Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction
- Corresponding author: Qiang Li, qiang.li@seu.edu.cn Jinlan Wang, jlwang@seu.edu.cn
 
	            Citation:
	            
		            Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction[J]. Acta Physico-Chimica Sinica,
							;2023, 39(1): 220700.
						
							doi:
								10.3866/PKU.WHXB202207007
						
					
				
					
				
	        
	                
				Li, Y.; Wang, H.; Priest, C.; Li, S.; Xu, P.; Wu, G. Adv. Mater.  2021,  33, e2000381. doi: 10.1002/adma.202000381
												 doi: 10.1002/adma.202000381
											
										
				Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F.  Science 2017,  355, eaad4998. doi: 10.1126/science.aad4998
												 doi: 10.1126/science.aad4998
											
										
				Ding, Y.; Cai, P.; Wen, Z. Chem. Soc. Rev.  2021,  50, 1495. doi: 10.1039/d0cs01239d
												 doi: 10.1039/d0cs01239d
											
										
				Yan, Z.; Hitt, J. L.; Turner, J. A.; Mallouk, T. E. Proc. Natl. Acad. Sci. USA 2020,  117, 12558. doi: 10.1073/pnas.1821686116
												 doi: 10.1073/pnas.1821686116
											
										
				Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X. Adv.  Mater.  2016,  28, 215. doi: 10.1002/adma.201502696
												 doi: 10.1002/adma.201502696
											
										
				Song, J.; Wei, C.; Huang, Z. -F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z. J. Chem. Soc. Rev.  2020,  49, 2196. doi: 10.1039/c9cs00607a
												 doi: 10.1039/c9cs00607a
											
										
				Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. Nat. Energy 2016,  1, 15006. doi: 10.1038/nenergy.2015.6
												 doi: 10.1038/nenergy.2015.6
											
										
				Zhang, L.; Jia, Y.; Gao, G.; Yan, X.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D.; Du, A.; et al.  Chem 2018,  4, 285. doi: 10.1016/j.chempr.2017.12.005
												 doi: 10.1016/j.chempr.2017.12.005
											
										
				Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Chem. Soc. Rev.  2021,  50, 7745. doi: 10.1039/d1cs00135c
												 doi: 10.1039/d1cs00135c
											
										
				Zhang, W.; Cao, R. Chem 2021,  7, 1981. doi: 10.1016/j.chempr.2021.07.012
												 doi: 10.1016/j.chempr.2021.07.012
											
										
				Zhang, J. -Y.; Yan, Y.; Mei, B.; Qi, R.; He, T.; Wang, Z.; Fang, W.; Zaman, S.; Su, Y.; Ding, S.; et al.  Energy Environ. Sci.  2021,  14, 365. doi: 10.1039/d0ee03500a
												 doi: 10.1039/d0ee03500a
											
										
				Fei, H.; Dong, J.; Feng, Y.; Allen, C. S.; Wan, C.; Volosskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H.; et al. Nat. Catal.  2018,  1, 63. doi: 10.1038/s41929-017-0008-y
												 doi: 10.1038/s41929-017-0008-y
											
										
				Liu, J.; Xiao, J.; Luo, B.; Tian, E.; Waterhouse, G. I. N. Chem. Eng. J.  2022,  427, 132038. doi: 10.1016/j.cej.2021.131686
												 doi: 10.1016/j.cej.2021.131686
											
										
				Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Angew. Chem. Int. Ed.  2021,  60, 4448. doi: 10.1002/anie.202003917
												 doi: 10.1002/anie.202003917
											
										
				Li, X.; Yang, X.; Liu, L.; Zhao, H.; Li, Y.; Zhu, H.; Chen, Y.; Guo, S.; Liu, Y.; Tan, Q.; Wu, G. ACS Catal.  2021,  11, 7450. doi: 10.1021/acscatal.0c05446
												 doi: 10.1021/acscatal.0c05446
											
										
				Wu, Y. -J.; Wu, X. -H.; Tu, T. -X.; Zhang, P. -F.; Li, J. -T.; Zhou, Y.; Huang, L.; Sun, S. -G. Appl. Catal. B Environ.  2020,  278, 119259. doi: 10.1016/j.apcatb.2020.119259
												 doi: 10.1016/j.apcatb.2020.119259
											
										
				Ban, J. J.; Wen, X. H.; Xu, H. J.; Wang, Z.; Liu, X. H.; Cao, G. Q.; Shao, G. S.; Hu, J. H. Adv. Funct. Mater.  2021,  31, 2010472. doi: 10.1002/adfm.202010472
												 doi: 10.1002/adfm.202010472
											
										
				Huang, Q. E.; Wang, B.; Ye, S.; Liu, H.; Chi, H.; Liu, X.; Fan, H.; Li, M.; Ding, C.; Li, Z.; et al. ACS Catal.  2021,  12, 491. doi: 10.1021/acscatal.1c04644.
												 doi: 10.1021/acscatal.1c04644
											
