Citation: Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(3): 221001. doi: 10.3866/PKU.WHXB202210014 shu

RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries

  • Corresponding author: Tao Liu, liutao54@cug.edu.cn Liuyang Zhang, zhangliuyang@cug.edu.cn
  • Received Date: 6 September 2022
    Revised Date: 20 October 2022
    Accepted Date: 20 October 2022
    Available Online: 25 October 2022

    Fund Project: the National Natural Science Foundation of China 21801200the National Natural Science Foundation of China 22075217

  • MOF-derived metal selenides are promising candidates as effective anode materials in sodium-ion batteries (SIBs) owing to their ordered carbon skeleton structure and the high conductivity of selenides. They can be imparted with rapid electron/ion transport channels for the insertion/de-insertion of Na+. In this study, MOF-derived In2Se3 was prepared as an anode material for SIBs. However, the large volume expansion during cycling leads to structural collapse, which affects the charging and discharging circulation life of the battery. To address this, a two-dimensional rGO network was introduced on the MOF-derived In2Se3 surface by surface modification. Field-emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) results confirmed the successful synthesis of the In2Se3@C/rGO composite. The structures with two types of carbon enhanced the charge transfer kinetics and provided two stress-buffering layers. Thus, the volume change could be accommodated and simultaneously, electron transfer was accelerated. This technique was effective, as proved by the enhanced capacity retention of 95.2% at 1 A·g−1 after 500 cycles. In contrast, the capacity retention of the MOF-derived material without rGO was only 74.2%. Additionally, due to the synergistic effect of the rGO network and the MOF-derived In2Se3, the anode showed a superior capacity of 468 mAh·g−1 at 0.1 A·g−1. Conversely, at the same current density, the uncoated material delivered only a capacity of 393 mAh·g−1. To study the electrochemical process of the electrode, the In2Se3@C/rGO electrode was subjected to cyclic voltammetry (CV) measurements; the results showed that the In2Se3@C/rGO electrode had notable electrochemical reactivity. In addition, in situ X-ray diffraction (XRD) was performed to explore the sodium storage mechanism of In2Se3, demonstrating that In2Se3 had a dual Na+ storage mechanism involving conversion and alloying reactions, and revealing the origin of its high theoretical specific capacity. This study is expected to serve as a reference for preparing optimized rGO-based materials for use as SIB anodes.
  • 加载中
    1. [1]

      Liu, T.; Zhang, L.; Cheng, B.; Hu, X.; Yu, J. Cell Rep. Phys. Sci. 2020, 1, 100215. doi: 10.1016/j.xcrp.2020.100215  doi: 10.1016/j.xcrp.2020.100215

    2. [2]

      Xie, J.; Lu, Y. Nat. Commun. 2020, 11, 2499. doi: 10.1038/s41467-020-16259-9  doi: 10.1038/s41467-020-16259-9

    3. [3]

      Liu, T.; Qu, Y.; Liu, J.; Zhang, L.; Cheng, B.; Yu, J. Small 2021, 17, 2103673. doi: 10.1002/smll.202103673  doi: 10.1002/smll.202103673

    4. [4]

      Deng, J.; Luo, W.; Chou, S.; Liu, H.; Dou, S. Adv. Energy Mater. 2017, 8, 1701428. doi: 10.1002/aenm.201701428  doi: 10.1002/aenm.201701428

    5. [5]

      Chen, Y.; Dong, H.; Li, Y.; Liu, J. Acta Phys. -Chim. Sin. 2021, 37, 2007075.  doi: 10.3866/PKU.WHXB202007075

    6. [6]

      Zhu, L.; Yang, X.; Xiang, Y.; Kong, P.; Wu, X. Rare Met. 2021, 40, 1383. doi: 10.1007/s12598-020-01555-6  doi: 10.1007/s12598-020-01555-6

    7. [7]

      Xu, G.; Wang, Q.; Su, Y.; Liu, M.; Li, Q.; Zhang, Y. Acta Phys. -Chim. Sin. 2022, 38, 2009073.  doi: 10.3866/PKU.WHXB202009073

    8. [8]

      Wang, S.; Yang, G.; Nasir, M. S.; Wang, X.; Wang, J.; Yan, W. Acta Phys. -Chim. Sin. 2021, 37, 2001003.  doi: 10.3866/PKU.WHXB202001003

