Citation: Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 220702. doi: 10.3866/PKU.WHXB202207026 shu

Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene

  • Corresponding author: Xijun Liu, xjliu@tjut.edu.cn
  • Received Date: 12 July 2022
    Revised Date: 29 August 2022
    Accepted Date: 8 September 2022
    Available Online: 15 September 2022

    Fund Project: the National Natural Science Foundation of China 22075211the National Natural Science Foundation of China 21601136the National Natural Science Foundation of China 51971157the National Natural Science Foundation of China 51621003Tianjin Science Fund for Distinguished Young Scholars 19JCJQJC61800

  • The ever-increasing carbon dioxide (CO2) emissions caused by excessive fossil fuel consumption induce environmental issues such as global warming. To overcome this, the electrocatalytic CO2 reduction (ECR) under ambient conditions offers an appealing approach for converting CO2 to value-added chemicals and realizing a closed carbon loop. Among the ECR products, ethylene (C2H4), an important building block for plastics and other chemicals, has attracted considerable attention owing to its compatibility with existing infrastructure and the promising substitution of industrial steam cracking. In recent years, numerous efforts have been devoted to developing highly active and selective catalysts for converting CO2 to C2H4, with most studies having focused on Cu-based materials. Despite the significant advancements made to date, the development of the ECR-to-C2H4 process is still hindered by the lack of suitable catalysts that can effectively activate CO2 and strengthen the surface binding of *CO and *COH species. In this study, an amorphous copper oxide (CuOx) nanofilm that is rich in oxygen vacancies was prepared via a facile vacuum evaporation method for the efficient electrocatalytic conversion of CO2 to C2H4. It was expected that the nano-scale electrode thickness would greatly accelerate charge- and mass-transfer during CO2 electrolysis. Moreover, the introduction of oxygen vacancies favored the adsorption of CO2 and intermediates. As a result, in a typical H-cell, the synthesized defective catalyst delivered a maximum Faradaic efficiency of 85 ± 3% at −1.3 V versus the reversible hydrogen electrode and maintained a stable C2H4 selectivity over 48 h in a 0.1 M potassium bicarbonate solution. Interestingly, the performance observed with the synthesized electrocatalyst in this study is comparable with that of state-of-the-art Cu-based ECR catalysts. Additional structural and chemical characterizations confirmed the robust nature of the as-prepared catalyst. Moreover, when the catalyst was utilized in a membrane electrode assembly cell, it achieved a maximum C2H4 partial current density of approximately 115.4 mA∙cm−2 at a cell voltage of −1.95 V and Faradaic efficiency of 78 ± 2% at a cell voltage of −1.75 V. Furthermore, theoretical and experimental analyses revealed that oxygen defects not only favored CO2 adsorption but also enabled strong affinities for *CO and *COH intermediates, which synergistically contributed to a high selectivity for C2H4 formation. We believe that our present work will motivate the exploration of amorphous Cu-based materials for achieving efficient CO2-to-C2H4 electrolysis and be a guide towards fundamentally understanding the mechanism of catalytic CO2 reduction.
  • 加载中
    1. [1]

      Bao, H.; Qiu, Y.; Peng, X.; Wang, J. -A.; Mi, Y.; Zhao, S.; Liu, X.; Liu, Y.; Cao, R.; Zhuo, L.; et al. Nat. Commun. 2021, 12, 238. doi: 10.1038/s41467-020-20336-4  doi: 10.1038/s41467-020-20336-4

    2. [2]

      Meng, D. -L.; Zhang, M. -D.; Si, D. -H.; Mao, M. -J.; Hou, Y.; Huang, Y. -B.; Cao, R. Angew. Chem. Int. Ed. 2021, 60, 25485. doi: 10.1002/anie.202111136  doi: 10.1002/anie.202111136

    3. [3]

      Li, H.; Yu, P.; Lei, R.; Yang, F.; Wen, P.; Ma, X.; Zeng, G.; Guo, J.; Toma, F. M.; Qiu, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 24838. doi: 10.1002/anie.202109600  doi: 10.1002/anie.202109600

    4. [4]

      Gu, Z.; Yang, N.; Han, P.; Kuang, M.; Mei, B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. Small Methods 2019, 3, 1800449. doi: 10.1002/smtd.201800449  doi: 10.1002/smtd.201800449

    5. [5]

      Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. -W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; et al. Nat. Commun. 2016, 7, 12123. doi: 10.1038/ncomms12123  doi: 10.1038/ncomms12123

    6. [6]

      Ye, W.; Guo, X.; Ma, T. Chem. Eng. J. 2021, 414, 128825. doi: 10.1016/j.cej.2021.128825  doi: 10.1016/j.cej.2021.128825

    7. [7]

      Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Coord. Chem. Rev. 2022, 454, 214340. doi: 10.1016/j.ccr.2021.214340  doi: 10.1016/j.ccr.2021.214340

    8. [8]

      Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q  doi: 10.1021/cs502128q

    9. [9]

      Han, L.; Song, S.; Liu, M.; Yao, S.; Liang, Z.; Cheng, H.; Ren, Z.; Liu, W.; Lin, R.; Qi, G.; et al. J. Am. Chem. Soc. 2020, 142, 12563. doi: 10.1021/jacs.9b12111  doi: 10.1021/jacs.9b12111

    10. [10]

      Kim, J. -Y.; Hong, D.; Lee, J. -C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J.; et al. Nat. Commun. 2021, 12, 3765. doi: 10.1038/s41467-021-24105-9  doi: 10.1038/s41467-021-24105-9

    11. [11]

      Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766  doi: 10.1002/adma.201504766

    12. [12]

      Gao, S.; Liu, Y.; Xie, Z.; Qiu, Y.; Zhuo, L.; Qin, Y.; Ren, J.; Zhang, S.; Hu, G.; Luo, J.; Liu, X. Small Methods 2021, 5, 2001039. doi: 10.1002/smtd.202001039  doi: 10.1002/smtd.202001039

    13. [13]

      Liu, S.; Jin, M.; Sun, J.; Qin, Y.; Gao, S.; Chen, Y.; Zhang, S.; Luo, J.; Liu, X. Chem. Eng. J. 2022, 437, 135294. doi: 10.1016/j.cej.2022.135294  doi: 10.1016/j.cej.2022.135294

    14. [14]

      Mi, Y.; Qiu, Y.; Liu, Y.; Peng, X.; Hu, M.; Zhao, S.; Cao, H.; Zhuo, L.; Li, H.; Ren, J.; et al. Adv. Funct. Mater. 2020, 30, 2003438. doi: 10.1002/adfm.202003438  doi: 10.1002/adfm.202003438

    15. [15]

      Yin, Z.; Yu, C.; Zhao, Z.; Guo, X.; Shen, M.; Li, N.; Muzzio, M.; Li, J.; Liu, H.; Lin, H.; et al. Nano Lett. 2019, 19, 8658. doi: 10.1021/acs.nanolett.9b03324  doi: 10.1021/acs.nanolett.9b03324

    16. [16]

      Altaf, N.; Liang, S.; Iqbal, R.; Hayat, M.; Reina, T. R.; Wang, Q. J. CO2 Util. 2020, 40, 101205. doi: 10.1016/j.jcou.2020.101205  doi: 10.1016/j.jcou.2020.101205

    17. [17]

      Zhang, Y. -J.; Peterson, A. A. Phys. Chem. Chem. Phys. 2015, 17, 4505. doi: 10.1039/C4CP03783A  doi: 10.1039/C4CP03783A

    18. [18]

      Kimmel, G. A.; Petrik, N. G. Phys. Rev. Lett. 2008, 100, 196102. doi: 10.1103/PhysRevLett.100.196102  doi: 10.1103/PhysRevLett.100.196102

    19. [19]

      Wang, Y.; Zheng, X.; Wang, D. Nano Res. 2022, 15, 1730. doi: 10.1007/s12274-021-3794-0  doi: 10.1007/s12274-021-3794-0

    20. [20]

      Li, R.; Wang, D. Nano Res. 2022, 15, 6888. doi: 10.1007/s12274-022-4371-x  doi: 10.1007/s12274-022-4371-x

    21. [21]

      Gao, S.; Wang, T.; Jin, M.; Zhang, S.; Liu, Q. Hu, G. Yang H. Luo J. Liu X. Sci. China Mater. 2022. doi: 10.1007/s40843-022-2236-8  doi: 10.1007/s40843-022-2236-8

    22. [22]

      Zhuang, Z.; Li, Y.; Yu, R.; Xia, L.; Yang, J.; Lang, Z.; Zhu, J.; Huang, J.; Wang, J.; Wang, Y.; et al. Nat. Catal. 2022, 5, 300. doi: 10.1038/s41929-022-00764-9  doi: 10.1038/s41929-022-00764-9

