Citation: Zhen Li, Wen Liu, Chunxu Chen, Tingting Ma, Jinfeng Zhang, Zhenghua Wang. Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 220803. doi: 10.3866/PKU.WHXB202208030 shu

Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production

  • Corresponding author: Jinfeng Zhang, zhwang@ahnu.edu.cn Zhenghua Wang, jfzhang@chnu.edu.cn
  • Received Date: 22 August 2022
    Revised Date: 5 September 2022
    Accepted Date: 20 September 2022
    Available Online: 29 September 2022

    Fund Project: National Natural Science Foundation of China 51973078Natural Science Foundation of Anhui Province, China 2108085MB48

  • The problems associated with fossil fuel consumption are restricting human development and harming the environment. An effective way for solving the alluded problems is to develop technology for harnessing renewable clean energy. In recent years, hydrogen has been reported as a new source of clean energy. The combustion heat of hydrogen is very high and the product formed is only water, which fully conforms to the characteristics of green and sustainable energy. Therefore, finding a suitable method for producing hydrogen can effectively solve the current global energy crisis. Since titanium(IV) oxide was used as a photocatalyst to split water into hydrogen and oxygen in 1972, water splitting over semiconductor photocatalysts has been an interesting research topic in the past decades. Nevertheless, the inherent disadvantages of single-component photocatalysts limit their practical application and it is still challenging to circumvent those disadvantages. When compared with single-component photocatalysts, composite photocatalysts can more effectively separate photogenerated electrons and holes, thereby increasing the photocatalytic hydrogen evolution rate. Therefore, photocatalytic hydrogen evolution activity and stability can be optimized by selecting the appropriate photocatalytic mechanism (e.g., S-scheme) at the heterojunction of composites. In this study, many single-component CdSe-DETA photocatalysts with different band gaps were synthesized by varying certain synthesis conditions. The results obtained showed that adjusting the band gap (2.31 eV) of CdSe-DETA led to superior photocatalytic hydrogen production activity but the stability of the photocatalyst was poor. Thereafter, we constructed an In2O3/CdSe-DETA nanocomposite by attaching CdSe-DETA nanoflowers to the surface of porous In2O3 nanosheets to improve the photocatalytic hydrogen evolution activity, stability, and photocurrent response. The type of heterojunction in the In2O3/CdSe-DETA nanocomposite can be varied through the band energy gap of CdSe-DETA. More specifically, the type of heterojunction can be switched from Type-I to S-scheme in the case of swelling of the band energy gap of CdSe-DETA. When compared with single-component photocatalysts and Type-I photocatalysts, the S-scheme In2O3/CdSe-DETA nanocomposite exhibited higher photocatalytic activity and stability. Therefore, we chose the In2O3/CdSe-DETA nanocomposite with an S-scheme heterojunction to obtain optimal photocatalytic activity and stability. Additionally, we confirmed the existence of an S-scheme heterojunction via differential charge density calculations combined with experimental results. The S-scheme heterojunction In2O3/CdSe-DETA nanocomposite effectively separated photogenerated electrons and holes as well as maximized the use of the conduction and valence bands of the composite for efficient and stable photocatalytic hydrogen evolution. Therefore, this study demonstrates a novel strategy for modulating the carrier transfer mechanism, which provides a reference for the development of efficient hydrogen evolution photocatalysts.
  • 加载中
    1. [1]

      Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694  doi: 10.1002/adma.201601694

    2. [2]

      Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci. 2017, 391, 72. doi: 10.1016/j.apsusc.2016.07.030  doi: 10.1016/j.apsusc.2016.07.030

    3. [3]

      Nosaka, Y.; Nosaka, A. Y. Chem. Rev. 2017, 117, 11302. doi: 10.1021/acs.chemrev.7b00161  doi: 10.1021/acs.chemrev.7b00161

    4. [4]

      Fu, J.; Yu, J.; Jiang, C.; Cheng, B. Adv. Energy Mater. 2018, 8, 1701503. doi: 10.1002/aenm.201701503  doi: 10.1002/aenm.201701503

    5. [5]

