Performance Enhancement of Pt/Silicalite-1 by in situ Doped Fe for Propane Dehydrogenation
- Corresponding author: Yanqin Wang, wangyanqin@ecust.edu.cn
 
	            Citation:
	            
		            Shanshan Shen, Xiaohui Liu, Yong Guo, Yanqin Wang. Performance Enhancement of Pt/Silicalite-1 by in situ Doped Fe for Propane Dehydrogenation[J]. Acta Physico-Chimica Sinica,
							;2023, 39(7): 220904.
						
							doi:
								10.3866/PKU.WHXB202209043
						
					
				
					
				
	        
	                
				Bhasin, M. M.; McCain, J. H.; Vora, B. V.; Imai, T.; Pujadó, P. R. Appl. Catal. A 2001,  221, 397. doi: 10.1016/S0926-860X(01)00816-X
												 doi: 10.1016/S0926-860X(01)00816-X
											
										
				Atanga, M. A.; Rezaei, F.; Jawad, A.; Fitch, M.; Rownaghi, A. A. Appl. Catal. B 2018,  220, 429. doi: 10.1016/j.apcatb.2017.08.052
												 doi: 10.1016/j.apcatb.2017.08.052
											
										
				Qi, W.; Yan, P.; Su, D. S. Acc. Chem. Res.  2018,  51, 640. doi: 10.1021/acs.accounts.7b00475
												 doi: 10.1021/acs.accounts.7b00475
											
										
				Zhao, Z.; Ge, G.; Li, W.; Guo, X.; Wang, G. Chin. J. Chem.  2016,  37, 644. doi: 10.1016/S1872-2067(15)61065-8
												 doi: 10.1016/S1872-2067(15)61065-8
											
										
				Hu, Z. -P.; Yang, D.; Wang, Z.; Yuan, Z. -Y. Chin. J. Chem.  2019,  40, 1233. doi: 10.1016/S1872-2067(19)63360-7
												 doi: 10.1016/S1872-2067(19)63360-7
											
										
				Carter, J. H.; Bere, T.; Pitchers, J. R.; Hewes, D. G.; Vandegehuchte, B. D.; Kiely, C. J.; Taylor, S. H.; Hutchings, G. J. Green Chem.  2021,  23, 9747. doi: 10.1039/D1GC03700E
												 doi: 10.1039/D1GC03700E
											
										
				Shan, Y. -L.; Zhu, Y. -A.; Sui, Z. -J.; Chen, D.; Zhou, X. -G. Catal. Sci. Technol.  2015,  5, 3991. doi: 10.1039/C5CY00230C
												 doi: 10.1039/C5CY00230C
											
										
				Zhu, J.; Yang, M. -L.; Yu, Y.; Zhu, Y. -A.; Sui, Z. -J.; Zhou, X. -G.; Holmen, A.; Chen, D.  ACS Catal.  2015,  5, 6310. doi: 10.1021/acscatal.5b01423
												 doi: 10.1021/acscatal.5b01423
											
										
				Jiang, F.; Zeng, L.; Li, S.; Liu, G.; Wang, S.; Gong, J. ACS Catal.  2015,  5, 438. doi: 10.1021/cs501279v
												 doi: 10.1021/cs501279v
											
										
				Zhao, T.; Shen, S.; Liu, X.; Guo, Y.; Pao, C. -W.; Chen, J. -L.; Wang, Y. Catal. Sci. Technol.  2019,  9, 4451. doi: 10.1039/C9CY90066G
												 doi: 10.1039/C9CY90066G
											
										
				Searles, K.; Chan, K. W.; Mendes Burak, J. A.; Zemlyanov, D.; Safonova, O.; Copéret, C. J. Am. Chem. Soc.  2018,  140, 11674. doi: 10.1021/jacs.8b05378
												 doi: 10.1021/jacs.8b05378
											
										
				Shi, L.; Deng, G. -M.; Li, W. -C.; Miao, S.; Wang, Q. -N.; Zhang, W. -P.; Lu, A. -H. Angew. Chem., Int. Ed.  2015,  54, 13994. doi: 10.1002/anie.201507119
												 doi: 10.1002/anie.201507119
											
