Citation: Chenlu Wang, Suling Xu, Ning Ren, Jianjun Zhang. Construction, Thermochemistry, and Fluorescence Properties of Novel Lanthanide Complexes Synthesized from Halogenated Aromatic Carboxylic Acids and Nitrogen-Containing Ligands[J]. Acta Physico-Chimica Sinica, ;2023, 39(1): 220603. doi: 10.3866/PKU.WHXB202206035 shu

Construction, Thermochemistry, and Fluorescence Properties of Novel Lanthanide Complexes Synthesized from Halogenated Aromatic Carboxylic Acids and Nitrogen-Containing Ligands

  • Corresponding author: Ning Ren, ningren9@163.com Jianjun Zhang, jjzhang6@126.com
  • Received Date: 24 June 2022
    Revised Date: 12 July 2022
    Accepted Date: 12 July 2022
    Available Online: 19 July 2022

    Fund Project: the National Natural Science Foundation of China 22273015the National Natural Science Foundation of China 21803016

  • In this study, new lanthanide complexes were synthesized via the volatilization method in solution at room temperature. The general molecular formulas for the lanthanide complexes are as follows: [Ln(2, 4-DFBA)3(phen)]2 (Ln = Sm 1, Eu 2, and Er 3; 2, 4-DFBA = 2, 4-difluorobenzoate; and phen = 1, 10-phenanthroline), as well as [Ln(2-Cl-6-FBA)2(terpy)(NO3)(H2O)]2 (Ln = Tb 4 and Dy 5; 2-Cl-6-FBA = 2-chloro-6-fluorobenzoate; and terpy = 2, 2': 6'2''-tripyridine). Based on single-crystal X-ray analysis, the five complexes exhibited a monoclinic crystal structure belonging to the space group P21/n. Even though complexes 1, 2 (I), and 3 (II) share a general molecular formula, their coordination modes were different. For example, complexes 1 and 2 formed a muffin-like structure with nine coordinated atoms, while complex 3 formed a double hat triangular geometry with eight coordinated atoms. The two-dimensional (2D) polyhedral structures of complexes 1 and 2 were formed via weak π-π stacking interactions, whereas complex 3 exhibited a 2D faceted supramolecular structure through C―H∙∙∙F hydrogen bonds. Complexes 4 and 5 were isostructural, with the presence of nitrate ions in their structure. This occurred through the C―H∙∙∙F hydrogen bonds and π-π stacking of the molecules to form a faceted supramolecular crystal structure. A series of characterizations, such as elemental analysis, infrared and Raman spectroscopy, as well as powder X-ray diffraction, were performed on the five complexes. Thermogravimetry-derivative thermogravimetry-differential scanning calorimetry were performed between 299.25 and 1073.15 K to investigate the mechanism for the thermal decomposition of complexes 15. The analysis of the escaping gas stacking maps of the five complexes using thermogravimetric and 3D infrared coupling techniques further confirmed the correctness of the thermal decomposition mechanism of each complex. The results obtained revealed that similar structured complexes follow a similar thermal decomposition mechanism, and the end solid products for all complexes were their corresponding metal oxides. During the irradiation of the Xe lamp, the solid fluorescence of complexes 1, 2, 4, and 5 were measured. The characteristic transition peaks were located at 4G5/26H5/2, 4G5/26H7/2, and 4G5/26H9/2 (1); 5D07F0, 5D07F1, 5D07F2, 5D07F3, and 5D07F4 (2); 5D47F6, 5D47F5, 5D47F4, and 5D47F3 (4); and 4F9/26H15/2, 4F9/26H13/2 (5). The peaks observed indicated the characteristic transitions of Ln(III). The lanthanide complexes exhibited characteristic fluorescence due to this fact, which also explained their characteristic color. Furthermore, the fluorescence lifetimes of complexes 2 and 4 were measured, and their fluorescence decay curves indicated fluorescence lifetimes of 1.288 and 0.648 ms, respectively.
  • 加载中
    1. [1]

      Garcia, J.; Allen, M. J. Eur. J. Inorg. Chem. 2012, 2012 (29), 4550. doi: 10.1002/ejic.201200159  doi: 10.1002/ejic.201200159

