S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor
- Corresponding author: Ji-Chao Wang, wangjichao@hist.edu.cn Weina Shi, shiweina516@163.com
 
	            Citation:
	            
		            Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor[J]. Acta Physico-Chimica Sinica,
							;2023, 39(6): 221000.
						
							doi:
								10.3866/PKU.WHXB202210003
						
					
				
					
				
	        
	                
				Chang, X.; Wang, T.; Gong, J. Energy Environ. Sci.  2016,  9 (7), 2177. doi: 10.1039/c6ee00383d
												 doi: 10.1039/c6ee00383d
											
										
				Xu, Z. -T.; Xie, K. Chin. J. Struct. Chem.  2021,  40 (1), 31. doi: 10.14102/j.cnki.0254–5861.2011–2744
												 doi: 10.14102/j.cnki.0254–5861.2011–2744
											
										
				Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Mater. Today 2020,  32, 222. doi: 10.1016/j.mattod.2019.06.009
												 doi: 10.1016/j.mattod.2019.06.009
											
										
				Fung, C. -M.; Tang, J. -Y.; Tan, L. -L.; Mohamed, A. R.; Chai, S. -P. Mater. Today Sustain.  2020,  9, 100037. doi: 10.1016/j.mtsust.2020.100037
												 doi: 10.1016/j.mtsust.2020.100037
											
										
				Pan, R.; Liu, J.; Zhang, J. ChemNanoMat 2021,  7 (7), 737. doi: 10.1002/cnma.202100087
												 doi: 10.1002/cnma.202100087
											
										
				Wang, Z.; Hong, J.; Ng, S. -F.; Liu, W.; Huang, J.; Chen, P.; Ong, W. -J. Acta Phys. -Chim. Sin. 2021, 37, 2011033.
												 doi: 10.3866/PKU.WHXB202011033
											
										
				He, K.; Shen, R.; Hao, L.; Li, Y.; Zhang, P.; Jiang, J.; Xin, L. Acta Phys. -Chim. Sin. 2022, 38, 2201021.
												 doi: 10.3866/PKU.WHXB202201021
											
										
				Li, N.; Peng, J.; Shi, Z.; Zhang, P.; Li, X. Chin. J. Catal.  2022,  43 (7), 1906. doi: 10.1016/s1872-2067(21)64018-4
												 doi: 10.1016/s1872-2067(21)64018-4
											
										
				Liu, S. -H.; Li, Y.; Ding, K. -N.; Chen, W. -K.; Zhang, Y. -F.; Lin, W. Chin. J. Struct. Chem.  2020,  39 (12), 2068. doi: 10.14102/j.cnki.0254–5861.2011–3005
												 doi: 10.14102/j.cnki.0254–5861.2011–3005
											
										
				Zhou, Y.; Wang, Z.; Huang, L.; Zaman, S.; Lei, K.; Yue, T.; Li, Z. A.; You, B.; Xia, B. Y. Adv. Energy Mater.  2021,  11 (8), 2003159. doi: 10.1002/aenm.202003159
												 doi: 10.1002/aenm.202003159
											
										
				Ahmad, I.; Shukrullah, S.; Naz, M. Y.; Ahmad, M.; Ahmed, E.; Liu, Y.; Hussain, A.; Iqbal, S.; Ullah, S. Adv. Colloid Interface Sci.  2022,  304, 102661. doi: 10.1016/j.cis.2022.102661
												 doi: 10.1016/j.cis.2022.102661
											
										
				Wu, J.; Wang, S.; Qi, J.; Li, D.; Zhang, Z.; Liu, G.; Feng, Y. Mater. Today Energy 2022,  28, 101065. doi: 10.1016/j.mtener.2022.101065
												 doi: 10.1016/j.mtener.2022.101065
											
										
				Ye, L.; Jin, X.; Ji, X.; Liu, C.; Su, Y.; Xie, H.; Liu, C. Chem. Eng. J.  2016,  291, 39. doi: 10.1016/j.cej.2016.01.032
												 doi: 10.1016/j.cej.2016.01.032
											
										
				Lan, M.; Wang, M.; Zheng, N.; Dong, X.; Wang, Y.; Gao, J. J. Ind. Eng. Chem.  2022,  108, 109. doi: 10.1016/j.jiec.2021.12.031
												 doi: 10.1016/j.jiec.2021.12.031
											
										
				Li, H.; Wang, D.; Miao, C.; Xia, F.; Wang, Y.; Wang, Y.; Liu, C.; Che, G. J. Environ. Chem. Eng.  2022,  10 (4), 108201. doi: 10.1016/j.jece.2022.108201
												 doi: 10.1016/j.jece.2022.108201
											