										
				Sattler, J. J. H. B.; Gonzalez-Jimenez, I. D.; Luo, L.; Stears, B. A.; Malek, A.; Barton, D. G.; Kilos, B. A.; Kaminsky, M. P.; Verhoeven, T. W. G. M.; Koers, E. J.; et al.  Angew. Chem. Int. Ed.  2014,  53, 9251. doi: 10.1002/anie.201404460
												 doi: 10.1002/anie.201404460
											
										
				Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E. V.  J. Catal.  2012,  293, 67. doi: 10.1016/j.jcat.2012.06.005
												 doi: 10.1016/j.jcat.2012.06.005
											
										
				Cesar, L. G.; Yang, C.; Lu, Z.; Ren, Y.; Zhang, G.; Miller, J. T. ACS Catal.  2019,  9, 5231. doi: 10.1021/acscatal.9b00549
												 doi: 10.1021/acscatal.9b00549
											
										
				Zhang, B.; Zheng, L.; Zhai, Z.; Li, G.; Liu, G. ACS Appl. Mater. Interfaces 2021,  13, 16259. doi: 10.1021/acsami.0c22865
												 doi: 10.1021/acsami.0c22865
											
										
				Liu, X.; Wang, X.; Zhen, S.; Sun, G.; Pei, C.; Zhao, Z. -J.; Gong, J. Chem. Sci.  2022,  13, 9537. doi: 10.1039/D2SC03723H
												 doi: 10.1039/D2SC03723H
											
										
				Ye, C.; Peng, M.; Wang, Y.; Zhang, N.; Wang, D.; Jiao, M.; Miller, J. T. ACS Appl. Mater. Interfaces 2020,  12, 25903. doi: 10.1021/acsami.0c05043
												 doi: 10.1021/acsami.0c05043
											
										
				Iglesias-Juez, A.; Beale, A. M.; Maaijen, K.; Weng, T. C.; Glatzel, P.; Weckhuysen, B. M. J. Catal.  2010,  276, 268. doi: 10.1016/j.jcat.2010.09.018
												 doi: 10.1016/j.jcat.2010.09.018
											
										
				Nykänen, L.; Honkala, K. ACS Catal.  2013,  3, 3026. doi: 10.1021/cs400566y
												 doi: 10.1021/cs400566y
											
										
				Wang, Y.; Hu, Z. -P.; Lv, X.; Chen, L.; Yuan, Z. -Y. J. Catal.  2020,  385, 61. doi: 10.1016/j.jcat.2020.02.019
												 doi: 10.1016/j.jcat.2020.02.019
											
										
				Liu, L.; Díaz, U.; Arenal, R.; Agostini, G.; Concepción, P.; Corma, A. Nat. Mater.  2017,  16, 132. doi: 10.1038/nmat4757
												 doi: 10.1038/nmat4757
											
										
				Liu, L.; Liu, J.; Zeng, Y.; Tan, S. J.; Do, D. D.; Nicholson, D. Chem. Eng. J.  2019,  370, 866. doi: 10.1016/j.cej.2019.03.262
												 doi: 10.1016/j.cej.2019.03.262
											
										
				Han, S. W.; Park, H.; Han, J.; Kim, J. -C.; Lee, J.; Jo, C.; Ryoo, R. ACS Catal.  2021,  11, 9233. doi: 10.1021/acscatal.1c01808
												 doi: 10.1021/acscatal.1c01808
											
										
				Zhao, D.; Tian, X. X.; Doronkin, D. E.; Han, S. L.; Kondratenko, V. A.; Grunwaldt, J. -D.; Perechodjuk, A.; Vuong, T. H.; Rabeah, J.; Eckelt, E.; et al.  Nature 2021,  599, 234. doi: 10.1038/s41586-021-03923-3
												 doi: 10.1038/s41586-021-03923-3
											
										
				Song, S. J.; Yang, K.; Zhang, P.; Wu, Z. J.; Li, J.; Su, H.; Dai, H.; Xu, C. M.; Li, Z. X.; Liu, J.; et al.  ACS Catal.  2022,  12, 5997. doi: 10.1021/acscatal.2c00928
												 doi: 10.1021/acscatal.2c00928
											
										
				Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R.; Jiang, Z.; Zhou, W.; Zhang, J. C.; et al. Angew. Chem. Int. Ed.  2020,  59, 19450. doi: 10.1002/anie.202003349
												 doi: 10.1002/anie.202003349
											