    2. [2]

      Carne-Sanchez, A.; Albalad, J.; Grancha, T.; Imaz, I.; Juanhuix, J.; Larpent, P.; Furukawa, S.; Maspoch, D. J. Am. Chem. Soc. 2019, 141 (9), 4094. doi: 10.1021/jacs.8b13593  doi: 10.1021/jacs.8b13593

    3. [3]

      He, W.; Bai, X.; Ma, J.; Wang, S.; Zhang, B.; Shao, L.; Chen, H.; Li, L.; Fu, Y.; Chen, J. J. Electroanal. Chem. 2021, 883, 115036. doi: 10.1016/j.jelechem.2021.115036  doi: 10.1016/j.jelechem.2021.115036

    4. [4]

      Kotynia, A.; Wiatrak, B.; Kamysz, W.; Neubauer, D.; Jawien, P.; Marciniak, A. Int. J. Mol. Sci. 2021, 22, 12028. doi: 10.3390/ijms222112028  doi: 10.3390/ijms222112028

    5. [5]

      Bazargan, M.; Mirzaei, M.; Amiri, A.; Ritchie, C. Mikrochim. Acta 2021, 188 (4), 108. doi: 10.1007/s00604-021-04767-4  doi: 10.1007/s00604-021-04767-4

    6. [6]

      Xu, C.; Chen, J.; Wang, Z.; Xu, L.; Cao, H.; Dong, X. Acta Chim. Sin. 2021, 79, 1415. doi: 10.6023/a21080380  doi: 10.6023/a21080380

    7. [7]

      Barhoumi, R.; Amokrane, A.; Klyatskaya, S.; Boero, M.; Ruben, M.; Bucher, J. P. Nanoscale 2019, 11 (44), 21167. doi: 10.1039/c9nr05873g  doi: 10.1039/c9nr05873g

    8. [8]

      Struhatska, M.; Olyshevets, I.; Kariaka, N.; Dyakonenko, V.; Konovalova, I.; Shishkina, S.; Smola, S.; Rusakova, N.; Ovchynnikov, V.; Yu. Sliva, T.; et al. Inorg. Chim. Acta 2022, 535, 120844. doi: 10.1016/j.ica.2022.120844  doi: 10.1016/j.ica.2022.120844

    9. [9]

      Wu, Y.; Xia, C. -C.; Wang, X. -Y. Inorg. Chim. Acta 2021, 520, 120308. doi: 10.1016/j.ica.2021.120308  doi: 10.1016/j.ica.2021.120308

    10. [10]

      Parnicka, P.; Lisowski, W.; Klimczuk, T.; Łuczak, J.; Żak, A.; Zaleska-Medynska, A. Appl. Catal. B 2021, 291, 120056. doi: 10.1016/j.apcatb.2021.120056  doi: 10.1016/j.apcatb.2021.120056

    11. [11]

      Zhang, M. Y.; Yi, F. Y.; Liu, L. J.; Yan, G. P.; Liu, H.; Guo, J. F. Dalton Trans. 2021, 50 (43), 15593. doi: 10.1039/d1dt02312h  doi: 10.1039/d1dt02312h

    12. [12]

      Brennecke, B.; Wang, Q.; Zhang, Q.; Hu, H. Y.; Nazare, M. Angew. Chem. Int. Ed. Engl. 2020, 59 (22), 8512. doi: 10.1002/anie.202002391  doi: 10.1002/anie.202002391

    13. [13]

      Chan, C. F.; Tsang, M. K.; Li, H.; Lan, R.; Chadbourne, F. L.; Chan, W. L.; Law, G. L.; Cobb, S. L.; Hao, J.; Wong, W. T.; et al. J. Mater. Chem. B 2014, 2 (1), 84. doi: 10.1039/c3tb21034k  doi: 10.1039/c3tb21034k

    14. [14]

      Cador, O.; Le Guennic, B.; Pointillart, F. Inorg. Chem. Front. 2019, 6 (12), 3398. doi: 10.1039/c9qi00875f  doi: 10.1039/c9qi00875f

    15. [15]

