S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor
- Corresponding author: Ji-Chao Wang, wangjichao@hist.edu.cn Weina Shi, shiweina516@163.com
Citation: Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 221000. doi: 10.3866/PKU.WHXB202210003
Chang, X.; Wang, T.; Gong, J. Energy Environ. Sci. 2016, 9 (7), 2177. doi: 10.1039/c6ee00383d
doi: 10.1039/c6ee00383d
Xu, Z. -T.; Xie, K. Chin. J. Struct. Chem. 2021, 40 (1), 31. doi: 10.14102/j.cnki.0254–5861.2011–2744
doi: 10.14102/j.cnki.0254–5861.2011–2744
Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Mater. Today 2020, 32, 222. doi: 10.1016/j.mattod.2019.06.009
doi: 10.1016/j.mattod.2019.06.009
Fung, C. -M.; Tang, J. -Y.; Tan, L. -L.; Mohamed, A. R.; Chai, S. -P. Mater. Today Sustain. 2020, 9, 100037. doi: 10.1016/j.mtsust.2020.100037
doi: 10.1016/j.mtsust.2020.100037
Pan, R.; Liu, J.; Zhang, J. ChemNanoMat 2021, 7 (7), 737. doi: 10.1002/cnma.202100087
doi: 10.1002/cnma.202100087
Wang, Z.; Hong, J.; Ng, S. -F.; Liu, W.; Huang, J.; Chen, P.; Ong, W. -J. Acta Phys. -Chim. Sin. 2021, 37, 2011033.
doi: 10.3866/PKU.WHXB202011033
He, K.; Shen, R.; Hao, L.; Li, Y.; Zhang, P.; Jiang, J.; Xin, L. Acta Phys. -Chim. Sin. 2022, 38, 2201021.
doi: 10.3866/PKU.WHXB202201021
Li, N.; Peng, J.; Shi, Z.; Zhang, P.; Li, X. Chin. J. Catal. 2022, 43 (7), 1906. doi: 10.1016/s1872-2067(21)64018-4
doi: 10.1016/s1872-2067(21)64018-4
Liu, S. -H.; Li, Y.; Ding, K. -N.; Chen, W. -K.; Zhang, Y. -F.; Lin, W. Chin. J. Struct. Chem. 2020, 39 (12), 2068. doi: 10.14102/j.cnki.0254–5861.2011–3005
doi: 10.14102/j.cnki.0254–5861.2011–3005
Zhou, Y.; Wang, Z.; Huang, L.; Zaman, S.; Lei, K.; Yue, T.; Li, Z. A.; You, B.; Xia, B. Y. Adv. Energy Mater. 2021, 11 (8), 2003159. doi: 10.1002/aenm.202003159
doi: 10.1002/aenm.202003159
Ahmad, I.; Shukrullah, S.; Naz, M. Y.; Ahmad, M.; Ahmed, E.; Liu, Y.; Hussain, A.; Iqbal, S.; Ullah, S. Adv. Colloid Interface Sci. 2022, 304, 102661. doi: 10.1016/j.cis.2022.102661
doi: 10.1016/j.cis.2022.102661
Wu, J.; Wang, S.; Qi, J.; Li, D.; Zhang, Z.; Liu, G.; Feng, Y. Mater. Today Energy 2022, 28, 101065. doi: 10.1016/j.mtener.2022.101065
doi: 10.1016/j.mtener.2022.101065
Ye, L.; Jin, X.; Ji, X.; Liu, C.; Su, Y.; Xie, H.; Liu, C. Chem. Eng. J. 2016, 291, 39. doi: 10.1016/j.cej.2016.01.032
doi: 10.1016/j.cej.2016.01.032
Lan, M.; Wang, M.; Zheng, N.; Dong, X.; Wang, Y.; Gao, J. J. Ind. Eng. Chem. 2022, 108, 109. doi: 10.1016/j.jiec.2021.12.031
doi: 10.1016/j.jiec.2021.12.031
Li, H.; Wang, D.; Miao, C.; Xia, F.; Wang, Y.; Wang, Y.; Liu, C.; Che, G. J. Environ. Chem. Eng. 2022, 10 (4), 108201. doi: 10.1016/j.jece.2022.108201
doi: 10.1016/j.jece.2022.108201
Li, Y.; Luo, H.; Bao, Y.; Guo, S.; Lei, D.; Chen, Y. Sol. RRL 2021, 2100051. doi: 10.1002/solr.202100051
doi: 10.1002/solr.202100051
Liu, X.; Xiao, J.; Ma, S.; Shi, C.; Pan, L.; Zou, J. J. ChemNanoMat 2021, 7 (7), 684. doi: 10.1002/cnma.202100105
doi: 10.1002/cnma.202100105
Huang, H.; Xiao, K.; He, Y.; Zhang, T.; Dong, F.; Du, X.; Zhang, Y. Appl. Catal. B 2016, 199, 75. doi: 10.1016/j.apcatb.2016.06.020
doi: 10.1016/j.apcatb.2016.06.020
Zhong, S.; Wang, B.; Zhou, H.; Li, C.; Peng, X.; Zhang, S. J. Alloy. Compd. 2019, 806, 401. doi: 10.1016/j.jallcom.2019.07.223
doi: 10.1016/j.jallcom.2019.07.223
Wang, X.; Zhou, C.; Yin, L.; Zhang, R.; Liu, G. ACS Sustainable Chem. Eng. 2019, 7 (8), 7900. doi: 10.1021/acssuschemeng.9b00548
doi: 10.1021/acssuschemeng.9b00548
Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Chang, W.; Sun, T.; Shen, C.; Wei, G. J. Alloys Compd. 2021, 864, 15874. doi: 10.1016/j.jallcom.2021.158784
doi: 10.1016/j.jallcom.2021.158784
Alzamly, A.; Bakiro, M.; Ahmed, S. H.; Sallabi, S. M.; Al Ajeil, R. A.; Alawadhi, S. A.; Selem, H. A.; Al Meshayei, S. S. M.; Khaleel, A.; Al-Shamsi, N.; et al. J. Photochem. Photobiol. A 2019, 375, 30. doi: 10.1016/j.jphotochem.2019.01.031
doi: 10.1016/j.jphotochem.2019.01.031
Hou, J.; Jiang, K.; Shen, M.; Wei, R.; Wu, X.; Idrees, F.; Cao, C. Sci. Rep. 2017, 7 (1), 11665. doi: 10.1038/s41598-017-12266-x
doi: 10.1038/s41598-017-12266-x
Bhosale, A. H.; Narra, S.; Bhosale, S. S.; Diau, E. W. J. Phys. Chem. Lett. 2022, 7987. doi: 10.1021/acs.jpclett.2c02153
doi: 10.1021/acs.jpclett.2c02153
Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Chin. J. Struct. Chem. 2022, 41, 2201007. doi: 10.14102/j.cnki.0254-5861.2021-0026
doi: 10.14102/j.cnki.0254-5861.2021-0026
Li, D.; Huang, Y.; Li, S.; Wang, C.; Li, Y.; Zhang, X.; Liu, Y. Chin. J. Catal. 2020, 41 (1), 154. doi: 10.1016/s1872-2067(19)63475-3
doi: 10.1016/s1872-2067(19)63475-3
Cheng, L.; Zhang, D.; Liao, Y.; Fan, J.; Xiang, Q. Chin. J. Catal. 2021, 42 (1), 131. doi: 10.1016/s1872-2067(20)63623-3
doi: 10.1016/s1872-2067(20)63623-3
Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Chin. J. Struct. Chem. 2022, 41, 2201034. doi: 10.14102/j.cnki.0254-5861.2021-0046
doi: 10.14102/j.cnki.0254-5861.2021-0046
Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119 (6), 3962. doi: 10.1021/acs.chemrev.8b00400
doi: 10.1021/acs.chemrev.8b00400
Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011
doi: 10.1016/j.apcatb.2018.11.011
Xu. Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6 (7), 1543. doi: 10.1016/j.chempr.2020.06.010.
doi: 10.1016/j.chempr.2020.06.010
Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Chem. Phys. Lett. 2022, 13 (36), 8462. doi: 10.1021/acs.jpclett.2c02125
doi: 10.1021/acs.jpclett.2c02125
Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34 (11), 2107668. doi: 10.1002/adma.202107668
doi: 10.1002/adma.202107668
Wageh, S.; Al-Ghamdi, A, A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010024.
doi: 10.3866/PKU.WHXB202010024
Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37 (6), 2009030.
doi: 10.3866/PKU.WHXB202009030
Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38 (7), 2108028.
doi: 10.3866/PKU.WHXB202108028
Li, S.; Cai, M.; Liu, Y.; Zhang, J.; Wang, C.; Zang, S.; Li, Y.; Zhang, P.; Li, X. Inorg. Chem. Front. 2022, 9 (11), 2479. doi: 10.1039/d2qi00317a
doi: 10.1039/d2qi00317a
Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43 (2), 359. doi: 10.1016/s1872-2067(21)63883-4
doi: 10.1016/s1872-2067(21)63883-4
Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38 (7), 2111008.
doi: 10.3866/PKU.WHXB202111008
Zhang, B.; Wang, D.; Jiao, S.; Xu, Z.; Liu, Y.; Zhao, C.; Pan, J.; Liu, D.; Liu, G.; Jiang, B.; et al. Chem. Eng. J. 2022, 446, 137138. doi: 10.1016/j.cej.2022.137138
doi: 10.1016/j.cej.2022.137138
Xiao, Y.; Ji, Z.; Zou, C.; Xu, Y.; Wang, R.; Wu, J.; Liu, G.; He, P.; Wang, Q.; Jia, T. Appl. Surf. Sci. 2021, 556, 149767. doi: 10.1016/j.apsusc.2021.149767
doi: 10.1016/j.apsusc.2021.149767
Wang, J.; Li, S.; Yang, K.; Zhang, T.; Jiang, S.; Li, X.; Li, B. ACS Appl. Nano Mater. 2022, 5 (5), 6736. doi: 10.1021/acsanm.2c00760
doi: 10.1021/acsanm.2c00760
Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2022, 43(7), 1657. doi: 10.1016/S1872-2067(21)64010-X.
