Citation: Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 220703. doi: 10.3866/PKU.WHXB202207035 shu

Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution

  • Corresponding author: Xiuli Wang, xiuliwang@dicp.ac.cn Can Li, canli@dicp.ac.cn
  • Received Date: 15 July 2022
    Revised Date: 22 August 2022
    Accepted Date: 5 September 2022
    Available Online: 8 September 2022

    Fund Project: the National Key R & D Program of China 2021YFA1500600the DICP Foundation of Innovative Research DICP I202122

  • Operando spectroscopic characterization is effective for examining electrocatalytic reaction mechanisms. However, most operando characterization techniques currently used are based on (quasi-)steady-state spectroscopy, which often cannot directly measure transient changes occurring on the micro-millisecond time scale. Herein, an operando electrochemical UV-Vis absorption spectroscopy with 3 μs time resolution was realized by introducing bias pulses and synchronizing the bias pulse and spectral signals. Comparing the time-dependence curves of the bias pulse, collected spectral curve, and controlling voltage, a good time consistence for the three signals was observed, demonstrating the time-resolved ability of the novel apparatus. More importantly, two oxidation reactions, water oxidation reaction and hole sacrifice reagent oxidation reaction, showed distinct dynamics, verifying the reliability of the time-resolved kinetics. The water oxidation kinetics on a ferrihydrite (Fh) electrocatalyst were studied by this novel operando spectroscopic system. Different water oxidation steps were decoupled by analyzing the accumulation and decay dynamics of the operando time-resolved UV-Vis absorption data with various pulse widths and magnitudes of applied bias. A long bias pulse with width above 1s enabled the continuous accumulation of reaction intermediates in Fh electrocatalyst to reach a quasi-equilibrium state with electron extraction into the external circuit. In addition, a fast decay for water oxidation was observed after the applied bias was turned off. Importantly, when a short bias pulse with tens of ms width was applied, an abnormal intermediate accumulation process was observed after the applied bias was shut off, revealing a spontaneous species transformation process. These results confirm the validity of this novel method for examining species transformation kinetics at a fast timescale. The formation, transformation, and reaction kinetics of water oxidation reaction intermediates were directly studied on a µs to s time scale. Therefore, operando electrochemical UV-Vis absorption spectroscopy with µs time resolution can promote the understanding of various electrocatalytic reaction mechanisms and be used to guide the design and synthesis of novel high-efficiency electrocatalysts.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    2. [2]

      Dusastre, V.; Martiradonna, L. Nat. Mater. 2016, 16, 15. doi: 10.1038/nmat4838  doi: 10.1038/nmat4838

    3. [3]

      Yang, H.; Han, X.; Douka, A. I.; Huang, L.; Gong, L.; Xia, C.; Park, H. S.; Xia, B. Y. Adv. Funct. Mater. 2020, 31, 2007602. doi: 10.1002/adfm.202007602  doi: 10.1002/adfm.202007602

    4. [4]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    5. [5]

      Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Chem. Soc. Rev. 2017, 46, 337. doi: 10.1039/c6cs00328a  doi: 10.1039/c6cs00328a

    6. [6]

      Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. J. Am. Chem. Soc. 2020, 142, 11901. doi: 10.1021/jacs.0c04867  doi: 10.1021/jacs.0c04867

    7. [7]

      An, H.; Chen, Z.; Yang, J.; Feng, Z.; Wang, X.; Fan, F.; Li, C. J. Catal. 2018, 367, 53. doi: 10.1016/j.jcat.2018.08.007  doi: 10.1016/j.jcat.2018.08.007

    8. [8]

      Cho, K. H.; Park, S.; Seo, H.; Choi, S.; Lee, M. Y.; Ko, C.; Nam, K. T. Angew. Chem. Int. Ed. 2021, 60, 4673. doi: 10.1002/anie.202014551  doi: 10.1002/anie.202014551

    9. [9]

      Liu, H.; Frei, H. ACS Catal. 2020, 10, 2138. doi: 10.1021/acscatal.9b03281  doi: 10.1021/acscatal.9b03281

    10. [10]