										
				Li, J.; Zhao, Z.; Fan, X.; Liu, J.; Wei, Y.; Duan, A.; Xie, Z.; Liu, Q. J. Catal.  2017,  352, 361. doi: 10.1016/j.jcat.2017.05.024
												 doi: 10.1016/j.jcat.2017.05.024
											
										
				Zhu, H.; Anjum, D. H.; Wang, Q.; Abou-Hamad, E.; Emsley, L.; Dong, H.; Laveille, P.; Li, L.; Samal, A. K.; Basset, J. -M. J. Catal.  2014,  320, 52. doi: 10.1016/j.jcat.2014.09.013
												 doi: 10.1016/j.jcat.2014.09.013
											
										
				Tolek, W.; Suriye, K.; Praserthdam, P.; Panpranot, J. Catal. Today 2020,  358, 100. doi: 10.1016/j.cattod.2019.08.047
												 doi: 10.1016/j.cattod.2019.08.047
											
										
				Wang, T.; Jiang, F.; Liu, G.; Zeng, L.; Zhao, Z. -J.; Gong, J. AIChE J.  2016,  62, 4365. doi: 10.1002/aic.15339
												 doi: 10.1002/aic.15339
											
										
				Hu, P.; Lang, W. -Z.; Yan, X.; Chu, L. -F.; Guo, Y. -J. J.  Catal.  2018,  358, 108. doi: 10.1016/j.jcat.2017.12.004
												 doi: 10.1016/j.jcat.2017.12.004
											
										
				Tang, Y.; Wei, Y. C.; Wang, Z. Y.; Zhang, S. R.; Li, Y. T.; Nguyen, L.; Li, Y. X.; Zhou, Y.; Shen, W. J.; Tao F. F.; et al.  J. Am. Chem. Soc.  2019,  141, 7283. doi: 10.1021/jacs.8b10910
												 doi: 10.1021/jacs.8b10910
											
										
				Wu, L.; Ren, Z.; He, Y.; Yang, M.; Yu, Y.; Liu, Y.; Tan, L.; Tang, Y. ACS Appl. Mater. Interfaces 2021,  13, 48934. doi: 10.1021/acsami.1c15892
												 doi: 10.1021/acsami.1c15892
											
										
				Iwasaki, M.; Yamazaki, K.; Banno, K.; Shinjoh, H.  J. Catal.  2008,  260, 205. doi: 10.1016/j.jcat.2008.10.009
												 doi: 10.1016/j.jcat.2008.10.009
											
										
				Santhosh Kumar, M.; Schwidder, M.; Grünert, W.; Bentrup, U.; Brückner, A. J. Catal.  2006,  239, 173. doi: 10.1016/j.jcat.2006.01.024
												 doi: 10.1016/j.jcat.2006.01.024
											
										
				Xu, Z.; Yue, Y.; Bao, X.; Xie, Z.; Zhu, H. ACS Catal.  2020,  10, 818. doi: 10.1021/acscatal.9b03527
												 doi: 10.1021/acscatal.9b03527
											
										
				Lundwall, M. J.; McClure, S. M.; Goodman, D. W. J. Phys. Chem. C 2010,  114, 7904. doi: 10.1021/jp9119292
												 doi: 10.1021/jp9119292
											
										
				Aksoy, M.; Metin, Ö. ACS Appl. Nano Mater.  2020,  3, 6836. doi: 10.1021/acsanm.0c01208
												 doi: 10.1021/acsanm.0c01208
											
										
				Liao, T. -W.; Yadav, A.; Ferrari, P.; Niu, Y.; Wei, X. -K.; Vernieres, J.; Hu, K. -J.; Heggen, M.; Dunin-Borkowski, R. E.; Palmer, R. E.; et al. Chem. Mater.  2019,  31, 10040. doi: 10.1021/acs.chemmater.9b02824
												 doi: 10.1021/acs.chemmater.9b02824
											
										
						
						
						
	                Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
Sumiya Akter Dristy , Md Ahasan Habib , Shusen Lin , Mehedi Hasan Joni , Rutuja Mandavkar , Young-Uk Chung , Md Najibullah , Jihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016