Citation: Qilong Feng, Chongzhi Zhu, Guan Sheng, Tulai Sun, Yonghe Li, Yihan Zhu. Four-Dimensional Scanning Transmission Electron Microscopy: From Material Microstructures to Physicochemical Properties[J]. Acta Physico-Chimica Sinica, ;2023, 39(3): 221001. doi: 10.3866/PKU.WHXB202210017 shu

Four-Dimensional Scanning Transmission Electron Microscopy: From Material Microstructures to Physicochemical Properties

  • Corresponding author: Yihan Zhu, yihanzhu@zjut.edu.cn
  • Received Date: 13 October 2022
    Revised Date: 28 November 2022
    Accepted Date: 29 November 2022
    Available Online: 5 December 2022

    Fund Project: the National Key Research and Development Program of China 2022YFE0113800the National Natural Science Foundation of China 22075250the National Natural Science Foundation of China 22122505the National Natural Science Foundation of China 21771161

  • The resolution limit of scanning transmission electron microscopy (STEM) has now reached atomic resolution. Further, owing to its flexible multi-channel imaging and powerful spectral characterization abilities, STEM has shown immense promise for microscale characterization in materials sciences, life sciences, and other fields. However, the traditional STEM detector is limited by its single-pixel integral detection mechanism, due to which it can only collect scattered electrons at a specific angle. This not only results in a loss of angle-resolved information of the scattered electrons, but also reduces the dose efficiency of the incident electrons. Therefore, it is imperative that new imaging techniques are developed to achieve high-throughput, high-electron-dose-efficiency imaging. Recent advances in electron direct detection techniques and detectors with partitioned or pixelated configurations, as well as the rapidly increasing computing power and disk storage, have contributed to the rapid development of four-dimensional STEM (4D-STEM) technology. Uniquely, 4D-STEM allows one to acquire structural information associated with scattered electrons. During the acquisition of 4D-STEM data, the convergent electron beam performs two-dimensional scanning on the sample plane, while a pixelated array detector with a high frame rate, wide dynamic range, and high signal-to-noise ratio collects two-dimensional diffraction data in the far field. Because these diffraction data are angle-resolved, they can be used for conventional STEM imaging as well as phase contrast imaging at the leading edge. For example, electron ptychography is used to reconstruct the sample object function from a series of diffraction patterns measured at different spatial locations. In addition, 4D-STEM technology can be explored to obtain more information about the internal structure of materials, providing opportunities for the multi-scale characterization of materials. This paper introduces the basic principles of 4D-STEM imaging and summarizes a series of 4D-STEM applications ranging from the microstructural characterization of materials to the analysis of their physicochemical properties. Typical applications include virtual detector imaging as well as measurements of micro-electromagnetic fields, micro-crystal orientations, micro-strain distributions, and the local specimen thickness. In addition, electron ptychography imaging technology realized using 4D-STEM data is highly promising for low-electron-dose applications owing to its high utilization efficiency of scattered electrons. The application of 4D-STEM technology in low-electron-dose applications is discussed. Overall, with the rapid development of electron detectors and post-processing analysis software for 4D-STEM data, it is believed that the novel 4D-STEM technology will eventually completely replace traditional STEM technology.
  • 加载中
    1. [1]

      Kisielowski, C.; Freitag, B.; Bischoff, M.; van Lin, H.; Lazar, S.; Knippels, G.; Tiemeijer, P.; van der Stam, M.; von Harrach, S.; Stekelenburg, M.; et al. Microsc. Microanal. 2008, 14 (5), 469. doi: 10.1017/S1431927608080902  doi: 10.1017/S1431927608080902

    2. [2]

      Yankovich, A. B.; Berkels, B.; Dahmen, W.; Binev, P.; Sanchez, S. I.; Bradley, S. A.; Li, A.; Szlufarska, I.; Voyles, P. M. Nat. Commun. 2014, 5, 4155. doi: 10.1038/ncomms5155  doi: 10.1038/ncomms5155

    3. [3]

      Lazic, I.; Bosch, E. G. T. Advances in Imaging and Electron Physics. Hawkes, P. W., Ed. Elsevier: Toulouse, France, 2017; Vol. 199, pp. 303–309.