      Marchal, C.; Filinchuk, Y.; Imbert, D.; Bünzli, J. -C. G.; Mazzanti, M. Inorg. Chem. 2007, 46, 6242. doi: 10.1021/ic7009918  doi: 10.1021/ic7009918

    16. [16]

      Bretonnière, Y.; Mazzanti, M.; Wietzke, R.; Pécaut, J. Chem. Commun. 2000, 1543. doi: 10.1039/b004152l  doi: 10.1039/b004152l

    17. [17]

      Xue, M.; Chen, M.; Chang, W.; Chen, R.; Li, P. Colloid Polym. Sci. 2020, 298 (3), 233. doi: 10.1007/s00396-020-04598-4  doi: 10.1007/s00396-020-04598-4

    18. [18]

      Khanagwal, J.; Khatkar, S. P.; Dhankhar, P.; Bala, M.; Kumar, R.; Boora, P.; Taxak, V. B. Spectrosc. Lett. 2020, 53 (8), 625. doi: 10.1080/00387010.2020.1817093  doi: 10.1080/00387010.2020.1817093

    19. [19]

      Constable, E. C.; Housecroft, C. E. Molecules 2019, 24 3951. doi: 10.3390/molecules24213951  doi: 10.3390/molecules24213951

    20. [20]

      Junker, A. K. R.; Hill, L. R.; Thompson, A. L.; Faulkner, S.; Sorensen, T. J. Dalton Trans. 2018, 47 (14), 4794. doi: 10.1039/C7DT04788F  doi: 10.1039/C7DT04788F

    21. [21]

      Sheldrick, G. M.; Schneider, T. R. Method. Enzymol. 1997, 277 (277), 319. doi: 10.1016/S0076-6879(97)77018-6  doi: 10.1016/S0076-6879(97)77018-6

    22. [22]

      Madanhire, T.; Davids, H.; Pereira, M. C.; Hosten, E. C.; Abrahams, A. Polyhedron 2020, 184, 114560. doi: 10.1016/j.poly.2020.114560  doi: 10.1016/j.poly.2020.114560

    23. [23]

      Zhao, X.; Yu, X. -Y.; Chen, T. -L.; Luo, Y. -H.; Yang, J. -J.; Zhang, H. Inorg. Chem. Commun. 2012, 20, 247. doi: 10.1016/j.inoche.2012.03.018  doi: 10.1016/j.inoche.2012.03.018

    24. [24]

      Matthes, P. R.; Nitsch, J.; Kuzmanoski, A.; Feldmann, C.; Steffen, A.; Marder, T. B.; Muller-Buschbaum, K. Chem. Eur. J. 2013, 19 (51), 17369. doi: 10.1002/chem.201302504  doi: 10.1002/chem.201302504

    25. [25]

      Fang, X.; Cai, L. M.; Shao, Y. C.; Lin, M. J. J. Coord. Chem. 2014, 67 (21), 3542. doi: 10.1080/00958972.2014.969723  doi: 10.1080/00958972.2014.969723

    26. [26]

      Casanovas, B.; Porcar, O.; Speed, S.; Vicente, R.; Font-Bardía, M.; El Fallah, M. S. Magnetochemistry 2021, 7, 124. doi: 10.3390/magnetochemistry7090124  doi: 10.3390/magnetochemistry7090124

    27. [27]

      Bokobza, L. Polymers 2019, 11, 1159. doi: 10.3390/polym11071159  doi: 10.3390/polym11071159

    28. [28]

      You, L. -X.; Guo, Y.; Xie, S. -Y.; Wang, S. -J.; Xiong, G.; Dragutan, I.; Dragutan, V.; Ding, F.; Sun, Y. -G. J. Solid State Chem. 2019, 278, 120900. doi: 10.1016/j.jssc.2019.120900  doi: 10.1016/j.jssc.2019.120900

    29. [29]

      Ishikawa, R.; Michiwaki, S.; Noda, T.; Katoh, K.; Yamashita, M.; Kawata, S. Magnetochemistry 2019, 5, 30. doi: 10.3390/magnetochemistry5020030  doi: 10.3390/magnetochemistry5020030