doi: 10.1016/S1872-2067(21)64010-X
Guo, Y.; Dai, M.; Zhu, Z.; Chen, Y.; He, H.; Qin, T. Appl. Surf. Sci. 2019, 480, 601. doi: 10.1016/j.apsusc.2019.02.246
doi: 10.1016/j.apsusc.2019.02.246
Jiang, H.; Katsumata, K. -I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Appl. Catal. B 2018, 224, 783. doi: 10.1016/j.apcatb.2017.11.011
doi: 10.1016/j.apcatb.2017.11.011
Jiang, Y.; Xia, T.; Shen, L.; Ma, J.; Ma, H.; Sun, T.; Lv, F.; Zhu, N. ACS Catal. 2021, 11 (5), 2949. doi: 10.1021/acscatal.0c04797
doi: 10.1021/acscatal.0c04797
Li, L.; Zhang, R.; Vinson, J.; Shirley, E. L.; Greeley, J. P.; Guest, J. R.; Chan, M. K. Y. Chem. Mater. 2018, 30, 1912. doi: 10.1021/acs.chemmater.7b04803
doi: 10.1021/acs.chemmater.7b04803
Liu, B.; Yao, X.; Zhang, Z.; Li, C.; Zhang, J.; Wang, P.; Zhao, J.; Guo, Y.; Sun, J.; Zhao, C. ACS Appl. Mater. Interfaces 2021, 13 (33), 39165. doi: 10.1021/acsami.1c03850
doi: 10.1021/acsami.1c03850
Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W.; et al. ACS Appl. Mater. Interfaces 2018, 10 (10), 8574. doi: 10.1021/acsami.7b15418
doi: 10.1021/acsami.7b15418
Zhang, Y.; Wang, Q.; Liu, D.; Wang, Q.; Li, T.; Wang, Z. Appl. Surf. Sci. 2020, 521, 146434. doi: 10.1016/j.apsusc.2020.146434
doi: 10.1016/j.apsusc.2020.146434
Ponnaiah, S. K.; Prakash, P.; Arumuganathan, T.; Jeyaprabha, B. J. Photochem. Photobiol. A 2019, 380, 111860. doi: 10.1016/j.jphotochem.2019.111860
doi: 10.1016/j.jphotochem.2019.111860
Cai, J.; Xiao, Y.; Tursun, Y.; Abulizi, A. Mater. Sci. Semicond. Process. 2022, 149, 106891. doi: 10.1016/j.mssp.2022.106891
doi: 10.1016/j.mssp.2022.106891
Chen, D.; Yang, J.; Zhu, Y.; Zhang, Y.; Zhu, Y. Appl. Catal. B 2018, 233, 202. doi: 10.1016/j.apcatb.2018.04.004
doi: 10.1016/j.apcatb.2018.04.004
Shi, W.; Wang, J. C.; Chen, A.; Xu, X.; Wang, S.; Li, R.; Zhang, W.; Hou, Y. Nanomaterials 2022, 12 (13), 2284. doi: 10.3390/nano12132284
doi: 10.3390/nano12132284
Nogueira, A. C.; Gomes, L. E.; Ferencz, J. A. P.; Rodrigues, J. E. F. S.; Gonçalves, R. V.; Wender, H. J. Phys. Chem. C 2019, 123 (42), 25680. doi: 10.1021/acs.jpcc.9b06907
doi: 10.1021/acs.jpcc.9b06907
Kramm, B.; Laufer, A.; Reppin, D.; Kronenberger, A.; Hering, P.; Polity, A.; Meyer, B. K. Appl. Phys. Lett. 2012, 100 (9), 094102. doi: 10.1063/1.3685719
doi: 10.1063/1.3685719
Huang, Z.; Wu, J.; Ma, M.; Wang, J.; Wu, S.; Hu, X.; Yuan, C.; Zhou, Y. New J. Chem. 2022, 46 (35), 16889. doi: 10.1039/d2nj02725a
doi: 10.1039/d2nj02725a
Su, F.; Chen, Y.; Wang, R.; Zhang, S.; Liu, K.; Zhang, Y.; Zhao, W.; Ding, C.; Xie, H.; Ye, L. Sustainable Energy Fuels 2021, 5 (4), 1034. doi: 10.1039/d0se01561j
doi: 10.1039/d0se01561j
Kang, S.; Li, Z.; Xu, Z.; Zhang, Z.; Sun, J.; Bian, J.; Bai, L.; Qu, Y.; Jing, L. Catal. Sci. Technol. 2022, 12 (15), 4817. doi: 10.1039/d2cy00713d
doi: 10.1039/d2cy00713d
Li, N.; Wang, B.; Si, Y.; Xue, F.; Zhou, J.; Lu, Y.; Liu, M. ACS Catal. 2019, 9 (6), 5590. doi: 10.1021/acscatal.9b00223
doi: 10.1021/acscatal.9b00223
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376