    23. [23]

      Liu, W.; Feng, J.; Wei, T.; Liu, Q.; Zhang, S.; Luo Y.; Luo, J.; Liu, X.; Nano Res. 2022. doi: 10.1007/s12274-022-4929-7  doi: 10.1007/s12274-022-4929-7

    24. [24]

      Dai, Y.; Xiong, Y. Nano Res. Energy 2022, 1, e9120006. doi: 10.26599/NRE.2022.9120006  doi: 10.26599/NRE.2022.9120006

    25. [25]

      Gao, S.; Wei, T.; Sun, J.; Liu, Q.; Ma, D.; Liu, W.; Zhang, S.; Luo, J.; Liu, X. Small Struct. 2022, n/a. doi: 10.1002/sstr.202200086  doi: 10.1002/sstr.202200086

    26. [26]

      Ye, H.; L, Y. Nano Res. Energy 2022, 1, e9120012. doi: 10.26599/NRE.2022.9120012  doi: 10.26599/NRE.2022.9120012

    27. [27]

      Safaei, J.; Wang, G. Nano Res. Energy 2022, 1, e9120008. doi: 10.26599/NRE.2022.9120008  doi: 10.26599/NRE.2022.9120008

    28. [28]

      Wang, X.; Liu, S.; Zhang, H.; Zhang, S.; Meng, G.; Liu, Q.; Sun, Z.; Luo, J.; Liu, X. Chem. Commun. 2022, 58, 7654. doi: 10.1039/D2CC01888H  doi: 10.1039/D2CC01888H

    29. [29]

      Xie, Z.; Qiu, Y.; Gao, S.; Sun, J.; Cao, H.; Zhang, S.; Luo, J.; Liu, X. ChemElectroChem 2021, 8, 3579. doi: 10.1002/celc.202100921  doi: 10.1002/celc.202100921

    30. [30]

      Nie, Y.; Hu, C.; Qu, J.; Zhao, X. Appl. Catal. B 2009, 87, 30. doi: 10.1016/j.apcatb.2008.08.022  doi: 10.1016/j.apcatb.2008.08.022

    31. [31]

      Zhao, Z.; Peng, X.; Liu, X.; Sun, X.; Shi, J.; Han, L.; Li, G.; Luo, J. J. Mater. Chem. A 2017, 5, 20239. doi: 10.1039/C7TA05507B  doi: 10.1039/C7TA05507B

    32. [32]

      Huo, Y.; Peng, X.; Liu, X.; Li, H.; Luo, J. ACS Appl. Mater. Interfaces 2018, 10, 12618. doi: 10.1021/acsami.7b19423  doi: 10.1021/acsami.7b19423

    33. [33]

      Liu, X.; Xi, W.; Li, C.; Li, X.; Shi, J.; Shen, Y.; He, J.; Zhang, L.; Xie, L.; Sun, X.; et al. Nano Energy 2018, 44, 371. doi: 10.1016/j.nanoen.2017.12.016  doi: 10.1016/j.nanoen.2017.12.016

    34. [34]

      Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. Nat. Catal. 2018, 1, 111. doi: 10.1038/s41929-017-0009-x  doi: 10.1038/s41929-017-0009-x

    35. [35]

      Lee, S. Y.; Jung, H.; Kim, N. -K.; Oh, H. -S.; Min, B. K.; Hwang, Y. J. J. Am. Chem. Soc. 2018, 140, 8681. doi: 10.1021/jacs.8b02173  doi: 10.1021/jacs.8b02173

    36. [36]

      Zhang, H.; Qiu, Y.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. Ionics 2022, 28, 3927. doi: 10.1007/s11581-022-04634-z  doi: 10.1007/s11581-022-04634-z

    37. [37]

      Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X.; Yang, B.; Cho, J.; Chen, M.; et al. Nat. Commun. 2019, 10, 1392. doi: 10.1038/s41467-019-09394-5  doi: 10.1038/s41467-019-09394-5

    38. [38]

      Yu, X.; Hu, C.; Ji, P.; Ren, Y.; Zhao, H.; Liu, G.; Xu, R.; Zhu, X.; Li, Z.; Ma, Y.; Ma, L. Appl. Catal. B 2022, 310, 121301. doi: 10.1016/j.apcatb.2022.121301  doi: 10.1016/j.apcatb.2022.121301