      Zhang, B.; Daniel, Q.; Fan, L.; Liu, T.; Meng, Q.; Sun, L. iScience 2018, 4, 144. doi: 10.1016/j.isci.2018.05.018  doi: 10.1016/j.isci.2018.05.018

    11. [11]

      Mo, C.; Dicko, C.; Shao, Z.; Chen, X. Acta Chim. Sin. 2009, 67, 2641.  doi: 10.3321/j.issn:0567-7351.2009.22.019

    12. [12]

      Chang, H. W.; Lu, Y. R.; Chen, J. L.; Chen, C. L.; Lee, J. F.; Chen, J. M.; Tsai, Y. C.; Yeh, P. H.; Chou, W. C.; Dong, C. L. Phys. Chem. Chem. Phys. 2016, 18, 18705. doi: 10.1039/c6cp01192f  doi: 10.1039/c6cp01192f

    13. [13]

      Lee, S.; Moysiadou, A.; Chu, Y. -C.; Chen, H. M.; Hu, X. Energy Environ. Sci. 2022, 15, 206. doi: 10.1039/d1ee02999a  doi: 10.1039/d1ee02999a

    14. [14]

      Zahran, Z. N.; Mohamed, E. A.; Naruta, Y. ACS Catal. 2016, 6, 4470. doi: 10.1021/acscatal.6b00413  doi: 10.1021/acscatal.6b00413

    15. [15]

      Jin, K.; Chu, A.; Park, J.; Jeong, D.; Jerng, S. E.; Sim, U.; Jeong, H. Y.; Lee, C. W.; Park, Y. S.; Yang, K. D.; et al. Sci. Rep. 2015, 5, 10279. doi: 10.1038/srep10279  doi: 10.1038/srep10279

    16. [16]

      Tan, T.; Yang, J.; Zhu, C.; Wang, G.; Chen, J.; Su, J. Acta Phys. -Chim. Sin. 2016, 32, 1929.  doi: 10.3866/PKU.WHXB201605092

    17. [17]

      Zhang, S.; Yao, Y.; Jiao, X.; Ma, M.; Huang, H.; Zhou, X.; Wang, L.; Bai, J.; Yu, Y. Adv. Mater. 2021, 33, e2103846. doi: 10.1002/adma.202103846  doi: 10.1002/adma.202103846

    18. [18]

      Feng, L.; Wang, R.; Zhang, Y.; Ji, S.; Chuan, Y.; Zhang, W.; Liu, B.; Yuan, C.; Du, C. J. Mater. Sci. 2018, 54, 1520. doi: 10.1007/s10853-018-2885-0  doi: 10.1007/s10853-018-2885-0

    19. [19]

      Sheng, C.; Yu, F.; Li, C.; Zhang, H.; Huang, J.; Wu, Y.; Armand, M.; Chen, Y. J. Phys. Chem. Lett. 2021, 12, 2064. doi: 10.1021/acs.jpclett.1c00118  doi: 10.1021/acs.jpclett.1c00118

    20. [20]

      Morales-Guio, C. G.; Liardet, L.; Hu, X. J. Am. Chem. Soc. 2016, 138, 8946. doi: 10.1021/jacs.6b05196  doi: 10.1021/jacs.6b05196

    21. [21]

      Rao, R. R.; Corby, S.; Bucci, A.; Garcia-Tecedor, M.; Mesa, C. A.; Rossmeisl, J.; Gimenez, S.; Lloret-Fillol, J.; Stephens, I. E. L.; Durrant, J. R. J. Am. Chem. Soc. 2022, 144, 7622. doi: 10.1021/jacs.1c08152  doi: 10.1021/jacs.1c08152

    22. [22]

      Gorlin, M.; Ferreira de Araujo, J.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H.; et al. J. Am. Chem. Soc. 2017, 139, 2070. doi: 10.1021/jacs.6b12250  doi: 10.1021/jacs.6b12250

    23. [23]

      Zaharieva, I.; González-Flores, D.; Asfari, B.; Pasquini, C.; Mohammadi, M. R.; Klingan, K.; Zizak, I.; Loos, S.; Chernev, P.; Dau, H. Energy Environ. Sci. 2016, 9, 2433. doi: 10.1039/c6ee01222a  doi: 10.1039/c6ee01222a

