Performance Enhancement of Pt/Silicalite-1 by in situ Doped Fe for Propane Dehydrogenation
- Corresponding author: Yanqin Wang, wangyanqin@ecust.edu.cn
Citation: Shanshan Shen, Xiaohui Liu, Yong Guo, Yanqin Wang. Performance Enhancement of Pt/Silicalite-1 by in situ Doped Fe for Propane Dehydrogenation[J]. Acta Physico-Chimica Sinica, ;2023, 39(7): 220904. doi: 10.3866/PKU.WHXB202209043
Bhasin, M. M.; McCain, J. H.; Vora, B. V.; Imai, T.; Pujadó, P. R. Appl. Catal. A 2001, 221, 397. doi: 10.1016/S0926-860X(01)00816-X
doi: 10.1016/S0926-860X(01)00816-X
Atanga, M. A.; Rezaei, F.; Jawad, A.; Fitch, M.; Rownaghi, A. A. Appl. Catal. B 2018, 220, 429. doi: 10.1016/j.apcatb.2017.08.052
doi: 10.1016/j.apcatb.2017.08.052
Qi, W.; Yan, P.; Su, D. S. Acc. Chem. Res. 2018, 51, 640. doi: 10.1021/acs.accounts.7b00475
doi: 10.1021/acs.accounts.7b00475
Zhao, Z.; Ge, G.; Li, W.; Guo, X.; Wang, G. Chin. J. Chem. 2016, 37, 644. doi: 10.1016/S1872-2067(15)61065-8
doi: 10.1016/S1872-2067(15)61065-8
Hu, Z. -P.; Yang, D.; Wang, Z.; Yuan, Z. -Y. Chin. J. Chem. 2019, 40, 1233. doi: 10.1016/S1872-2067(19)63360-7
doi: 10.1016/S1872-2067(19)63360-7
Carter, J. H.; Bere, T.; Pitchers, J. R.; Hewes, D. G.; Vandegehuchte, B. D.; Kiely, C. J.; Taylor, S. H.; Hutchings, G. J. Green Chem. 2021, 23, 9747. doi: 10.1039/D1GC03700E
doi: 10.1039/D1GC03700E
Shan, Y. -L.; Zhu, Y. -A.; Sui, Z. -J.; Chen, D.; Zhou, X. -G. Catal. Sci. Technol. 2015, 5, 3991. doi: 10.1039/C5CY00230C
doi: 10.1039/C5CY00230C
Zhu, J.; Yang, M. -L.; Yu, Y.; Zhu, Y. -A.; Sui, Z. -J.; Zhou, X. -G.; Holmen, A.; Chen, D. ACS Catal. 2015, 5, 6310. doi: 10.1021/acscatal.5b01423
doi: 10.1021/acscatal.5b01423
Jiang, F.; Zeng, L.; Li, S.; Liu, G.; Wang, S.; Gong, J. ACS Catal. 2015, 5, 438. doi: 10.1021/cs501279v
doi: 10.1021/cs501279v
Zhao, T.; Shen, S.; Liu, X.; Guo, Y.; Pao, C. -W.; Chen, J. -L.; Wang, Y. Catal. Sci. Technol. 2019, 9, 4451. doi: 10.1039/C9CY90066G
doi: 10.1039/C9CY90066G
Searles, K.; Chan, K. W.; Mendes Burak, J. A.; Zemlyanov, D.; Safonova, O.; Copéret, C. J. Am. Chem. Soc. 2018, 140, 11674. doi: 10.1021/jacs.8b05378
doi: 10.1021/jacs.8b05378
Shi, L.; Deng, G. -M.; Li, W. -C.; Miao, S.; Wang, Q. -N.; Zhang, W. -P.; Lu, A. -H. Angew. Chem., Int. Ed. 2015, 54, 13994. doi: 10.1002/anie.201507119
doi: 10.1002/anie.201507119