										
				Li, Y.; Luo, H.; Bao, Y.; Guo, S.; Lei, D.; Chen, Y. Sol. RRL 2021, 2100051. doi: 10.1002/solr.202100051
												 doi: 10.1002/solr.202100051
											
										
				Liu, X.; Xiao, J.; Ma, S.; Shi, C.; Pan, L.; Zou, J. J. ChemNanoMat 2021,  7 (7), 684. doi: 10.1002/cnma.202100105
												 doi: 10.1002/cnma.202100105
											
										
				Huang, H.; Xiao, K.; He, Y.; Zhang, T.; Dong, F.; Du, X.; Zhang, Y. Appl. Catal. B 2016,  199, 75. doi: 10.1016/j.apcatb.2016.06.020
												 doi: 10.1016/j.apcatb.2016.06.020
											
										
				Zhong, S.; Wang, B.; Zhou, H.; Li, C.; Peng, X.; Zhang, S. J. Alloy. Compd.  2019,  806, 401. doi: 10.1016/j.jallcom.2019.07.223
												 doi: 10.1016/j.jallcom.2019.07.223
											
										
				Wang, X.; Zhou, C.; Yin, L.; Zhang, R.; Liu, G.  ACS Sustainable Chem. Eng.  2019,  7 (8), 7900. doi: 10.1021/acssuschemeng.9b00548
												 doi: 10.1021/acssuschemeng.9b00548
											
										
				Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Chang, W.; Sun, T.; Shen, C.; Wei, G. J. Alloys Compd.  2021,  864, 15874. doi: 10.1016/j.jallcom.2021.158784
												 doi: 10.1016/j.jallcom.2021.158784
											
										
				Alzamly, A.; Bakiro, M.; Ahmed, S. H.; Sallabi, S. M.; Al Ajeil, R. A.; Alawadhi, S. A.; Selem, H. A.; Al Meshayei, S. S. M.; Khaleel, A.; Al-Shamsi, N.; et al. J. Photochem. Photobiol. A 2019,  375, 30. doi: 10.1016/j.jphotochem.2019.01.031
												 doi: 10.1016/j.jphotochem.2019.01.031
											
										
				Hou, J.; Jiang, K.; Shen, M.; Wei, R.; Wu, X.; Idrees, F.; Cao, C. Sci. Rep.  2017,  7 (1), 11665. doi: 10.1038/s41598-017-12266-x
												 doi: 10.1038/s41598-017-12266-x
											
										
				Bhosale, A. H.; Narra, S.; Bhosale, S. S.; Diau, E. W. J. Phys. Chem. Lett.  2022,  7987. doi: 10.1021/acs.jpclett.2c02153
												 doi: 10.1021/acs.jpclett.2c02153
											
										
				Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Chin. J. Struct. Chem.  2022,  41, 2201007. doi: 10.14102/j.cnki.0254-5861.2021-0026
												 doi: 10.14102/j.cnki.0254-5861.2021-0026
											
										
				Li, D.; Huang, Y.; Li, S.; Wang, C.; Li, Y.; Zhang, X.; Liu, Y. Chin. J. Catal.  2020,  41 (1), 154. doi: 10.1016/s1872-2067(19)63475-3
												 doi: 10.1016/s1872-2067(19)63475-3
											
										
				Cheng, L.; Zhang, D.; Liao, Y.; Fan, J.; Xiang, Q. Chin. J. Catal.  2021,  42 (1), 131. doi: 10.1016/s1872-2067(20)63623-3
												 doi: 10.1016/s1872-2067(20)63623-3
											
										
				Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Chin. J. Struct. Chem.  2022,  41, 2201034. doi: 10.14102/j.cnki.0254-5861.2021-0046
												 doi: 10.14102/j.cnki.0254-5861.2021-0046
											
										
				Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev.  2019,  119 (6), 3962. doi: 10.1021/acs.chemrev.8b00400
												 doi: 10.1021/acs.chemrev.8b00400
											
										
				Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B 2019,  243, 556. doi: 10.1016/j.apcatb.2018.11.011
												 doi: 10.1016/j.apcatb.2018.11.011
											
										
				Xu. Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020,  6 (7), 1543. doi: 10.1016/j.chempr.2020.06.010.
												 doi: 10.1016/j.chempr.2020.06.010
											
										
				Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Chem. Phys. Lett.  2022,  13 (36), 8462. doi: 10.1021/acs.jpclett.2c02125
												 doi: 10.1021/acs.jpclett.2c02125
											
										
				Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater.  2022,  34 (11), 2107668. doi: 10.1002/adma.202107668
												 doi: 10.1002/adma.202107668
											