    39. [39]

      Han, L.; Liu, X.; He, J.; Liang, Z.; Wang, H. -T.; Bak, S. -M.; Zhang, J.; Hunt, A.; Waluyo, I.; Pong, W. -F.; et al. Adv. Energy Mater. 2021, 11, 2100044. doi: 10.1002/aenm.202100044  doi: 10.1002/aenm.202100044

    40. [40]

      Yang, M.; Liu, S.; Sun, J.; Jin, M.; Fu, R.; Zhang, S.; Li, H.; Sun, Z.; Luo, J.; Liu, X. Appl. Catal. B 2022, 307, 121145. doi: 10.1016/j.apcatb.2022.121145  doi: 10.1016/j.apcatb.2022.121145

    41. [41]

      Zhang, H.; Luo, Y.; Chu, P. K.; Liu, Q.; Liu, X.; Zhang, S.; Luo, J.; Wang, X.; Hu, G. J. Alloys Compd. 2022, 922, 166113. doi: 10.1016/j.jallcom.2022.166113  doi: 10.1016/j.jallcom.2022.166113

    42. [42]

      Liu, H.; Fu, J.; Li, H.; Sun, J.; Liu, X.; Qiu, Y.; Peng, X.; Liu, Y.; Bao, H.; Zhuo, L.; et al. Appl. Catal. B 2022, 306, 121029. doi: 10.1016/j.apcatb.2021.121029  doi: 10.1016/j.apcatb.2021.121029

    43. [43]

      Tao, H.; Choi, C.; Ding, L. -X.; Jiang, Z.; Han, Z.; Jia, M.; Fan, Q.; Gao, Y.; Wang, H.; Robertson, A. W.; et al. Chem 2019, 5, 204. doi: 10.1016/j.chempr.2018.10.007  doi: 10.1016/j.chempr.2018.10.007

    44. [44]

      Yang, M.; Sun, J.; Qin, Y.; Yang, H.; Zhang, S.; Liu, X.; Luo, J. Sci. China Mater. 2022, 65, 536. doi: 10.1007/s40843-021-1890-7  doi: 10.1007/s40843-021-1890-7

    45. [45]

      Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. Adv. Mater. 2018, 30, 1800191. doi: 10.1002/adma.201800191  doi: 10.1002/adma.201800191

    46. [46]

      Li, B.; Li, Z.; Wu, X.; Zhu, Z. Nano Res. Energy 2022, 1, e9120011. doi: 10.26599/NRE.2022.9120011  doi: 10.26599/NRE.2022.9120011

    47. [47]

      Liu, S.; Wang, L.; Yang, H.; Gao, S.; Liu, Y.; Zhang, S.; Chen, Y.; Liu, X.; Luo, J. Small 2022, 18, 2104965. doi: 10.1002/smll.202104965  doi: 10.1002/smll.202104965

    48. [48]

      Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. Nano Res. Energy 2022, 1. doi: 10.26599/NRE.2022.9120010  doi: 10.26599/NRE.2022.9120010

    49. [49]

      Gao, S.; Jin, M.; Sun, J.; Liu, X.; Zhang, S.; Li, H.; Luo, J.; Sun, X. J. Mater. Chem. A 2021, 9, 21024. doi: 10.1039/D1TA04360A  doi: 10.1039/D1TA04360A

    50. [50]

      Gu, Z.; Shen, H.; Chen, Z.; Yang, Y.; Yang, C.; Ji, Y.; Wang, Y.; Zhu, C.; Liu, J.; Li, J.; et al. Joule 2021, 5, 429. doi: 10.1016/j.joule.2020.12.011  doi: 10.1016/j.joule.2020.12.011

    51. [51]

      Möller, T.; Scholten, F.; Thanh, T. N.; Sinev, I.; Timoshenko, J.; Wang, X.; Jovanov, Z.; Gliech, M.; Roldan Cuenya, B.; Varela, A. S.; et al. Angew. Chem. Int. Ed. 2020, 59, 17974. doi: 10.1002/anie.202007136  doi: 10.1002/anie.202007136

    52. [52]