      Ran, J.; Gao, G.; Li, F. -T.; Ma, T. -Y.; Du, A.; Qiao, S. -Z. Nat. Commun. 2017, 8, 13907. doi: 10.1038/ncomms13907  doi: 10.1038/ncomms13907

    6. [6]

      Ong, C. B.; Ng, L. Y.; Mohammad, A. W. Renew. Sustain. Energy Rev. 2018, 81, 536. doi: 10.1016/j.rser.2017.08.020  doi: 10.1016/j.rser.2017.08.020

    7. [7]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B-Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    8. [8]

      Chen, S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050. doi: 10.1038/natrevmats.2017.50  doi: 10.1038/natrevmats.2017.50

    9. [9]

      Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109. doi: 10.1039/c8cs00542g  doi: 10.1039/c8cs00542g

    10. [10]

      Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Appl. Catal. B-Environ. 2017, 217, 388. doi: 10.1016/j.apcatb.2017.06.003  doi: 10.1016/j.apcatb.2017.06.003

    11. [11]

      Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Chem. Soc. Rev. 2018, 47, 8134. doi: 10.1039/c8cs00256h  doi: 10.1039/c8cs00256h

    12. [12]

      Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z. Energy Environ. Sci. 2017, 10, 402. doi: 10.1039/c6ee02265k  doi: 10.1039/c6ee02265k

    13. [13]

      Pirhashemi, M.; Habibi-Yangjeh, A.; Pouran, S. R. J. Ind. Eng. Chem. 2018, 62, 1. doi: 10.1016/j.jiec.2018.01.012  doi: 10.1016/j.jiec.2018.01.012

    14. [14]

      Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. Energy Environ. Sci. 2018, 11, 1362. doi: 10.1039/c7ee03640j  doi: 10.1039/c7ee03640j

    15. [15]

      Byrne, C.; Subramanian, G.; Pillai, S. C. J. Environ. Chem. Eng. 2018, 6, 3531. doi: 10.1016/j.jece.2017.07.080  doi: 10.1016/j.jece.2017.07.080

    16. [16]

      Yu, K.; Jiang, P.; Yuan, H.; He, R.; Zhu, W.; Wang, L. Appl. Catal. B-Environ. 2021, 288, 119978. doi: 10.1016/j.apcatb.2021.119978  doi: 10.1016/j.apcatb.2021.119978

    17. [17]

      Yuan, Y.; Sheng, K.; Zeng, S.; Han, X.; Sun, L.; Loncaric, I.; Zhan, W.; Sun, D. Inorg. Chem. 2020, 59, 5456. doi: 10.1021/acs.inorgchem.0c00084  doi: 10.1021/acs.inorgchem.0c00084

    18. [18]

      Qi, H.; Shi, C.; Jiang, X.; Teng, M.; Sun, Z.; Huang, Z.; Pan, D.; Liu, S.; Guo, Z. Nanoscale 2020, 12, 19112. doi: 10.1039/d0nr02965c  doi: 10.1039/d0nr02965c

    19. [19]

      Wu, S.; Yu, H.; Chen, S.; Quan, X. ACS Catal. 2020, 10, 14380. doi: 10.1021/acscatal.0c03359  doi: 10.1021/acscatal.0c03359

    20. [20]

      Yu, H.; Jiang, L.; Wang, H.; Huang, B.; Yuan, X.; Huang, J.; Zhang, J.; Zeng, G. Small 2019, 15, 1901008. doi: 10.1002/smll.201901008  doi: 10.1002/smll.201901008

    21. [21]

      Guan, W.; Li, Y.; Zhong, Q.; Liu, H.; Chen, J.; Hu, H.; Lv, K.; Gong, J.; Xu, Y.; Kang, Z.; et al. Nano Lett. 2021, 21, 597. doi: 10.1021/acs.nanolett.0c04073  doi: 10.1021/acs.nanolett.0c04073

    22. [22]

      Ma, D.; Shi, J. -W.; Sun, D.; Zou, Y.; Cheng, L.; He, C.; Wang, Z.; Niu, C. ACS Sustain. Chem. Eng. 2019, 7, 547. doi: 10.1021/acssuschemeng.8b04086  doi: 10.1021/acssuschemeng.8b04086