    9. [9]

      Cao, X.; Sun, Y.; Sun, Y.; Xie, D.; Li, H.; Liu, M. Appl. Clay Sci. 2021, 213, 106265. doi: 10.1016/j.clay.2021.106265  doi: 10.1016/j.clay.2021.106265

    10. [10]

      Li, X.; Qi, S.; Zhang, W.; Feng, Y.; Ma, J. Rare Met. 2020, 39, 1239. doi: 10.1007/s12598-020-01492-4  doi: 10.1007/s12598-020-01492-4

    11. [11]

      Zou, G.; Hou, H.; Ge, P.; Huang, Z.; Zhao, G.; Yin, D.; Ji, X. Small 2018, 14, 1702648. doi: 10.1002/smll.201702648  doi: 10.1002/smll.201702648

    12. [12]

      Ge, P.; Hou, H.; Li, S.; Huang, L.; Ji, X. ACS Appl. Mater. Interfaces 2018, 10, 14716. doi: 10.1021/acsami.8b01888  doi: 10.1021/acsami.8b01888

    13. [13]

      Wang, L.; Lin, C.; Liang, T.; Wang, N.; Feng, J.; Yan, W. Mater. Today Chem. 2022, 24, 100894. doi: 10.1016/j.mtchem.2022.100849  doi: 10.1016/j.mtchem.2022.100849

    14. [14]

      Xiao, B.; Rojo, T.; Li, X. ChemSusChem 2019, 12, 133. doi: 10.1002/cssc.201801879  doi: 10.1002/cssc.201801879

    15. [15]

      Xu, M.; Xia, Q.; Yue, J.; Zhu, X.; Guo, Q.; Zhu, J.; Xia, H. Adv. Funct. Mater. 2018, 296, 1807377. doi: 10.1002/adfm.201807377  doi: 10.1002/adfm.201807377

    16. [16]

      Wang, J.; Wu, N.; Liu, T.; Cao, S.; Yu, J. Acta Phys. -Chim. Sin. 2020, 36, 1907072.  doi: 10.3866/PKU.WHXB201907072

    17. [17]

      Liu, Y.; Yang, C.; Zhang, Q.; Liu, M. Energy Storage Mater. 2019, 22, 66. doi: 10.1016/j.ensm.2019.01.001  doi: 10.1016/j.ensm.2019.01.001

    18. [18]

      Liu, T.; Liu, J.; Zhang, L.; Cheng, B.; Yu, J. J. Mater. Sci. Technol. 2020, 47, 113. doi: 10.1016/j.jmst.2019.12.027  doi: 10.1016/j.jmst.2019.12.027

    19. [19]

      Yu, L.; Shao, L.; Wang, S.; Guan, J.; Shi, X.; Tarasenko, N.; Sun, Z. Mater. Today Phys. 2022, 22, 100593. doi: 10.1016/j.mtphys.2021.100593  doi: 10.1016/j.mtphys.2021.100593

    20. [20]

      Zhang, L.; Shi, D.; Liu, T.; Jaroniec, M.; Yu, J. Mater. Today 2019, 25, 35. doi: 10.1016/j.mattod.2018.11.002  doi: 10.1016/j.mattod.2018.11.002

    21. [21]

      Xie, X.; Ma, X.; Yin, Z.; Tong, H.; Jiang, H.; Ding, Z.; Zhou, L. Chem. Eng. J. 2022, 446, 137366. doi: 10.1016/j.cej.2022.137366  doi: 10.1016/j.cej.2022.137366

    22. [22]

      Sun, Z.; Gu, Z.; Shi, W.; Sun, Z.; Gan, S.; Xu, L.; Liang, H.; Ma, Y.; Qu, D.; Zhong, L.; et al. J. Mater. Chem. A 2022, 10, 2113. doi: 10.1039/d1ta10439j  doi: 10.1039/d1ta10439j

    23. [23]

      Huang, F.; Wang, L.; Qin, D.; Xu, Z.; Jin, M.; Chen, Y.; Zeng, X.; Dai, Z. ACS Appl. Mater. Interfaces 2022, 14, 1222. doi: 10.1021/acsami.1c21934  doi: 10.1021/acsami.1c21934