    4. [4]

      Lazic, I.; Bosch, E. G. T.; Lazar, S. Ultramicroscopy 2016, 160, 265. doi: 10.1016/j.ultramic.2015.10.011  doi: 10.1016/j.ultramic.2015.10.011

    5. [5]

      Yucelen, E.; Lazic, I.; Bosch, E. G. T. Sci. Rep. 2018, 8 (1), 2676. doi: 10.1038/s41598-018-20377-2  doi: 10.1038/s41598-018-20377-2

    6. [6]

      Seifer, S.; Houben, L.; Elbaum, M. Microsc. Microanal. 2021, 27, 1476. doi: 10.1017/S1431927621012861  doi: 10.1017/S1431927621012861

    7. [7]

      Nord, M.; Webster, R. W. H.; Paton, K. A.; McVitie, S.; McGrouther, D.; MacLaren, I.; Paterson, G. W. Microsc. Microanal. 2020, 26 (4), 653. doi: 10.1017/S1431927620001713  doi: 10.1017/S1431927620001713

    8. [8]

      Tate, M. W.; Purohit, P.; Chamberlain, D.; Nguyen, K. X.; Hovden, R.; Chang, C. S.; Deb, P.; Turgut, E.; Heron, J. T.; Schlom, D. G.; et al. Microsc. Microanal. 2016, 22 (1), 237. doi: 10.1017/S1431927615015664  doi: 10.1017/S1431927615015664

    9. [9]

      Ophus, C. Microsc. Microanal. 2019, 25 (3), 563. doi: 10.1017/S1431927619000497  doi: 10.1017/S1431927619000497

    10. [10]

      Levin, B. D.; Zhang, C.; Bammes, B.; Voyles, P. M.; Bilhorn, R. B. Microsc. Anal. 2020, 34, 20. doi: 10.1017/S1431927621003809  doi: 10.1017/S1431927621003809

    11. [11]

      Nellist, P. D.; McCallum, B. C.; Rodenburg, J. M. Nature 1995, 374 (6523), 630. doi: 10.1038/374630a0  doi: 10.1038/374630a0

    12. [12]

      Savitzky, B. H.; Zeltmann, S. E.; Hughes, L. A.; Brown, H. G.; Zhao, S.; Pelz, P. M.; Pekin, T. C.; Barnard, E. S.; Donohue, J.; DaCosta, L. R.; et al. Microsc. Microanal. 2021, 27 (4), 712. doi: 10.1017/S1431927621000477  doi: 10.1017/S1431927621000477

    13. [13]

      Cautaerts, N.; Crout, P.; Anes, H. W.; Prestat, E.; Jeong, J.; Dehm, G.; Liebscher, C. H. Ultramicroscopy 2022, 237, 113517. doi: 10.1016/j.ultramic.2022.113517  doi: 10.1016/j.ultramic.2022.113517

    14. [14]

      Zaluzec, N. J. Microsc. Microanal. 2002, 8 (S02), 376. doi: 10.1017/S143192760210064X  doi: 10.1017/S143192760210064X

    15. [15]

      Ozdol, V. B.; Gammer, C.; Jin, X. G.; Ercius, P.; Ophus, C.; Ciston, J.; Minor, A. M. Appl. Phys. Lett. 2015, 106 (25) 253107. doi: 10.1063/1.4922994  doi: 10.1063/1.4922994

    16. [16]

      Liu, A. C.; Neish, M. J.; Stokol, G.; Buckley, G. A.; Smillie, L. A.; de Jonge, M. D.; Ott, R. T.; Kramer, M. J.; Bourgeois, L. Phys. Rev. Lett. 2013, 110 (20), 205505. doi: 10.1103/PhysRevLett.110.205505  doi: 10.1103/PhysRevLett.110.205505

    17. [17]

      Kimoto, K.; Ishizuka, K. Ultramicroscopy 2011, 111 (8), 1111. doi: 10.1016/j.ultramic.2011.01.029  doi: 10.1016/j.ultramic.2011.01.029

    18. [18]

      Jarausch, K.; Thomas, P.; Leonard, D. N.; Twesten, R.; Booth, C. R. Ultramicroscopy 2009, 109 (4), 326. doi: 10.1016/j.ultramic.2008.12.012  doi: 10.1016/j.ultramic.2008.12.012

    19. [19]