    30. [30]

      He, S. M.; Sun, S. J.; Zheng, J. R.; Zhang, J. J. Spectrochim. Acta A 2014, 123, 211. doi: 10.1016/j.saa.2013.12.023  doi: 10.1016/j.saa.2013.12.023

    31. [31]

      Zhu, M. -M.; Cui, J.; Zeng, Y. -L.; Ren, N.; Zhang, J. -J. Polyhedron 2019, 158, 485. doi: 10.1016/j.poly.2018.11.031  doi: 10.1016/j.poly.2018.11.031

    32. [32]

      Li, Y. Y.; Ren, N.; He, S. M.; Wang, S. P.; Zhang, J. J. Appl. Organomet. Chem. 2019, 33, 5212. doi: 10.1002/aoc.5212  doi: 10.1002/aoc.5212

    33. [33]

      Miao, J.; Guo, R. F.; Liu, Z. H. Acta Phys. -Chim. Sin. 2020, 36 (6), 1905052.  doi: 10.3866/PKU.WHXB201905052

    34. [34]

      Zhang, M.; Zhao, F. Q.; Yang, Y. J.; Li, H.; Zhang, J. K.; Ma, W. Z.; Gao, H. X.; Li, N. Acta Phys. -Chim. Sin. 2020, 36 (6), 1904027.  doi: 10.3866/PKU.WHXB201904027

    35. [35]

      Qi, X. -X.; Shi, Q.; Ren, N.; Zhang, J. -J. J. Therm. Anal. Calorim. 2018, 135 (4), 2583. doi: 10.1007/s10973-018-7269-9  doi: 10.1007/s10973-018-7269-9

    36. [36]

      Zhou, M. X.; Ren, N.; Zhang, J. J. Acta Phys. -Chim. Sin. 2021, 37 (10), 2004071.  doi: 10.3866/PKU.WHXB202004071

    37. [37]

      Zhao, J. -Y.; Ren, N.; Zhang, J. -J. Polyhedron 2021, 194, 114892. doi: 10.1016/j.poly.2020.114892  doi: 10.1016/j.poly.2020.114892

    38. [38]

      Wei, C.; Sun, B.; Zhao, Z.; Cai, Z.; Liu, J.; Tan, Y.; Wei, H.; Liu, Z.; Bian, Z.; Huang, C. Inorg. Chem. 2020, 59 (13), 8800. doi: 10.1021/acs.inorgchem.0c00444  doi: 10.1021/acs.inorgchem.0c00444

    39. [39]

      Yuan, F. G.; Zhang, M. M.; Li, L.; Zhu, X. H. Polym. Sci. Ser. B 2020, 62 (5), 451. doi: 10.1134/S1560090420050140  doi: 10.1134/S1560090420050140

    40. [40]

      Yılmaz Obalı, A.; Kurşunlu, A. N. J. Lumin. 2020, 228, 117614. doi: 10.1016/j.jlumin.2020.117614  doi: 10.1016/j.jlumin.2020.117614

    41. [41]

      Chen, Y.; Liu, S.; Gao, R.; Wang, Y.; Zhang, W.; Ju, Z. J. Solid State Chem. 2019, 279, 120931. doi: 10.1016/j.jssc.2019.120931  doi: 10.1016/j.jssc.2019.120931

    42. [42]

      Kot, K.; Oczko, G.; Puchalska, M.; Starynowicz, P. Polyhedron 2019, 173, 114119. doi: 10.1016/j.poly.2019.114119  doi: 10.1016/j.poly.2019.114119

    43. [43]

      Wang, Y.; Du, H.; Xie, J.; Gao, Q.; Zhou, J. Integr. Ferroelectr. 2018, 190, 20. doi: 10.1080/10584587.2018.1456115  doi: 10.1080/10584587.2018.1456115

  • 加载中
    1. [1]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    4. [4]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    5. [5]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    6. [6]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    7. [7]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    8. [8]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    9. [9]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    14. [14]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    15. [15]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    16. [16]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    17. [17]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    18. [18]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    19. [19]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    20. [20]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

Metrics
  • PDF Downloads(0)
  • Abstract views(124)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return