Sattler, J. J. H. B.; Gonzalez-Jimenez, I. D.; Luo, L.; Stears, B. A.; Malek, A.; Barton, D. G.; Kilos, B. A.; Kaminsky, M. P.; Verhoeven, T. W. G. M.; Koers, E. J.; et al. Angew. Chem. Int. Ed. 2014, 53, 9251. doi: 10.1002/anie.201404460
doi: 10.1002/anie.201404460
Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E. V. J. Catal. 2012, 293, 67. doi: 10.1016/j.jcat.2012.06.005
doi: 10.1016/j.jcat.2012.06.005
Cesar, L. G.; Yang, C.; Lu, Z.; Ren, Y.; Zhang, G.; Miller, J. T. ACS Catal. 2019, 9, 5231. doi: 10.1021/acscatal.9b00549
doi: 10.1021/acscatal.9b00549
Zhang, B.; Zheng, L.; Zhai, Z.; Li, G.; Liu, G. ACS Appl. Mater. Interfaces 2021, 13, 16259. doi: 10.1021/acsami.0c22865
doi: 10.1021/acsami.0c22865
Liu, X.; Wang, X.; Zhen, S.; Sun, G.; Pei, C.; Zhao, Z. -J.; Gong, J. Chem. Sci. 2022, 13, 9537. doi: 10.1039/D2SC03723H
doi: 10.1039/D2SC03723H
Ye, C.; Peng, M.; Wang, Y.; Zhang, N.; Wang, D.; Jiao, M.; Miller, J. T. ACS Appl. Mater. Interfaces 2020, 12, 25903. doi: 10.1021/acsami.0c05043
doi: 10.1021/acsami.0c05043
Iglesias-Juez, A.; Beale, A. M.; Maaijen, K.; Weng, T. C.; Glatzel, P.; Weckhuysen, B. M. J. Catal. 2010, 276, 268. doi: 10.1016/j.jcat.2010.09.018
doi: 10.1016/j.jcat.2010.09.018
Nykänen, L.; Honkala, K. ACS Catal. 2013, 3, 3026. doi: 10.1021/cs400566y
doi: 10.1021/cs400566y
Wang, Y.; Hu, Z. -P.; Lv, X.; Chen, L.; Yuan, Z. -Y. J. Catal. 2020, 385, 61. doi: 10.1016/j.jcat.2020.02.019
doi: 10.1016/j.jcat.2020.02.019
Liu, L.; Díaz, U.; Arenal, R.; Agostini, G.; Concepción, P.; Corma, A. Nat. Mater. 2017, 16, 132. doi: 10.1038/nmat4757
doi: 10.1038/nmat4757
Liu, L.; Liu, J.; Zeng, Y.; Tan, S. J.; Do, D. D.; Nicholson, D. Chem. Eng. J. 2019, 370, 866. doi: 10.1016/j.cej.2019.03.262
doi: 10.1016/j.cej.2019.03.262
Han, S. W.; Park, H.; Han, J.; Kim, J. -C.; Lee, J.; Jo, C.; Ryoo, R. ACS Catal. 2021, 11, 9233. doi: 10.1021/acscatal.1c01808
doi: 10.1021/acscatal.1c01808
Zhao, D.; Tian, X. X.; Doronkin, D. E.; Han, S. L.; Kondratenko, V. A.; Grunwaldt, J. -D.; Perechodjuk, A.; Vuong, T. H.; Rabeah, J.; Eckelt, E.; et al. Nature 2021, 599, 234. doi: 10.1038/s41586-021-03923-3
doi: 10.1038/s41586-021-03923-3
Song, S. J.; Yang, K.; Zhang, P.; Wu, Z. J.; Li, J.; Su, H.; Dai, H.; Xu, C. M.; Li, Z. X.; Liu, J.; et al. ACS Catal. 2022, 12, 5997. doi: 10.1021/acscatal.2c00928
doi: 10.1021/acscatal.2c00928
Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R.; Jiang, Z.; Zhou, W.; Zhang, J. C.; et al. Angew. Chem. Int. Ed. 2020, 59, 19450. doi: 10.1002/anie.202003349
doi: 10.1002/anie.202003349
Li, J.; Zhao, Z.; Fan, X.; Liu, J.; Wei, Y.; Duan, A.; Xie, Z.; Liu, Q. J. Catal. 2017, 352, 361. doi: 10.1016/j.jcat.2017.05.024
doi: 10.1016/j.jcat.2017.05.024
Zhu, H.; Anjum, D. H.; Wang, Q.; Abou-Hamad, E.; Emsley, L.; Dong, H.; Laveille, P.; Li, L.; Samal, A. K.; Basset, J. -M. J. Catal. 2014, 320, 52. doi: 10.1016/j.jcat.2014.09.013
doi: 10.1016/j.jcat.2014.09.013
Tolek, W.; Suriye, K.; Praserthdam, P.; Panpranot, J. Catal. Today 2020, 358, 100. doi: 10.1016/j.cattod.2019.08.047
doi: 10.1016/j.cattod.2019.08.047
Wang, T.; Jiang, F.; Liu, G.; Zeng, L.; Zhao, Z. -J.; Gong, J. AIChE J. 2016, 62, 4365. doi: 10.1002/aic.15339
doi: 10.1002/aic.15339
Hu, P.; Lang, W. -Z.; Yan, X.; Chu, L. -F.; Guo, Y. -J. J. Catal. 2018, 358, 108. doi: 10.1016/j.jcat.2017.12.004
doi: 10.1016/j.jcat.2017.12.004
Tang, Y.; Wei, Y. C.; Wang, Z. Y.; Zhang, S. R.; Li, Y. T.; Nguyen, L.; Li, Y. X.; Zhou, Y.; Shen, W. J.; Tao F. F.; et al. J. Am. Chem. Soc. 2019, 141, 7283. doi: 10.1021/jacs.8b10910
doi: 10.1021/jacs.8b10910
Wu, L.; Ren, Z.; He, Y.; Yang, M.; Yu, Y.; Liu, Y.; Tan, L.; Tang, Y. ACS Appl. Mater. Interfaces 2021, 13, 48934. doi: 10.1021/acsami.1c15892
doi: 10.1021/acsami.1c15892
Iwasaki, M.; Yamazaki, K.; Banno, K.; Shinjoh, H. J. Catal. 2008, 260, 205. doi: 10.1016/j.jcat.2008.10.009
doi: 10.1016/j.jcat.2008.10.009
Santhosh Kumar, M.; Schwidder, M.; Grünert, W.; Bentrup, U.; Brückner, A. J. Catal. 2006, 239, 173. doi: 10.1016/j.jcat.2006.01.024
doi: 10.1016/j.jcat.2006.01.024
Xu, Z.; Yue, Y.; Bao, X.; Xie, Z.; Zhu, H. ACS Catal. 2020, 10, 818. doi: 10.1021/acscatal.9b03527
doi: 10.1021/acscatal.9b03527
Lundwall, M. J.; McClure, S. M.; Goodman, D. W. J. Phys. Chem. C 2010, 114, 7904. doi: 10.1021/jp9119292
doi: 10.1021/jp9119292
Aksoy, M.; Metin, Ö. ACS Appl. Nano Mater. 2020, 3, 6836. doi: 10.1021/acsanm.0c01208
doi: 10.1021/acsanm.0c01208
Liao, T. -W.; Yadav, A.; Ferrari, P.; Niu, Y.; Wei, X. -K.; Vernieres, J.; Hu, K. -J.; Heggen, M.; Dunin-Borkowski, R. E.; Palmer, R. E.; et al. Chem. Mater. 2019, 31, 10040. doi: 10.1021/acs.chemmater.9b02824
doi: 10.1021/acs.chemmater.9b02824
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044