      Yedra, L.; Eljarrat, A.; Arenal, R.; Pellicer, E.; Cabo, M.; Lopez-Ortega, A.; Estrader, M.; Sort, J.; Baro, M. D.; Estrade, S.; et al. Ultramicroscopy 2012, 122, 12. doi: 10.1016/j.ultramic.2012.07.020  doi: 10.1016/j.ultramic.2012.07.020

    20. [20]

      Hachtel, J. A.; Idrobo, J. C.; Chi, M. Adv. Struct. Chem. Imag. 2018, 4 (1), 10. doi: 10.1186/s40679-018-0059-4  doi: 10.1186/s40679-018-0059-4

    21. [21]

      Bosch, E. G.; Lazic, I. Ultramicroscopy 2015, 156, 59. doi: 10.1016/j.ultramic.2015.02.004  doi: 10.1016/j.ultramic.2015.02.004

    22. [22]

      Lupini, A. R.; Chi, M.; Kalinin, S. V.; Borisevich, A. Y.; Carlos Idrobo, J.; Jesse, S. Microsc. Microanal. 2015, 21 (S3), 1219. doi: 10.1017/s1431927615006881  doi: 10.1017/s1431927615006881

    23. [23]

      Wen, Y.; Ophus, C.; Allen, C. S.; Fang, S.; Chen, J.; Kaxiras, E.; Kirkland, A. I.; Warner, J. H. Nano Lett. 2019, 19 (9), 6482. doi: 10.1021/acs.nanolett.9b02717  doi: 10.1021/acs.nanolett.9b02717

    24. [24]

      Nellist, P. D.; Chisholm, M. F.; Dellby, N.; Krivanek, O. L.; Murfitt, M. F.; Szilagyi, Z. S.; Lupini, A. R.; Borisevich, A.; Sides, W. H.; Pennycook, S. J. Science 2004, 305 (5691), 1741. doi: 10.1126/science.1100965  doi: 10.1126/science.1100965

    25. [25]

      Ishikawa, R.; Okunishi, E.; Sawada, H.; Kondo, Y.; Hosokawa, F.; Abe, E. Nat. Mater. 2011, 10 (4), 278. doi: 10.1038/nmat2957  doi: 10.1038/nmat2957

    26. [26]

      Ohtsuka, M.; Yamazaki, T.; Kotaka, Y.; Hashimoto, I.; Watanabe, K. Ultramicroscopy 2012, 120, 48. doi: 10.1016/j.ultramic.2012.06.006  doi: 10.1016/j.ultramic.2012.06.006

    27. [27]

      Findlay, S. D.; Kohno, Y.; Cardamone, L. A.; Ikuhara, Y.; Shibata, N. Ultramicroscopy 2014, 136, 31. doi: 10.1016/j.ultramic.2013.07.019  doi: 10.1016/j.ultramic.2013.07.019

    28. [28]

      Ahmed, S.; Bianchini, M.; Pokle, A.; Munde, M. S.; Hartmann, P.; Brezesinski, T.; Beyer, A.; Janek, J.; Volz, K. Adv. Energy Mater. 2020, 10 (25), 2001026. doi: 10.1002/aenm.202001026  doi: 10.1002/aenm.202001026

    29. [29]

      de Graaf, S.; Momand, J.; Mitterbauer, C.; Lazar, S.; Kooi, B. J. Sci. Adv. 2020, 6 (5), eaay4312. doi: 10.1126/sciadv.aay4312  doi: 10.1126/sciadv.aay4312

    30. [30]

      Xiong, H.; Liu, Z.; Chen, X.; Wang, H.; Qian, W.; Zhang, C.; Zheng, A.; Wei, F. Science 2022, 376 (6592), 491. doi: 10.1126/science.abn7667  doi: 10.1126/science.abn7667

    31. [31]

      Muller, K.; Krause, F. F.; Beche, A.; Schowalter, M.; Galioit, V.; Loffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A. Nat. Commun. 2014, 5, 5653. doi: 10.1038/ncomms6653  doi: 10.1038/ncomms6653

    32. [32]

      MacLaren, I.; Wang, L.; McGrouther, D.; Craven, A. J.; McVitie, S.; Schierholz, R.; Kovacs, A.; Barthel, J.; Dunin-Borkowski, R. E. Ultramicroscopy 2015, 154, 57. doi: 10.1016/j.ultramic.2015.03.016  doi: 10.1016/j.ultramic.2015.03.016

    33. [33]