    23. [23]

      Putri, L. K.; Ng, B. -J.; Ong, W. -J.; Lee, H. W.; Chang, W. S.; Mohamed, A. R.; Chai, S. -P. Appl. Catal. B-Environ. 2020, 265, 118592. doi: 10.1016/j.apcatb.2020.118592  doi: 10.1016/j.apcatb.2020.118592

    24. [24]

      Lu, J.; Yan, J.; Yao, J.; Zheng, Z.; Mao, B.; Zhao, Y.; Li, J. Adv. Funct. Mater. 2021, 31, 2007987. doi: 10.1002/adfm.202007987  doi: 10.1002/adfm.202007987

    25. [25]

      Cao, A.; Wang, Z.; Li, H.; Norskov, J. K. ACS Catal. 2021, 11, 1780. doi: 10.1021/acscatal.0c05046  doi: 10.1021/acscatal.0c05046

    26. [26]

      Guan, X.; Sun, X.; Feng, H.; Zhang, J.; Wen, H.; Tian, W.; Zheng, D.; Yao, Y. Chem. Commun. 2020, 56, 13571. doi: 10.1039/d0cc05585a  doi: 10.1039/d0cc05585a

    27. [27]

      Raziq, F.; Hayat, A.; Humayun, M.; Mane, S. K. B.; Faheem, M. B.; Ali, A.; Zhao, Y.; Han, S.; Cai, C.; Li, W.; et al. Appl. Catal. B-Environ. 2020, 270, 118867. doi: 10.1016/j.apcatb.2020.118867  doi: 10.1016/j.apcatb.2020.118867

    28. [28]

      Wang, H.; Rong, H.; Wang, D.; Li, X.; Zhang, E.; Wan, X.; Bai, B.; Xu, M.; Liu, J.; Liu, J.; et al. Small 2020, 16, 2000426. doi: 10.1002/smll.202000426  doi: 10.1002/smll.202000426

    29. [29]

      Wang, H.; Gao, Y.; Liu, J.; Li, X.; Ji, M.; Zhang, E.; Cheng, X.; Xu, M.; Liu, J.; Rong, H.; et al. Adv. Energy Mater. 2019, 9, 1803889. doi: 10.1002/aenm.201803889  doi: 10.1002/aenm.201803889

    30. [30]

      Shen, C.; Sun, K.; Zhang, Z.; Rui, N.; Jia, X.; Mei, D.; Liu, C. -J. ACS Catal. 2021, 11, 4036. doi: 10.1021/acscatal.0c05628  doi: 10.1021/acscatal.0c05628

    31. [31]

      Mu, F.; Liu, C.; Xie, Y.; Zhou, S.; Dai, B.; Xia, D.; Huang, H.; Zhao, W.; Sun, C.; Kong, Y.; et al. Chem. Eng. J. 2021, 415, 129010. doi: 10.1016/j.cej.2021.129010  doi: 10.1016/j.cej.2021.129010

    32. [32]

      Li, Z.; Zhang, J.; Lv, J.; Lu, L.; Liang, C.; Dai, K. J. Alloy. Compd. 2018, 758, 162. doi: 10.1016/j.jallcom.2018.05.115  doi: 10.1016/j.jallcom.2018.05.115

    33. [33]

      Jiang, G.; Zheng, C.; Yan, T.; Jin, Z. Dalton Trans. 2021, 50, 5360. doi: 10.1039/d1dt00799h  doi: 10.1039/d1dt00799h

    34. [34]

      Ma, X.; Li, D.; Su, P.; Jiang, Z.; Jin, Z. ChemCatChem 2021, 13, 2179. doi: 10.1002/cctc.202002069  doi: 10.1002/cctc.202002069

    35. [35]

      Zhang, L.; Jin, Z. Nanoscale 2021, 13, 1340. doi: 10.1039/d0nr07821b  doi: 10.1039/d0nr07821b

    36. [36]