										
				Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Nano Res.  2020,  13, 1842. doi: 10.1007/s12274-020-2755-3
												 doi: 10.1007/s12274-020-2755-3
											
										
				Liu, J. ACS Catal.  2016,  7, 34. doi: 10.1021/acscatal.6b01534
												 doi: 10.1021/acscatal.6b01534
											
										
				Zhang, Q.; Duan, Z.; Li, M.; Guan, J. Chem. Commun.  2020,  56, 794. doi: 10.1039/c9cc09007j
												 doi: 10.1039/c9cc09007j
											
										
				Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. Nat. Catal.  2018,  1, 339. doi: 10.1038/s41929-018-0063-z
												 doi: 10.1038/s41929-018-0063-z
											
										
				Lu, J.; Zeng, Y.; Ma, X.; Wang, H.; Gao, L.; Zhong, H.; Meng, Q. Polymers 2019,  11, 828. doi: 10.3390/polym11050828
												 doi: 10.3390/polym11050828
											
										
				Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.; Jia, C.; Yao, T.; Wei, S.; et al. J. Am. Chem. Soc.  2017,  139, 17281. doi: 10.1021/jacs.7b10385
												 doi: 10.1021/jacs.7b10385
											
										
				Zhang, L.; Fischer, J.; Jia, Y.; Yan, X.; Xu, W.; Wang, X.; Chen, J.; Yang, D.; Liu, H.; Zhuang, L.; et al. J. Am. Chem. Soc.  2018,  140, 10757. doi: 10.1021/jacs.8b04647
												 doi: 10.1021/jacs.8b04647
											
										
				Zhou, Y.; Yang, W.; Utetiwabo, W.; Lian, Y. M.; Yin, X.; Zhou, L.; Yu, P.; Chen, R.; Sun, S. J. Phys. Chem. Lett.  2020,  11, 1404. doi: 10.1021/acs.jpclett.9b03771
												 doi: 10.1021/acs.jpclett.9b03771
											
										
				Kresse, G.; Hafner, J. Phys. Rev. B 1993,  48, 13115. doi: 10.1103/PhysRevB.48.13115
												 doi: 10.1103/PhysRevB.48.13115
											
										
				Kresse, G.; Furthmüller, J. Phys. Rev. B 1996,  54, 11169. doi: 10.1103/PhysRevB.54.11169
												 doi: 10.1103/PhysRevB.54.11169
											
										
				Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775. doi: 10.1103/PhysRevB.59.1758
												 doi: 10.1103/PhysRevB.59.1758
											
										
				Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett.  1996,  77, 3865. doi: 10.1103/PhysRevLett.77.3865
												 doi: 10.1103/PhysRevLett.77.3865
											
										
				Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.  2010,  132, 154104. doi: 10.1063/1.3382344
												 doi: 10.1063/1.3382344
											
										
				Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem.  2011,  32, 1456. doi: 10.1002/jcc.21759
												 doi: 10.1002/jcc.21759
											
										
				Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comput. Mater. Sci.  2006,  36, 354. doi: 10.1016/j.commatsci.2005.04.010
												 doi: 10.1016/j.commatsci.2005.04.010
											
										
				Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. J. Comput. Chem.  2007,  28, 899. doi: 10.1002/jcc.20575
												 doi: 10.1002/jcc.20575
											
										
				Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys.  2000,  113, 9901. doi: 10.1063/1.1329672
												 doi: 10.1063/1.1329672
											
										
				Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. J. Comput. Chem.  2013,  34, 2557. doi: 10.1002/jcc.23424
												 doi: 10.1002/jcc.23424
											
										
				Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. J. Comput. Chem.  2016,  37, 1030. doi: 10.1002/jcc.24300
												 doi: 10.1002/jcc.24300
											
										
				Hansen, H. A.; Viswanathan, V.; Nørskov, J. K. J. Phys. Chem. C 2014,  118, 6706. doi: 10.1021/jp4100608
												 doi: 10.1021/jp4100608
											
										
				Zhang, X.; Yang, Z.; Lu, Z.; Wang, W. Carbon 2018,  130, 112. doi: 10.1016/j.carbon.2017.12.121
												 doi: 10.1016/j.carbon.2017.12.121
											
										
				Sun, X.; Sun, S.; Gu, S.; Liang, Z.; Zhang, J.; Yang, Y.; Deng, Z.; Wei, P.; Peng, J.; Xu, Y.; et al. Nano Energy 2019,  61, 245. doi: 10.1016/j.nanoen.2019.04.076
												 doi: 10.1016/j.nanoen.2019.04.076
											
										
				Zhao, J.; Zhang, J. -J.; Li, Z. -Y.; Bu, X. -H. Small 2020,  16, 2003916. doi: 10.1002/smll.202003916
												 doi: 10.1002/smll.202003916
											
										
				Vinogradov, I.; Singh, S.; Lyle, H.; Paolino, M.; Mandal, A.; Rossmeisl, J.; Cuk, T. Nat. Mater.  2022,  21, 88. doi: 10.1038/s41563-021-01118-9
												 doi: 10.1038/s41563-021-01118-9
											