      Shibata, N.; Findlay, S. D.; Kohno, Y.; Sawada, H.; Kondo, Y.; Ikuhara, Y. Nat. Phys. 2012, 8 (8), 611. doi: 10.1038/nphys2337  doi: 10.1038/nphys2337

    34. [34]

      Zachman, M. J.; Yang, Z.; Du, Y.; Chi, M. ACS Nano 2022, 16 (1), 1358. doi: 10.1021/acsnano.1c09374  doi: 10.1021/acsnano.1c09374

    35. [35]

      Ooe, K.; Seki, T.; Ikuhara, Y.; Shibata, N. Ultramicroscopy 2019, 202, 148. doi: 10.1016/j.ultramic.2019.04.011  doi: 10.1016/j.ultramic.2019.04.011

    36. [36]

      Yu, C. -P.; Friedrich, T.; Jannis, D.; Van Aert, S.; Verbeeck, J. Microsc. Microanal. 2022, 28 (5), 1526. doi: 10.1017/S1431927622000617  doi: 10.1017/S1431927622000617

    37. [37]

      Strauch, A.; Weber, D.; Clausen, A.; Lesnichaia, A.; Bangun, A.; März, B.; Lyu, F. J.; Chen, Q.; Rosenauer, A.; Dunin-Borkowski, R.; et al. Microsc. Microanal. 2021, 27 (5), 1078. doi: 10.1017/s1431927621012423  doi: 10.1017/s1431927621012423

    38. [38]

      Yang, H.; MacLaren, I.; Jones, L.; Martinez, G. T.; Simson, M.; Huth, M.; Ryll, H.; Soltau, H.; Sagawa, R.; Kondo, Y.; et al. Ultramicroscopy 2017, 180, 173. doi: 10.1016/j.ultramic.2017.02.006  doi: 10.1016/j.ultramic.2017.02.006

    39. [39]

      Pennycook, T. J.; Lupini, A. R.; Yang, H.; Murfitt, M. F.; Jones, L.; Nellist, P. D. Ultramicroscopy 2015, 151, 160. doi: 10.1016/j.ultramic.2014.09.013  doi: 10.1016/j.ultramic.2014.09.013

    40. [40]

      Chen, Z.; Odstrcil, M.; Jiang, Y.; Han, Y.; Chiu, M. H.; Li, L. J.; Muller, D. A. Nat. Commun. 2020, 11 (1), 2994. doi: 10.1038/s41467-020-16688-6  doi: 10.1038/s41467-020-16688-6

    41. [41]

      Jiang, Y.; Chen, Z.; Han, Y.; Deb, P.; Gao, H.; Xie, S.; Purohit, P.; Tate, M. W.; Park, J.; Gruner, S. M.; et al. Nature 2018, 559 (7714), 343. doi: 10.1038/s41586-018-0298-5  doi: 10.1038/s41586-018-0298-5

    42. [42]

      Yang, H.; Rutte, R. N.; Jones, L.; Simson, M.; Sagawa, R.; Ryll, H.; Huth, M.; Pennycook, T. J.; Green, M. L.; Soltau, H.; et al. Nat. Commun. 2016, 7, 12532. doi: 10.1038/ncomms12532  doi: 10.1038/ncomms12532

    43. [43]

      Song, J.; Allen, C. S.; Gao, S.; Huang, C.; Sawada, H.; Pan, X.; Warner, J.; Wang, P.; Kirkland, A. I. Sci. Rep. 2019, 9 (1), 3919. doi: 10.1038/s41598-019-40413-z  doi: 10.1038/s41598-019-40413-z

    44. [44]

      Maiden, A.; Johnson, D.; Li, P. Optica 2017, 4 (7), 736. doi: 10.1364/optica.4.000736  doi: 10.1364/optica.4.000736

    45. [45]

      Rodenburg, J. M.; Hurst, A. C.; Cullis, A. G. Ultramicroscopy 2007, 107 (2–3), 227. doi: 10.1016/j.ultramic.2006.07.007  doi: 10.1016/j.ultramic.2006.07.007

    46. [46]

      Zhou, L.; Song, J.; Kim, J. S.; Pei, X.; Huang, C.; Boyce, M.; Mendonca, L.; Clare, D.; Siebert, A.; Allen, C. S.; et al. Nat. Commun. 2020, 11 (1), 2773. doi: 10.1038/s41467-020-16391-6  doi: 10.1038/s41467-020-16391-6