      Lian, Z.; Sakamoto, M.; Kobayashi, Y.; Tamai, N.; Ma, J.; Sakurai, T.; Seki, S.; Nakagawa, T.; Lai, M. -W.; Haruta, M.; et al. ACS Nano 2019, 13, 8356. doi: 10.1021/acsnano.9b03826  doi: 10.1021/acsnano.9b03826

    37. [37]

      Lu, C.; Guo, F.; Yan, Q.; Zhang, Z.; Li, D.; Wang, L.; Zhou, Y. J. Alloy. Compd. 2019, 811, 151976. doi: 10.1016/j.jallcom.2019.151976  doi: 10.1016/j.jallcom.2019.151976

    38. [38]

      Cai, H.; Wang, B.; Xiong, L.; Bi, J.; Yuan, L.; Yang, G.; Yang, S. Appl. Catal. B-Environ. 2019, 256, 117853. doi: 10.1016/j.apcatb.2019.117853  doi: 10.1016/j.apcatb.2019.117853

    39. [39]

      Zhang, X.; Cheng, Z.; Deng, P.; Zhang, L.; Hou, Y. Int. J. Hydrog. Energy 2021, 46, 15389. doi: 10.1016/j.ijhydene.2021.02.018  doi: 10.1016/j.ijhydene.2021.02.018

    40. [40]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028.  doi: 10.3866/PKU.WHXB202108028

    41. [41]

      Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P. K. Chin. J. Catal. 2020, 41, 140. doi: 10.1016/s1872-2067(19)63481-9  doi: 10.1016/s1872-2067(19)63481-9

    42. [42]

      Xiao, Y.; Ji, Z.; Zou, C.; Xu, Y.; Wang, R.; Wu, J.; Liu, G.; He, P.; Wang, Q.; Jia, T. Appl. Surf. Sci. 2021, 556, 149767. doi: 10.1016/j.apsusc.2021.149767  doi: 10.1016/j.apsusc.2021.149767

    43. [43]

      Yang, Y.; Zhang, D.; Fan, J.; Liao, Y.; Xiang, Q. Sol. RRL 2021, 5, 2000351. doi: 10.1002/solr.202000351  doi: 10.1002/solr.202000351

    44. [44]

      Ge, H.; Xu, F.; Cheng, B.; Yu, J.; Ho, W. ChemCatChem 2019, 11, 6301. doi: 10.1002/cctc.201901486  doi: 10.1002/cctc.201901486

    45. [45]

      Wu, S.; Yu, X.; Zhang, J.; Zhang, Y.; Zhu, Y.; Zhu, M. Chem. Eng. J. 2021, 411, 128555. doi: 10.1016/j.cej.2021.128555  doi: 10.1016/j.cej.2021.128555

    46. [46]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    47. [47]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2112037.  doi: 10.3866/PKU.WHXB202112037

    48. [48]

      Masson, D. P.; Lockwood, D. J.; Graham, M. J. J. Appl. Phys. 1997, 82, 1632. doi: 10.1063/1.366263  doi: 10.1063/1.366263

    49. [49]

      Zhao, B.; Liu, J.; Xu, C.; Feng, R.; Sui, P.; Luo, J. -X.; Wang, L.; Zhang, J.; Luo, J. -L.; Fu, X. -Z. Appl. Catal. B-Environ. 2021, 285, 119800. doi: 10.1016/j.apcatb.2020.119800  doi: 10.1016/j.apcatb.2020.119800

    50. [50]

      Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062  doi: 10.1016/j.jmst.2020.02.062

    51. [51]

      Zheng, J.; Zhang, L. Appl. Catal. B-Environ. 2018, 237, 1. doi: 10.1016/j.apcatb.2018.05.060  doi: 10.1016/j.apcatb.2018.05.060

  • 加载中
    1. [1]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    2. [2]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    3. [3]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    4. [4]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    5. [5]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    8. [8]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    9. [9]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    10. [10]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    11. [11]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    16. [16]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    17. [17]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    18. [18]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    19. [19]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    20. [20]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

Metrics
  • PDF Downloads(8)
  • Abstract views(583)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return