    24. [24]

      Zhong, W.; Ma, Q.; Tang, W.; Wu, Y.; Gao, W.; Yang, Q.; Yang, J.; Xu, M. Inorg. Chem. Front. 2020, 7, 1003. doi: 10.1039/c9qi01435g  doi: 10.1039/c9qi01435g

    25. [25]

      Xue, Y.; Guo, X.; Wu, M.; Chen, J.; Duan, M.; Shi, J.; Zhang, J.; Cao, F.; Liu, Y.; Kong, Q. Nano Res. 2021, 14, 3598. doi: 10.1007/s12274-021-3640-4  doi: 10.1007/s12274-021-3640-4

    26. [26]

      Zhang, S.; Wang, Z.; Hu, X.; Zhu, R.; Liu, X.; Wang, H. J. Alloys Compd. 2021, 863, 158329. doi: 10.1016/j.jallcom.2020.158329  doi: 10.1016/j.jallcom.2020.158329

    27. [27]

      Ye, B.; Cao, X.; Zhao, Q.; Wang, J. J. Phys. Chem. C 2020, 124, 21242. doi: 10.1021/acs.jpcc.0c05125  doi: 10.1021/acs.jpcc.0c05125

    28. [28]

      Lu, Z.; Dang, Y.; Dai, C.; Zhang, Y.; Zou, P.; Du, H.; Zhang, Y.; Sun, M.; Rao, H.; Wang, Y. J. Hazard. Mater. 2021, 403, 123979. doi: 10.1016/j.jhazmat.2020.123979  doi: 10.1016/j.jhazmat.2020.123979

    29. [29]

      Yang, X.; Wang, S.; Yu, D. Y. W.; Rogach, A. L. Nano Energy 2019, 58, 392. doi: 10.1016/j.nanoen.2019.01.064  doi: 10.1016/j.nanoen.2019.01.064

    30. [30]

      Xiao, S.; Li, X.; Zhang, W.; Xiang, Y.; Li, T.; Niu, X.; Chen, J.; Yan, Q. ACS Nano 2021, 15, 13307. doi: 10.1021/acsnano.1c03056  doi: 10.1021/acsnano.1c03056

    31. [31]

      Liu, H.; Zhou, F.; Shi, X.; Shi, Q.; Wu, Z. Acta Phys. -Chim. Sin. 2022, 38, 2204017.  doi: 10.3866/PKU.WHXB202204017

    32. [32]

      Zhang, M.; Chen, B.; Wu, M. Acta Phys. -Chim. Sin. 2022, 38, 2101001.  doi: 10.3866/PKU.WHXB202101001

    33. [33]

      Zhang, L.; Cai, P.; Wei, Z.; Liu, T.; Yu, J.; Al-Ghamdi, A. A.; Wageh, S. J. Colloid Interface Sci. 2021, 588, 637. doi: 10.1016/j.jcis.2020.11.056  doi: 10.1016/j.jcis.2020.11.056

    34. [34]

      Men, S.; Zheng, H.; Ma, D.; Huang, X.; Kang, X. J. Energy Chem. 2021, 54, 124. doi: 10.1016/j.jechem.2020.05.046  doi: 10.1016/j.jechem.2020.05.046

    35. [35]

      Wan, Y.; Song, K.; Chen, W.; Qin, C.; Zhang, X.; Zhang, J.; Dai, H.; Hu, Z.; Yan, P.; Liu, C.; et al. Angew. Chem. Int. Ed. 2021, 60, 11481. doi: 10.1002/anie.202102368  doi: 10.1002/anie.202102368

    36. [36]

      Zhang, J.; Wang, D. -W.; Lv, W.; Zhang, S.; Liang, Q.; Zheng, D.; Kang, F.; Yang, Q. -H. Energy Environ. Sci. 2017, 101, 370. doi: 10.1039/c6ee03367a  doi: 10.1039/c6ee03367a

    37. [37]

      Ramakrishnan, K.; Nithya, C.; Kundoly Purushothaman, B.; Kumar, N.; Gopukumar, S. ACS Sustainable Chem. Eng. 2017, 5, 5090. doi: 10.1021/acssuschemeng.7b00469  doi: 10.1021/acssuschemeng.7b00469