										
				Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J. -J.; Wang, Z. L. Nano Energy 2017,  37, 136. doi: 10.1016/j.nanoen.2017.05.022
												 doi: 10.1016/j.nanoen.2017.05.022
											
										
				Betley, T. A.; Wu, Q.; Van Voorhis, T.; Nocera, D. G. Inorg. Chem.  2008,  47, 1849. doi: 10.1021/ic701972n
												 doi: 10.1021/ic701972n
											
										
				He, Y. H.; Guo, H.; Hwang, S.; Yang, X. X.; He, Z. Z.; Braaten, J.; Karakalos, S.; Shan, W. T.; Wang, M. Y.; Zhou, H.;  et al. Adv. Mater.  2020,  32, 2003577. doi: 10.1002/adma.202003577
												 doi: 10.1002/adma.202003577
											
										
				Zhang, N.; Zhou, T.; Ge, J.; Lin, Y.; Du, Z.; Zhong, C. A.; Wang, W.; Jiao, Q.; Yuan, R.; Tian, Y.; et al. Matter 2020,  3, 509. doi: 10.1016/j.matt.2020.06.026
												 doi: 10.1016/j.matt.2020.06.026
											
										
				Bajdich, M.; Garcia-Mota, M.; Vojvodic, A.; Norskov, J. K.; Bell, A. T. J. Am. Chem. Soc.  2013,  135, 13521. doi: 10.1021/ja405997s
												 doi: 10.1021/ja405997s
											
										
				Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Energy Environ. Sci.  2019,  12, 572. doi: 10.1039/c8ee03282c
												 doi: 10.1039/c8ee03282c
											
										
				Mefford, J. T.; Akbashev, A. R.; Kang, M.; Bentley, C. L.; Gent, W. E.; Deng, H. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A.; et al. Nature 2021,  593, 67. doi: 10.1038/s41586-021-03454-x
												 doi: 10.1038/s41586-021-03454-x
											
										
				Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011,  334, 1383. doi: 10.1126/science.1212858
												 doi: 10.1126/science.1212858
											
										
				Li, Q. K.; Li, X. F.; Zhang, G.; Jiang, J. J. J. Am. Chem. Soc.  2018,  140, 15149. doi: 10.1021/jacs.8b07816
												 doi: 10.1021/jacs.8b07816
											
										
				Jin, Z.; Li, P.; Meng, Y.; Fang, Z.; Xiao, D.; Yu, G. Nat. Catal.  2021,  4, 615. doi: 10.1038/s41929-021-00650-w
												 doi: 10.1038/s41929-021-00650-w
											
										
				Li, Z.; Wang, Z.; Xi, S.; Zhao, X.; Sun, T.; Li, J.; Yu, W.; Xu, H.; Herng, T. S.; Hai, X.; et al. ACS Nano 2021,  15, 7105. doi: 10.1021/acsnano.1c00251
												 doi: 10.1021/acsnano.1c00251
											
										
				Exner, K. S. Chem Catal.  2021,  1, 258. doi: 10.1016/j.checat.2021.06.011
												 doi: 10.1016/j.checat.2021.06.011
											
										
				Govindarajan, N.; Koper, M. T. M.; Meijer, E. J.; Calle-Vallejo, F. ACS Catal.  2019,  9, 4218. doi: 10.1021/acscatal.9b00532
												 doi: 10.1021/acscatal.9b00532
											
										
						
						
						
	                Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Qiangqiang Zhou , Lili Sun , Yu-Jie Guo , Bo Zhou , Chunfang Zhang , Sen Xin , Le Yu , Gaohong Zhai . First-principles study on the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides and blue phosphorus. Chinese Chemical Letters, 2025, 36(7): 110187-. doi: 10.1016/j.cclet.2024.110187
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Weibin Shen , Jie Liu , Gongyu Wen , Shuai Li , Binhui Yu , Shuangyu Song , Bojie Gong , Rongyang Zhang , Shibao Liu , Hongpeng Wang , Yao Wang , Yujing Liu , Huadong Yuan , Jianming Luo , Shihui Zou , Xinyong Tao , Jianwei Nai . Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(7): 110184-. doi: 10.1016/j.cclet.2024.110184
Qianqing Xu , Qu Jiang , Haoyue Zhang , Fang Song . Deciphering the active species of anodically activated carbon-based electrocatalysts for oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(11): 111417-. doi: 10.1016/j.cclet.2025.111417
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Lin Zhang , Jianlong Li , Maoyuan Hu , Yao Xu , Xiaoli Xiong , Zhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123
Fenglin Wang , Chengwei Kuang , Zhicheng Zheng , Dan Wu , Hao Wan , Gen Chen , Ning Zhang , Xiaohe Liu , Renzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989
Ming Yue , Yi-Rong Wang , Jia-Yong Weng , Jia-Li Zhang , Da-Yu Chi , Mingjin Shi , Xiao-Gang Hu , Yifa Chen , Shun-Li Li , Ya-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906