    47. [47]

      Chen, Z.; Jiang, Y.; Shao, Y. T.; Holtz, M. E.; Odstrcil, M.; Guizar-Sicairos, M.; Hanke, I.; Ganschow, S.; Schlom, D. G.; Muller, D. A. Science 2021, 372 (6544), 826. doi: 10.1126/science.abg2533  doi: 10.1126/science.abg2533

    48. [48]

      Maiden, A. M.; Humphry, M. J.; Rodenburg, J. M. J. Opt. Soc. Am. A 2012, 29 (8), 1606. doi: 10.1364/JOSAA.29.001606  doi: 10.1364/JOSAA.29.001606

    49. [49]

      Hue, F.; Rodenburg, J. M.; Maiden, A. M.; Midgley, P. A. Ultramicroscopy 2011, 111 (8), 1117. doi: 10.1016/j.ultramic.2011.02.005  doi: 10.1016/j.ultramic.2011.02.005

    50. [50]

      Maiden, A. M.; Rodenburg, J. M. Ultramicroscopy 2009, 109 (10), 1256. doi: 10.1016/j.ultramic.2009.05.012  doi: 10.1016/j.ultramic.2009.05.012

    51. [51]

      Faulkner, H. M.; Rodenburg, J. M. Phys. Rev. Lett. 2004, 93 (2), 023903. doi: 10.1103/PhysRevLett.93.023903  doi: 10.1103/PhysRevLett.93.023903

    52. [52]

      Rodenburg, J. M.; McCallum, B. C.; Nellist, P. D. Ultramicroscopy 1993, 48 (3), 304. doi: 10.1016/0304-3991(93)90105-7  doi: 10.1016/0304-3991(93)90105-7

    53. [53]

      Pennycook, T. J.; Martinez, G. T.; Nellist, P. D.; Meyer, J. C. Ultramicroscopy 2019, 196, 131. doi: 10.1016/j.ultramic.2018.10.005  doi: 10.1016/j.ultramic.2018.10.005

    54. [54]

      Gao, W.; Addiego, C.; Wang, H.; Yan, X.; Hou, Y.; Ji, D.; Heikes, C.; Zhang, Y.; Li, L.; Huyan, H.; et al. Nature 2019, 575 (7783), 480. doi: 10.1038/s41586-019-1649-6  doi: 10.1038/s41586-019-1649-6

    55. [55]

      Wu, L.; Meng, Q.; Zhu, Y. Ultramicroscopy 2020, 219, 113095. doi: 10.1016/j.ultramic.2020.113095  doi: 10.1016/j.ultramic.2020.113095

    56. [56]

      Krajnak, M.; McGrouther, D.; Maneuski, D.; Shea, V. O.; McVitie, S. Ultramicroscopy 2016, 165, 42. doi: 10.1016/j.ultramic.2016.03.006  doi: 10.1016/j.ultramic.2016.03.006

    57. [57]

      Kohno, Y.; Seki, T.; Findlay, S. D.; Ikuhara, Y.; Shibata, N. Nature 2022, 602 (7896), 234. doi: 10.1038/s41586-021-04254-z  doi: 10.1038/s41586-021-04254-z

    58. [58]

      Yang, H.; Pennycook, T. J.; Nellist, P. D. Ultramicroscopy 2015, 151, 232. doi: 10.1016/j.ultramic.2014.10.013  doi: 10.1016/j.ultramic.2014.10.013

    59. [59]

      Li, Z.; Biskupek, J.; Kaiser, U.; Rose, H. Microsc. Microanal. 2022, 28 (3), 611. doi: 10.1017/S1431927622000289  doi: 10.1017/S1431927622000289

    60. [60]

      Fang, S.; Wen, Y.; Allen, C. S.; Ophus, C.; Han, G. G. D.; Kirkland, A. I.; Kaxiras, E.; Warner, J. H. Nat. Commun. 2019, 10 (1), 1127. doi: 10.1038/s41467-019-08904-9  doi: 10.1038/s41467-019-08904-9

    61. [61]

      Muller-Caspary, K.; Grieb, T.; Mussener, J.; Gauquelin, N.; Hille, P.; Schormann, J.; Verbeeck, J.; Van Aert, S.; Eickhoff, M.; Rosenauer, A. Phys. Rev. Lett. 2019, 122 (10), 106102. doi: 10.1103/PhysRevLett.122.106102  doi: 10.1103/PhysRevLett.122.106102