										
				Wageh, S.; Al-Ghamdi, A, A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010024.
												 doi: 10.3866/PKU.WHXB202010024
											
										
				Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37 (6), 2009030.
												 doi: 10.3866/PKU.WHXB202009030
											
										
				Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38 (7), 2108028.
												 doi: 10.3866/PKU.WHXB202108028
											
										
				Li, S.; Cai, M.; Liu, Y.; Zhang, J.; Wang, C.; Zang, S.; Li, Y.; Zhang, P.; Li, X. Inorg. Chem. Front.  2022,  9 (11), 2479. doi: 10.1039/d2qi00317a
												 doi: 10.1039/d2qi00317a
											
										
				Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal.  2022,  43 (2), 359. doi: 10.1016/s1872-2067(21)63883-4
												 doi: 10.1016/s1872-2067(21)63883-4
											
										
				Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38 (7), 2111008.
												 doi: 10.3866/PKU.WHXB202111008
											
										
				Zhang, B.; Wang, D.; Jiao, S.; Xu, Z.; Liu, Y.; Zhao, C.; Pan, J.; Liu, D.; Liu, G.; Jiang, B.; et al. Chem. Eng. J.  2022,  446, 137138. doi: 10.1016/j.cej.2022.137138
												 doi: 10.1016/j.cej.2022.137138
											
										
				Xiao, Y.; Ji, Z.; Zou, C.; Xu, Y.; Wang, R.; Wu, J.; Liu, G.; He, P.; Wang, Q.; Jia, T. Appl. Surf. Sci.  2021,  556, 149767. doi: 10.1016/j.apsusc.2021.149767
												 doi: 10.1016/j.apsusc.2021.149767
											
										
				Wang, J.; Li, S.; Yang, K.; Zhang, T.; Jiang, S.; Li, X.; Li, B. ACS Appl. Nano Mater.  2022,  5 (5), 6736. doi: 10.1021/acsanm.2c00760
												 doi: 10.1021/acsanm.2c00760
											
										
				Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal.  2022, 43(7), 1657. doi: 10.1016/S1872-2067(21)64010-X.
												 doi: 10.1016/S1872-2067(21)64010-X
											
										
				Guo, Y.; Dai, M.; Zhu, Z.; Chen, Y.; He, H.; Qin, T. Appl. Surf. Sci.  2019,  480, 601. doi: 10.1016/j.apsusc.2019.02.246
												 doi: 10.1016/j.apsusc.2019.02.246
											
										
				Jiang, H.; Katsumata, K. -I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Appl. Catal. B 2018,  224, 783. doi: 10.1016/j.apcatb.2017.11.011
												 doi: 10.1016/j.apcatb.2017.11.011
											
										
				Jiang, Y.; Xia, T.; Shen, L.; Ma, J.; Ma, H.; Sun, T.; Lv, F.; Zhu, N. ACS Catal.  2021,  11 (5), 2949. doi: 10.1021/acscatal.0c04797
												 doi: 10.1021/acscatal.0c04797
											
										
				Li, L.; Zhang, R.; Vinson, J.; Shirley, E. L.; Greeley, J. P.; Guest, J. R.; Chan, M. K. Y. Chem. Mater.  2018,  30, 1912. doi: 10.1021/acs.chemmater.7b04803
												 doi: 10.1021/acs.chemmater.7b04803
											
										
				Liu, B.; Yao, X.; Zhang, Z.; Li, C.; Zhang, J.; Wang, P.; Zhao, J.; Guo, Y.; Sun, J.; Zhao, C. ACS Appl. Mater. Interfaces 2021,  13 (33), 39165. doi: 10.1021/acsami.1c03850
												 doi: 10.1021/acsami.1c03850
											
										
				Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W.; et al. ACS Appl. Mater. Interfaces 2018,  10 (10), 8574. doi: 10.1021/acsami.7b15418
												 doi: 10.1021/acsami.7b15418
											
										
				Zhang, Y.; Wang, Q.; Liu, D.; Wang, Q.; Li, T.; Wang, Z. Appl. Surf. Sci.  2020,  521, 146434. doi: 10.1016/j.apsusc.2020.146434
												 doi: 10.1016/j.apsusc.2020.146434
											
										
				Ponnaiah, S. K.; Prakash, P.; Arumuganathan, T.; Jeyaprabha, B. J. Photochem. Photobiol. A 2019,  380, 111860. doi: 10.1016/j.jphotochem.2019.111860
												 doi: 10.1016/j.jphotochem.2019.111860
											
										
				Cai, J.; Xiao, Y.; Tursun, Y.; Abulizi, A. Mater. Sci. Semicond. Process.  2022,  149, 106891. doi: 10.1016/j.mssp.2022.106891
												 doi: 10.1016/j.mssp.2022.106891
											