    24. [24]

      Takashima, T.; Hashimoto, K.; Nakamura, R. J. Am. Chem. Soc. 2012, 134, 1519. doi: 10.1021/ja206511w  doi: 10.1021/ja206511w

    25. [25]

      Francas, L.; Selim, S.; Corby, S.; Lee, D.; Mesa, C. A.; Pastor, E.; Choi, K. S.; Durrant, J. R. Chem. Sci. 2021, 12, 7442. doi: 10.1039/d0sc06429g  doi: 10.1039/d0sc06429g

    26. [26]

      Wu, L. L.; Huang, H. G.; Li, J. X.; Luo, J.; Lin, Z. H. Electrochim. Acta 2000, 45, 2877. doi: 10.1016/S0013-4686(00)00362-5  doi: 10.1016/S0013-4686(00)00362-5

    27. [27]

      Wang, P.; Li, D.; Chi, H.; Zhao, Y.; Wang, J.; Li, D.; Pang, S.; Fu, P.; Shi, J.; Li, C. Angew. Chem. Int. Ed. 2021, 60, 6691. doi: 10.1002/anie.202014871  doi: 10.1002/anie.202014871

    28. [28]

      Risch, M.; Ringleb, F.; Kohlhoff, M.; Bogdanoff, P.; Chernev, P.; Zaharieva, I.; Dau, H. Energy Environ. Sci. 2015, 8, 661. doi: 10.1039/c4ee03004d  doi: 10.1039/c4ee03004d

    29. [29]

      Francas, L.; Corby, S.; Selim, S.; Lee, D.; Mesa, C. A.; Godin, R.; Pastor, E.; Stephens, I. E. L.; Choi, K. S.; Durrant, J. R. Nat. Commun. 2019, 10, 5208. doi: 10.1038/s41467-019-13061-0  doi: 10.1038/s41467-019-13061-0

    30. [30]

      Yin, H.; Li, D.; Wang, X.; Li, C. J. Phys. Chem. C 2021, 125, 8369. doi: 10.1021/acs.jpcc.1c02369  doi: 10.1021/acs.jpcc.1c02369

    31. [31]

      Yin, H.; Shao, C.; Wang, H.; Zhang, H.; Li, D.; Zong, X.; Wang, X.; Li, C. J. Phys. Chem. Lett. 2021, 12, 3698. doi: 10.1021/acs.jpclett.1c00767  doi: 10.1021/acs.jpclett.1c00767

    32. [32]

      Kok, B.; Forbush, B.; McGloin, M. Photochem. Photobiol. 1970, 11, 457. doi: 10.1111/j.1751-1097.1970.tb06017.x  doi: 10.1111/j.1751-1097.1970.tb06017.x

    33. [33]

      Zhang, Y.; Zhang, H.; Liu, A.; Chen, C.; Song, W.; Zhao, J. J. Am. Chem. Soc. 2018, 140, 3264. doi: 10.1021/jacs.7b10979  doi: 10.1021/jacs.7b10979

    34. [34]

      Zhang, H.; Li, D.; Byun, W. J.; Wang, X.; Shin, T. J.; Jeong, H. Y.; Han, H.; Li, C.; Lee, J. S. Nat. Commun. 2020, 11, 4622. doi: 10.1038/s41467-020-18484-8  doi: 10.1038/s41467-020-18484-8

    35. [35]

      Ma, Y.; Kafizas, A.; Pendlebury, S. R.; Le Formal, F.; Durrant, J. R. Adv. Funct. Mater. 2016, 26, 4951. doi: 10.1002/adfm.201600711  doi: 10.1002/adfm.201600711

    36. [36]

      Zahran, Z. N.; Mohamed, E. A.; Ohta, T.; Naruta, Y. ChemCatChem 2016, 8, 532. doi: 10.1002/cctc.201501073  doi: 10.1002/cctc.201501073

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    4. [4]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    5. [5]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    6. [6]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(32)
  • Abstract views(907)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return