    62. [62]

      Yadav, A. K.; Nguyen, K. X.; Hong, Z.; Garcia-Fernandez, P.; Aguado-Puente, P.; Nelson, C. T.; Das, S.; Prasad, B.; Kwon, D.; Cheema, S.; et al. Nature 2019, 565 (7740), 468. doi: 10.1038/s41586-018-0855-y  doi: 10.1038/s41586-018-0855-y

    63. [63]

      Grieb, T.; Krause, F. F.; Muller-Caspary, K.; Ritz, R.; Simson, M.; Schormann, J.; Mahr, C.; Mussener, J.; Schowalter, M.; Soltau, H.; et al. Ultramicroscopy 2021, 228, 113321. doi: 10.1016/j.ultramic.2021.113321  doi: 10.1016/j.ultramic.2021.113321

    64. [64]

      Addiego, C.; Gao, W.; Pan, X. Ultramicroscopy 2020, 208, 112850. doi: 10.1016/j.ultramic.2019.112850  doi: 10.1016/j.ultramic.2019.112850

    65. [65]

      Campanini, M.; Nasi, L.; Albertini, F.; Erni, R. Appl. Phys. Lett. 2020, 117 (15), 154102. doi: 10.1063/5.0026121  doi: 10.1063/5.0026121

    66. [66]

      Shibata, N.; Findlay, S. D.; Matsumoto, T.; Kohno, Y.; Seki, T.; Sanchez-Santolino, G.; Ikuhara, Y. Acc. Chem. Res. 2017, 50 (7), 1502. doi: 10.1021/acs.accounts.7b00123  doi: 10.1021/acs.accounts.7b00123

    67. [67]

      Wang, B.; Bagues, N.; Liu, T.; Kawakami, R. K.; McComb, D. W. Ultramicroscopy 2022, 232, 113395. doi: 10.1016/j.ultramic.2021.113395  doi: 10.1016/j.ultramic.2021.113395

    68. [68]

      Caplins, B. W.; Holm, J. D.; White, R. M.; Keller, R. R. Ultramicroscopy 2020, 219, 113137. doi: 10.1016/j.ultramic.2020.113137  doi: 10.1016/j.ultramic.2020.113137

    69. [69]

      Donohue, J.; Zeltmann, S. E.; Bustillo, K. C.; Savitzky, B.; Jones, M. A.; Meyers, G. F.; Ophus, C.; Minor, A. M. iScience 2022, 25 (3), 103882. doi: 10.1016/j.isci.2022.103882  doi: 10.1016/j.isci.2022.103882

    70. [70]

      Fundenberger, J. J.; Morawiec, A.; Bouzy, E.; Lecomte, J. S. Ultramicroscopy 2003, 96 (2), 127. doi: 10.1016/s0304-3991(02)00435-7  doi: 10.1016/s0304-3991(02)00435-7

    71. [71]

      Jeong, J.; Jang, W. S.; Kim, K. H.; Kostka, A.; Gu, G.; Kim, Y. M.; Oh, S. H. Microsc. Microanal. 2021, 27 (2), 237. doi: 10.1017/S1431927621000027  doi: 10.1017/S1431927621000027

    72. [72]

      Jeong, J.; Cautaerts, N.; Dehm, G.; Liebscher, C. H. Microsc. Microanal. 2021, 27 (5), 1102. doi: 10.1017/s1431927621012538  doi: 10.1017/s1431927621012538

    73. [73]

      Panova, O.; Ophus, C.; Takacs, C. J.; Bustillo, K. C.; Balhorn, L.; Salleo, A.; Balsara, N.; Minor, A. M. Nat. Mater. 2019, 18 (8), 860. doi: 10.1038/s41563-019-0387-3  doi: 10.1038/s41563-019-0387-3

    74. [74]

      Bustillo, K. C.; Zeltmann, S. E.; Chen, M.; Donohue, J.; Ciston, J.; Ophus, C.; Minor, A. M. Acc. Chem. Res. 2021, 54 (11), 2543. doi: 10.1021/acs.accounts.1c00073  doi: 10.1021/acs.accounts.1c00073

    75. [75]