										
				Chen, D.; Yang, J.; Zhu, Y.; Zhang, Y.; Zhu, Y. Appl. Catal. B 2018,  233, 202. doi: 10.1016/j.apcatb.2018.04.004
												 doi: 10.1016/j.apcatb.2018.04.004
											
										
				Shi, W.; Wang, J. C.; Chen, A.; Xu, X.; Wang, S.; Li, R.; Zhang, W.; Hou, Y. Nanomaterials 2022,  12 (13), 2284. doi: 10.3390/nano12132284
												 doi: 10.3390/nano12132284
											
										
				Nogueira, A. C.; Gomes, L. E.; Ferencz, J. A. P.; Rodrigues, J. E. F. S.; Gonçalves, R. V.; Wender, H. J. Phys. Chem. C 2019,  123 (42), 25680. doi: 10.1021/acs.jpcc.9b06907
												 doi: 10.1021/acs.jpcc.9b06907
											
										
				Kramm, B.; Laufer, A.; Reppin, D.; Kronenberger, A.; Hering, P.; Polity, A.; Meyer, B. K. Appl. Phys. Lett.  2012,  100 (9), 094102. doi: 10.1063/1.3685719
												 doi: 10.1063/1.3685719
											
										
				Huang, Z.; Wu, J.; Ma, M.; Wang, J.; Wu, S.; Hu, X.; Yuan, C.; Zhou, Y. New J. Chem.  2022,  46 (35), 16889. doi: 10.1039/d2nj02725a
												 doi: 10.1039/d2nj02725a
											
										
				Su, F.; Chen, Y.; Wang, R.; Zhang, S.; Liu, K.; Zhang, Y.; Zhao, W.; Ding, C.; Xie, H.; Ye, L. Sustainable Energy Fuels 2021,  5 (4), 1034. doi: 10.1039/d0se01561j
												 doi: 10.1039/d0se01561j
											
										
				Kang, S.; Li, Z.; Xu, Z.; Zhang, Z.; Sun, J.; Bian, J.; Bai, L.; Qu, Y.; Jing, L. Catal. Sci. Technol.  2022,  12 (15), 4817. doi: 10.1039/d2cy00713d
												 doi: 10.1039/d2cy00713d
											
										
				Li, N.; Wang, B.; Si, Y.; Xue, F.; Zhou, J.; Lu, Y.; Liu, M. ACS Catal.  2019,  9 (6), 5590. doi: 10.1021/acscatal.9b00223
												 doi: 10.1021/acscatal.9b00223
											
										
						
						
						
	                Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Hongrui Zhang , Miaoying Cui , Yongjie Lv , Yongfang Rao , Yu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108
Zheng Liu , Yuqing Bian , Graham Dawson , Jiawei Zhu , Kai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272
Xiaofan ZHANG , Yu DUAN , Meijie SHI , Nan LU , Renhong LI , Xiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079
Yueting Ma , Zhiyan Feng , Yuxin Dong , Zhiyong Yan , Hou Wang , Yan Wu . Harnessing the interfacial sulfur-edge and metal-edge sites in ZnIn2S4/MnS heterojunctions boosts charge transfer for photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110922-. doi: 10.1016/j.cclet.2025.110922
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Xingyan Liu , Kaili Wu , Yacen Tang , Ning Qi , Yumeng Zhang , Youzhou He , Min Fu , Yanhui Ao . Ti3C2 MXene-derived TiO2@C attached on Bi2WO6 with oxygen vacancies to fabricate S-scheme heterojunction for photocatalytic antibiotics degradation and NO removal. Chinese Chemical Letters, 2025, 36(11): 110882-. doi: 10.1016/j.cclet.2025.110882
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Zekun Zhang , Shiji Li , Qian Zhang , Shanshan Li , Liu Yang , Wei Yan , Hao Xu . Further study of CO2 electrochemical reduction to gas products on Cu: Influence of the electrolyte. Chinese Chemical Letters, 2025, 36(9): 110742-. doi: 10.1016/j.cclet.2024.110742
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055
Peiyang Du , Ling Yuan , Tong Bao , Yamin Xi , Jiaxin Li , Yin Bi , Luli Yin , Jing Wang , Chao Liu . Facet effect of metal-organic frameworks on supporting co-catalysts for photocatalytic hydrogen peroxide production. Chinese Chemical Letters, 2025, 36(11): 110472-. doi: 10.1016/j.cclet.2024.110472
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Jiaqi Yang , Xuqiang Hao , Jiejie Jing , Yuqiang Hao , Zhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131
Xinyu Wu , Jianfeng Lu , Zihao Zhu , Suijun Liu , Herui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350