    38. [38]

      Wang, L.; Zhu, B.; Cheng, B.; Zhang, J.; Zhang, L.; Yu, J. Chin. J. Catal. 2021, 42, 1648. doi: 10.1016/s1872-2067(21)63805-6  doi: 10.1016/s1872-2067(21)63805-6

    39. [39]

      Hu, L.; Yang, H.; Wang, S.; Gao, J.; Hou, H.; Yang, W. J. Mater. Chem. C 2021, 9, 5343. doi: 10.1039/d1tc00973g  doi: 10.1039/d1tc00973g

    40. [40]

      Qian, Z.; Wang, X.; Liu, T.; Zhang, L.; Yu, J. J. Energy Storage 2022, 51, 104522. doi: 10.1016/j.est.2022.104522  doi: 10.1016/j.est.2022.104522

    41. [41]

      Yu, H.; Wang, C.; Meng, F.; Xiao, J.; Liang, J.; Kim, H.; Bae, S.; Zou, D.; Kim, E.; Kim, N.; et al. Carbon 2021, 183, 578. doi: 10.1016/j.carbon.2021.07.031  doi: 10.1016/j.carbon.2021.07.031

    42. [42]

      Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42, 743. doi: 10.1016/s1872-2067(20)63695-6  doi: 10.1016/s1872-2067(20)63695-6

    43. [43]

      Wang, Y.; Wang, Y.; Wang, Y.; Feng, X.; Chen, W.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2019, 11, 19218. doi: 10.1021/acsami.9b05134  doi: 10.1021/acsami.9b05134

    44. [44]

      Wang, X.; Zhu, B.; Liu, T.; Zhang, L.; Yu, J. Small Methods 2021, 6, 2101269. doi: 10.1002/smtd.202101269  doi: 10.1002/smtd.202101269

    45. [45]

      Kim, N.; Shim, J.; Jae, W.; Song, J.; Kim, J. J. Alloys Compd. 2019, 786, 346. doi: 10.1016/j.jallcom.2019.01.370  doi: 10.1016/j.jallcom.2019.01.370

    46. [46]

      Yuan, Y.; Wang, Y.; Zhuang, G.; Li, Q.; Yang, F.; Wang, X.; Han, X. J. Mater. Chem. A 2021, 9, 24909. doi: 10.1039/d1ta08075j  doi: 10.1039/d1ta08075j

    47. [47]

      Ma, Y.; Zhang, L.; Yan, Z.; Cheng, B.; Yu, J.; Liu, T. Adv. Energy Mater. 2022, 12, 2103820. doi: 10.1002/aenm.202103820  doi: 10.1002/aenm.202103820

    48. [48]

      Peng, Q.; Hu, X.; Zeng, T.; Shang, B.; Mao, M.; Jiao, X.; Xi, G. Chem. Eng. J. 2020, 385, 123857. doi: 10.1016/j.cej.2019.123857  doi: 10.1016/j.cej.2019.123857

    49. [49]

      Fu, L.; Kang, C.; Xiong, W.; Tian, P.; Cao, S.; Wan, S.; Chen, H.; Zhou, C.; Liu, Q. J. Colloid Interface Sci. 2021, 595, 59. doi: 10.1016/j.jcis.2021.03.127  doi: 10.1016/j.jcis.2021.03.127

    50. [50]

      Zhang, Y.; Wu, Y.; Zhong, W.; Xiao, F.; Kashif Aslam, M.; Zhang, X.; Xu, M. ChemSusChem 2021, 14, 1336. doi: 10.1002/cssc.202002552  doi: 10.1002/cssc.202002552

    51. [51]

      Kandula, S.; Bae, J.; Cho, J.; Son, J. G. Compos. Pt. B-Eng. 2021, 220, 108995. doi: 10.1016/j.compositesb.2021.108995  doi: 10.1016/j.compositesb.2021.108995

    52. [52]

      Xu, Q.; Xue, H.; Guo, S. Electrochim. Acta 2018, 292, 1. doi: 10.1016/j.electacta.2018.09.135  doi: 10.1016/j.electacta.2018.09.135

    53. [53]