      Hÿtch, M. J.; Minor, A. M. MRS Bull. 2014, 39 (2), 138. doi: 10.1557/mrs.2014.4  doi: 10.1557/mrs.2014.4

    76. [76]

      Allen, F. I.; Pekin, T. C.; Persaud, A.; Rozeveld, S. J.; Meyers, G. F.; Ciston, J.; Ophus, C.; Minor, A. M. Microsc. Microanal. 2021, 27 (4), 794. doi: 10.1017/S1431927621011946  doi: 10.1017/S1431927621011946

    77. [77]

      Han, Y.; Nguyen, K.; Cao, M.; Cueva, P.; Xie, S.; Tate, M. W.; Purohit, P.; Gruner, S. M.; Park, J.; Muller, D. A. Nano Lett. 2018, 18 (6), 3746. doi: 10.1021/acs.nanolett.8b00952  doi: 10.1021/acs.nanolett.8b00952

    78. [78]

      Mahr, C.; Muller-Caspary, K.; Grieb, T.; Krause, F. F.; Schowalter, M.; Rosenauer, A. Ultramicroscopy 2021, 221, 113196. doi: 10.1016/j.ultramic.2020.113196  doi: 10.1016/j.ultramic.2020.113196

    79. [79]

      Mukherjee, D.; Gamler, J. T. L.; Skrabalak, S. E.; Unocic, R. R. ACS Catal. 2020, 10 (10), 5529. doi: 10.1021/acscatal.0c00224  doi: 10.1021/acscatal.0c00224

    80. [80]

      Wang, S.; Eldred, T. B.; Smith, J. G.; Gao, W. Ultramicroscopy 2022, 236, 113513. doi: 10.1016/j.ultramic.2022.113513  doi: 10.1016/j.ultramic.2022.113513

    81. [81]

      Gammer, C.; Ophus, C.; Pekin, T. C.; Eckert, J.; Minor, A. M. Appl. Phys. Lett. 2018, 112 (17), 1905. doi: 10.1063/1.5025686  doi: 10.1063/1.5025686

    82. [82]

      Kazmierczak, N. P.; Van Winkle, M.; Ophus, C.; Bustillo, K. C.; Carr, S.; Brown, H. G.; Ciston, J.; Taniguchi, T.; Watanabe, K.; Bediako, D. K. Nat. Mater. 2021, 20 (7), 956. doi: 10.1038/s41563-021-00973-w  doi: 10.1038/s41563-021-00973-w

    83. [83]

      Lebeau, J. M.; Findlay, S. D.; Allen, L. J.; Stemmer, S. Ultramicroscopy 2010, 110 (2), 118. doi: 10.1016/j.ultramic.2009.10.001  doi: 10.1016/j.ultramic.2009.10.001

    84. [84]

      Ophus, C.; Ercius, P.; Huijben, M.; Ciston, J. Appl. Phys. Lett. 2017, 110 (6), 3102. doi: 10.1063/1.4975932  doi: 10.1063/1.4975932

    85. [85]

      Zhang, C.; Feng, J.; DaCosta, L. R.; Voyles, P. M. Ultramicroscopy 2019, 210, 112921. doi: 10.1016/j.ultramic.2019.112921  doi: 10.1016/j.ultramic.2019.112921

    86. [86]

      Chen, Q.; Dwyer, C.; Sheng, G.; Zhu, C.; Li, X.; Zheng, C.; Zhu, Y. Adv. Mater. 2020, 32 (16), e1907619. doi: 10.1002/adma.201907619  doi: 10.1002/adma.201907619

    87. [87]

      Bunck, D. N.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135 (40), 14952. doi: 10.1021/ja408243n  doi: 10.1021/ja408243n

    88. [88]

      Zhu, Y.; Ciston, J.; Zheng, B.; Miao, X.; Czarnik, C.; Pan, Y.; Sougrat, R.; Lai, Z.; Hsiung, C. -E.; Yao, K. Nat. Mater. 2017, 16 (5), 532. doi: 10.1038/nmat4852  doi: 10.1038/nmat4852

    89. [89]

      Susi, T.; Kotakoski, J.; Arenal, R.; Kurasch, S.; Jiang, H.; Skakalova, V.; Stephan, O.; Krasheninnikov, A. V.; Kauppinen, E. I.; Kaiser, U.; et al. ACS Nano 2012, 6 (10), 8837. doi: 10.1021/nn303944f  doi: 10.1021/nn303944f