      Kibria, M. G.; Dinh, C. -T.; Seifitokaldani, A.; De Luna, P.; Burdyny, T.; Quintero-Bermudez, R.; Ross, M. B.; Bushuyev, O. S.; García de Arquer, F. P.; et al. Adv. Mater. 2018, 30, 1804867. doi: 10.1002/adma.201804867  doi: 10.1002/adma.201804867

    53. [53]

      Pang, Y.; Burdyny, T.; Dinh, C. -T.; Kibria, M. G.; Fan, J. Z.; Liu, M.; Sargent, E. H.; Sinton, D. Green Chem. 2017, 19, 4023. doi: 10.1039/C7GC01677H  doi: 10.1039/C7GC01677H

    54. [54]

      Ge, S.; Zhang, L.; Hou, J.; Liu, S.; Qin, Y.; Liu, Q.; Cai, X.; Sun, Z.; Yang, M.; Luo, J.; Liu, X. ACS Appl. Energy Mater. 2022, 5, 9487. doi: 10.1021/acsaem.2c01006  doi: 10.1021/acsaem.2c01006

    55. [55]

      Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Nano Res. Energy 2022, 1, e9120021. doi: 10.26599/NRE.2022.9120021  doi: 10.26599/NRE.2022.9120021

    56. [56]

      Qi, D.; Lv, F.; Wei, T.; Jin, M.; Meng, G.; Zhang, S.; Liu, Q.; Liu, W.; Ma, D.; Hamdy, M. S.; et al. Nano Res. Energy 2022, 1, e9120022. doi: 10.26599/NRE.2022.9120022  doi: 10.26599/NRE.2022.9120022

    57. [57]

      Xu, J.; He, J.; Ding, Y.; Luo, J. Sci. China Mater. 2020, 63, 1788. doi: 10.1007/s40843-020-1320-1  doi: 10.1007/s40843-020-1320-1

    58. [58]

      Larrazábal, G. O.; Strøm-Hansen, P.; Heli, J. P.; Zeiter, K.; Therkildsen, K. T.; Chorkendorff, I.; Seger, B. ACS Appl. Mater. Interfaces 2019, 11, 41281. doi: 10.1021/acsami.9b13081  doi: 10.1021/acsami.9b13081

    59. [59]

      Zhou, Y.; Han, N.; Li, Y. Acta Phys. -Chim. Sin. 2020, 36, 2001041.  doi: 10.3866/PKU.WHXB202001041

    60. [60]

      Meng, G.; Wei, T.; Liu, W.; Li, W.; Zhang, S.; Liu, W.; Liu, Q.; Bao, H.; Luo, J.; Liu, X. Chem. Commun. 2022, 58, 8097. doi: 10.1039/D2CC02463B  doi: 10.1039/D2CC02463B

    61. [61]

      Pei, Z. Nano Res. Energy 2022, 1, e9120023 doi: 10.26599/NRE.2022.9120023  doi: 10.26599/NRE.2022.9120023

    62. [62]

      Han, B. Acta Phys. -Chim. Sin. 2022, 38, 2012011.  doi: 10.3866/PKU.WHXB202012011

    63. [63]

      Hao, L.; Sun, Z. Acta Phys. -Chim. Sin. 2021, 37, 2009033.  doi: 10.3866/PKU.WHXB202009033

    64. [64]

      Meng, G.; Jin, M.; Wei, T.; Liu, Q.; Zhang, S.; Peng, X.; Luo, J.; Liu, X. Nano Res. 2022. doi: 10.1007/s12274-022-4747-y  doi: 10.1007/s12274-022-4747-y

    65. [65]

      Zhang, Q.; Zhang, S.; Luo, Y.; Liu, Q.; Luo, J.; Chu, P. K.; Liu, X. APL Mater. 2022, 10, 070701. doi: 10.1063/5.0097479  doi: 10.1063/5.0097479

    66. [66]

      Yang, M.; Liu, Y.; Sun, J.; Zhang, S.; Liu, X.; Luo, J. Sci. China Mater. 2022, 65, 1176. doi: 10.1007/s40843-021-1902-2  doi: 10.1007/s40843-021-1902-2

  • 加载中
    1. [1]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    2. [2]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    3. [3]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    4. [4]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    5. [5]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    6. [6]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    7. [7]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    8. [8]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    9. [9]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    10. [10]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    11. [11]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    12. [12]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    13. [13]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    16. [16]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    17. [17]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    20. [20]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

Metrics
  • PDF Downloads(74)
  • Abstract views(1648)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return