      Jin, R.; Li, X. F.; Sun, Y.; Shan, H.; Fan, L.; Li, D.; Sun, X. ACS Appl. Mater. Interfaces 2018, 10, 14641. doi: 10.1021/acsami.8b00444  doi: 10.1021/acsami.8b00444

    54. [54]

      Zhang, G.; Liu, K.; Liu, S.; Song, H.; Zhou, J. J. Alloys Compd. 2018, 731, 714. doi: 10.1016/j.jallcom.2017.10.094  doi: 10.1016/j.jallcom.2017.10.094

    55. [55]

      Yang, S.; Park, S.; Park, G.; Kim, J.; Kang, Y. Chem. Eng. J. 2021, 417, 127963. doi: 10.1016/j.cej.2020.127963  doi: 10.1016/j.cej.2020.127963

    56. [56]

      Kong, H.; Lv, C.; Wu, Y.; Yan, C.; Chen, G. J. Energy Chem. 2021, 55, 169. doi: 10.1016/j.jechem.2020.06.066  doi: 10.1016/j.jechem.2020.06.066

    57. [57]

      Wu, C.; Jiang, Y.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Mater. 2016, 28, 7276. doi: 10.1002/adma.201600964  doi: 10.1002/adma.201600964

    58. [58]

      Lv, C.; Liu, H.; Li, D.; Chen, S.; Zhang, H.; She, X.; Guo, X.; Yang, D. Carbon 2019, 14, 106. doi: 10.1016/j.carbon.2018.10.091  doi: 10.1016/j.carbon.2018.10.091

    59. [59]

      Lu, S.; Wu, H.; Hou, J.; Liu, L.; Li, J.; Harris, C. J.; Lao, C.; Guo, Y.; Xi, K.; Ding, S.; et al. Nano Res. 2020, 13, 2289. doi: 10.1007/s12274-020-2848-z  doi: 10.1007/s12274-020-2848-z

    60. [60]

      Ma, C.; Qiu, L.; Bao, J.; Zhou, Y. Chem. Res. Chin. Univ. 2021, 37, 318. doi: 10.1007/s40242-021-1030-9  doi: 10.1007/s40242-021-1030-9

    61. [61]

      Jia, M.; Jin, Y.; Zhao, C.; Zhao, P.; Jia, M. J. Alloys Compd. 2020, 831, 154749. doi: 10.1016/j.jallcom.2020.154749  doi: 10.1016/j.jallcom.2020.154749

    62. [62]

      Wang, P.; Huang, J.; Zhang, J.; Wang, L.; Sun, P.; Yang, Y.; Yao, Z. J. Mater. Chem. A 2021, 9, 7248. doi: 10.1039/d1ta00226k  doi: 10.1039/d1ta00226k

    63. [63]

      Tao, H.; Li, J.; Li, J.; Hou, Z.; Yang, X.; Fan, L. J. Energy Chem. 2022, 66, 356. doi: 10.1016/j.jechem.2021.08.026  doi: 10.1016/j.jechem.2021.08.026

  • 加载中
    1. [1]

      Fengjun DengTingyu ZhaoXiaochen ZhangKaiyong FengZe LiuYoulin XiangYingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897

    2. [2]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    3. [3]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    4. [4]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    5. [5]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    6. [6]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    7. [7]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    8. [8]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    9. [9]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    10. [10]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    11. [11]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    12. [12]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    13. [13]

      Linlin YuXueli LiuRui GaoJialin MingYi QiuJie SuLiangbing Gan . Selective preparation of 18-membered open-cage fullerene with one imino and five carbonyl groups on the rim of the orifice. Chinese Chemical Letters, 2025, 36(6): 110382-. doi: 10.1016/j.cclet.2024.110382

    14. [14]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    15. [15]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    16. [16]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    17. [17]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    18. [18]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    19. [19]

      Shimei WuYining LiLantao ChenYufei ZhangLingxing ZengHaosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796

    20. [20]

      Zunjie ZhangMengran LiuBingcheng GeTianfang YangShuaitong WangYang LiuShuyan GaoIn-situ reconstructed Cu/NiO nanosheets synergistically boosting nitrate electroreduction to ammonia. Chinese Chemical Letters, 2025, 36(8): 110657-. doi: 10.1016/j.cclet.2024.110657

Metrics
  • PDF Downloads(14)
  • Abstract views(1325)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return