    90. [90]

      Zan, R.; Ramasse, Q. M.; Jalil, R.; Georgiou, T.; Bangert, U.; Novoselov, K. S. ACS Nano 2013, 7 (11), 10167. doi: 10.1021/nn4044035  doi: 10.1021/nn4044035

    91. [91]

      Burgess, A. E. J. Opt. Soc. Am. A 1999, 16 (3), 633. doi: 10.1364/JOSAA.16.000633  doi: 10.1364/JOSAA.16.000633

    92. [92]

      Egerton, R. F. Ultramicroscopy 2013, 127, 100. doi: 10.1016/j.ultramic.2012.07.006  doi: 10.1016/j.ultramic.2012.07.006

    93. [93]

      Zhang, D.; Zhu, Y.; Liu, L.; Ying, X.; Hsiung, C. -E.; Sougrat, R.; Li, K.; Han, Y. Science 2018, 359 (6376), 675. doi: 10.1126/science.aao0865  doi: 10.1126/science.aao0865

    94. [94]

      Li, X.; Wang, J.; Liu, X.; Liu, L.; Cha, D.; Zheng, X.; Yousef, A. A.; Song, K.; Zhu, Y.; Zhang, D.; et al. J. Am. Chem. Soc. 2019, 141 (30), 12021. doi: 10.1021/jacs.9b04896  doi: 10.1021/jacs.9b04896

    95. [95]

      Liu, L.; Chen, Z.; Wang, J.; Zhang, D.; Zhu, Y.; Ling, S.; Huang, K. W.; Belmabkhout, Y.; Adil, K.; Zhang, Y.; et al. Nat. Chem. 2019, 11 (7), 622. doi: 10.1038/s41557-019-0263-4  doi: 10.1038/s41557-019-0263-4

    96. [96]

      Egerton, R. F. Ultramicroscopy 2021, 229, 113363. doi: 10.1016/j.ultramic.2021.113363  doi: 10.1016/j.ultramic.2021.113363

    97. [97]

      Shen, K.; Zhang, L.; Chen, X.; Liu, L.; Zhang, D.; Han, Y.; Chen, J.; Long, J.; Luque, R.; Li, Y.; et al. Science 2018, 359 (6372), 206. doi: 10.1126/science.aao3403  doi: 10.1126/science.aao3403

    98. [98]

      Leus, K.; Dendooven, J.; Tahir, N.; Ramachandran, R. K.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Goeman, J. L.; Van der Eycken, J.; Detavernier, C.; et al. Nanomaterials (Basel) 2016, 6 (3), 45. doi: 10.3390/nano6030045  doi: 10.3390/nano6030045

    99. [99]

      Liu, Z.; Fujita, N.; Miyasaka, K.; Han, L.; Stevens, S. M.; Suga, M.; Asahina, S.; Slater, B.; Xiao, C.; Sakamoto, Y.; et al. Microscopy (Oxf) 2013, 62 (1), 109. doi: 10.1093/jmicro/dfs098  doi: 10.1093/jmicro/dfs098

    100. [100]

      Han, L.; Ohsuna, T.; Liu, Z.; Alfredsson, V.; Kjellman, T.; Asahina, S.; Suga, M.; Ma, Y.; Oleynikov, P.; Miyasaka, K.; et al. Z. Anorg. Allg. Chem. 2014, 640 (3–4), 521. doi: 10.1002/zaac.201300538  doi: 10.1002/zaac.201300538

    101. [101]

      Li, C.; Zhang, Q.; Mayoral, A. ChemCatChem 2020, 12 (5), 1248. doi: 10.1002/cctc.201901861  doi: 10.1002/cctc.201901861

    102. [102]

      O'Leary, C. M.; Allen, C. S.; Huang, C.; Kim, J. S.; Liberti, E.; Nellist, P. D.; Kirkland, A. I. Appl. Phys. Lett. 2020, 116 (12), 4101. doi: 10.1063/1.5143213  doi: 10.1063/1.5143213

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    7. [7]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    12. [12]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    13. [13]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    14. [14]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    15. [15]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    16. [16]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    17. [17]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    20. [20]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

Metrics
  • PDF Downloads(143)
  • Abstract views(2768)
  • HTML views(1015)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return