ning, C. J.; Wang, Z. L.; Bai, S.; Tan, L.; Dong, H. L.; Xu, Y. Q.; Hao, X. J.; Shen, T. Y.; Zhao, J. W.; Zhao, P.; et al. Chem. Eng. J. 2021, 412, 128362. doi: 10.1016/j.cej.2020.128362  doi: 10.1016/j.cej.2020.128362

    3. [3]

      Tan, L.; Xu, S. -M.; Wang, Z.; Xu, Y.; Wang, X.; Hao, X.; Bai, S.; Ning, C.; Wang, Y.; Zhang, W.; et al. Angew. Chem. Int. Ed. 2019, 58, 11860. doi: 10.1002/anie.201904246  doi: 10.1002/anie.201904246

    4. [4]

      Bai, S.; Li, T.; Wang, H. J.; Tan, L.; Zhao, Y.; Song, Y. -F. Chem. Eng. J. 2021, 419, 129390. doi: 10.1016/j.cej.2021.129390  doi: 10.1016/j.cej.2021.129390

    5. [5]

      Li, H.; Li, F.; Yu, J. G.; Wu, S. W. Acta Phys. -Chim. Sin. 2021, 37, 2010073.  doi: 10.3866/PKU.WHXB202010073

    6. [6]

      Cai, X.; Sui, X.; Xu, J. Y.; Tang, A. C.; Liu, X.; Chen, M. Y.; Zhu, Y. CCS Chem. 2021, 3, 408. doi: 10.31635/ccschem.021.202000730  doi: 10.31635/ccschem.021.202000730

    7. [7]

      Yang, Z. Z.; He, L. N.; Zhao, Y. N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971. doi: 10.1039/c1ee02156g  doi: 10.1039/c1ee02156g

    8. [8]

      Zhang, L. Y.; Sun, N. N.; Wang, M. Q.; Wu, T.; Wei, W.; Pang, C. H. Int. J. Energy Res. 2021, 45, 19789. doi: 10.1002/er.7076  doi: 10.1002/er.7076

    9. [9]

      Jiang, J. T.; Liu, Z. Y.; Liu, Q. Y. Energy Fuels 2016, 31, 198. doi: 10.1021/acs.energyfuels.6b02026  doi: 10.1021/acs.energyfuels.6b02026

    10. [10]

      Halmann, M.; Steinfeld, A. Energy 2006, 31, 1533. doi: 10.1016/j.energy.2005.05.012  doi: 10.1016/j.energy.2005.05.012

    11. [11]

      Reller, A.; Padeste, C.; Hug, P. Nature 1987, 329, 527. doi: 10.1038/329527a0  doi: 10.1038/329527a0

    12. [12]

      Baldauf-Sommerbauer, G.; Lux, S.; Siebenhofer, M. Green Chem. 2016, 18, 6255. doi: 10.1039/c6gc02160c  doi: 10.1039/c6gc02160c

    13. [13]

      Xu, M.; Shao, M. F.; Liu, Q. Y.; Duan, X. Chem. Ind. Eng. Prog. 2022, 41, 1211.  doi: 10.16085/j.issn.1000-6613.2021-2345

    14. [14]

      Zhao, J.; Guo, X.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Dai, Q.; Zhang, T. Adv. Funct. Mater. 2022, 32, 2204056. doi: 10.1002/adfm.202204056  doi: 10.1002/adfm.202204056

    15. [15]

      Li, T.; Tan, L.; Zhao, Y.; Song, Y. -F. Chem. Eng. Sci. 2021, 245, 116839. doi: 10.1016/j.ces.2021.116839  doi: 10.1016/j.ces.2021.116839

    16. [16]

      Dang, C. X.; Luo, J. L.; Yang, W. W.; Li, H. K.; Cai, W. Q. Ind. Eng. Chem. Res. 2021, 60, 18361. doi: 10.1021/acs.iecr.1c04010  doi: 10.1021/acs.iecr.1c04010

    17. [17]

      Steinfeld, A.; Thomson, G. Energy 1994, 19, 1077. doi: 10.1016/0360-5442(94)90096-5  doi: 10.1016/0360-5442(94)90096-5

    18. [18]

      Halmann, M.; Steinfeld, A. Energy Fuels 2003, 17, 774. doi: 10.1021/ef020219u  doi: 10.1021/ef020219u

    19. [19]

      Nikulshina, V.; Halmann, M.; Steinfeld, A. Energy Fuels 2009, 23, 6207. doi: 10.1021/ef9007246  doi: 10.1021/ef9007246

    20. [20]

      Xiao, H. Study on the Reaction Enhancement of the Decomposition of Calcium Carbonate Coupled with Methane Dry Reforming. M. S. Dissertation, Zhejiang University, Zhejiang, 2020.

    21. [21]

      Zhang, M.; Li, J.; Zhao, J.; Cui, Y.; Luo, X. ACS Omega 2020, 5, 11369. doi: 10.1021/acsomega.0c00345  doi: 10.1021/acsomega.0c00345

    22. [22]

      Onawole, A. T.; Hussein, I. A.; Carchini, G.; Sakhaee-Pour, A.; Berdiyorov, G. R. RSC Adv. 2020, 10, 16669. doi: 10.1039/d0ra02471f  doi: 10.1039/d0ra02471f

    23. [23]

      López Ortiz, A.; Pallares Sámano, R. B.; Meléndez Zaragoza, M. J.; Collins-Martínez, V. Int. J. Hydrog. Energy 2015, 40, 17172. doi: 10.1016/j.ijhydene.2015.07.115  doi: 10.1016/j.ijhydene.2015.07.115

    24. [24]

      Kar, S.; Goeppert, A.; Prakash, G. K. S. Acc. Chem. Res. 2019, 52, 2892. doi: 10.1021/acs.accounts.9b00324  doi: 10.1021/acs.accounts.9b00324

    25. [25]

      Kim, S. M.; Abdala, P. M.; Broda, M.; Hosseini, D.; Copéret, C.; Müller, C. ACS Catal. 2018, 8, 2815. doi: 10.1021/acscatal.7b03063  doi: 10.1021/acscatal.7b03063

    26. [26]

      Dang, C. X.; Wu, S. J.; Cao, Y. H.; Wang, H. J.; Peng, F.; Yu, H. Chem. Eng. J. 2019, 360, 47. doi: 10.1016/j.cej.2018.11.203  doi: 10.1016/j.cej.2018.11.203

    27. [27]

      Xiao, H.; Wu, S. F. Chem. React. Eng. Technol. 2021, 37, 89. doi: 10.11730/j.issn.1001-7631.2021.01.0089.08  doi: 10.11730/j.issn.1001-7631.2021.01.0089.08

    28. [28]

      Zhao, Y. F.; Yin, Q.; Shen, T. Y.; Li, J. X.; Kong, X. G.; Song, Y. -F.; Duan, X. A Light-Driven Method for Thermal Decomposition of Carbonates Coupling with Hydrocarbon Reforming to Synthesize High Added-value Products. CN patent 202210684268.6, 2022-06-17.

  • 加载中
    1. [1]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    6. [6]

      Wei Gao Jinyue Yang Wenwei Zhang . Practice and Exploration of Promoting the “Double Reduction” Work with Popular Science Resources in Universities. University Chemistry, 2024, 39(9): 385-391. doi: 10.3866/PKU.DXHX202311008

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    10. [10]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    15. [15]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    16. [16]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    17. [17]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    18. [18]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(27)
  • Abstract views(974)
  • HTML views(195)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return