Synthesis and Applications of Graphdiyne Derivatives
- Corresponding author: Jinchong Xiao, jcxiaoicas@163.com Changshui Huang, huangcs@iccas.ac.cn
Citation: Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives[J]. Acta Physico-Chimica Sinica, ;2023, 39(1): 220602. doi: 10.3866/PKU.WHXB202206029
Huang, C. S.; Li, Y. L. Acta Phys. -Chim. Sin. 2016, 32, 1314.
doi: 10.3866/PKU.WHXB201605035
Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Chem. Commun. 2010, 46, 3256. doi: 10.1039/b922733d
doi: 10.1039/b922733d
Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Chem. Rev. 2018, 118, 7744. doi: 10.1021/acs.chemrev.8b00288
doi: 10.1021/acs.chemrev.8b00288
Shen, X. Y.; He, J. J.; Wang, N.; Huang, C. S. Acta Phys. -Chim. Sin. 2018, 34, 1029.
doi: 10.3866/PKU.WHXB201801122
Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Chem. Soc. Rev. 2014, 43, 2572. doi: 10.1039/C3CS60388A
doi: 10.1039/C3CS60388A
Diederich, F.; Kivala, M. Adv. Mater. 2010, 22, 803. doi: 10.1002/adma.200902623
doi: 10.1002/adma.200902623
Jia, Z. Y.; Li, Y. J.; Zuo, Z. C.; Liu, H. B.; Huang, C. S.; Li, Y. L. Acc. Chem. Res. 2017, 50, 2470. doi: 10.1021/acs.accounts.7b00205
doi: 10.1021/acs.accounts.7b00205
Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Chem. Soc. Rev. 2019, 48, 908. doi: 10.1039/C8CS00773J
doi: 10.1039/C8CS00773J
Zuo, Z. C.; Li, Y. L. Joule 2019, 3, 899. doi: 10.1016/j.joule.2019.01.016
doi: 10.1016/j.joule.2019.01.016
Du, Y. C.; Zhou, W. D.; Gao, J.; Pan, X. Y.; Li, Y. L. Acc. Chem. Res. 2020, 53, 459. doi: 10.1021/acs.accounts.9b00558
doi: 10.1021/acs.accounts.9b00558
Yu, H. D.; Xue, Y. R.; Li, Y. L. Adv. Mater. 2019, 31, 1803101. doi: 10.1002/adma.201803101
doi: 10.1002/adma.201803101
Sakamoto, R.; Fukui, N.; Maeda, H.; Matsuoka, R.; Toyoda, R.; Nishihara, H. Adv. Mater. 2019, 31, 1804211. doi: 10.1002/adma.201804211
doi: 10.1002/adma.201804211
Wang, N.; He, J. J.; Wang, K.; Zhao, Y. J.; Jiu, T. G.; Huang, C. S.; Li, Y. L. Adv. Mater. 2019, 31, 1803202. doi: 10.1002/adma.201803202
doi: 10.1002/adma.201803202
Guo, J.; Guo, M. Y.; Wang, F. H.; Jin, W. Y.; Chen, C. Y.; Liu, H. B.; Li, Y. L. Angew. Chem. Int. Ed. 2020, 59, 16712. doi: 10.1002/anie.202006891
doi: 10.1002/anie.202006891
Jin, J.; Guo, M. Y.; Liu, J. M.; Liu, J.; Zhou, H. G.; Li, J. Y.; Wang, L. M.; Liu, H. B.; Li, Y. L.; Zhao, Y. L.; et al. ACS Appl. Mater. Interfaces 2018, 10, 8436. doi: 10.1021/acsami.7b17219
doi: 10.1021/acsami.7b17219
Xie, J. N.; Wang, N.; Dong, X. H.; Wang, C. Y.; Du, Z.; Mei, L. Q.; Yong, Y.; Huang, C. S.; Li, Y. L.; Gu, Z. J.; et al. ACS Appl. Mater. Interfaces 2018, 11, 2579. doi: 10.1021/acsami.8b00949
doi: 10.1021/acsami.8b00949
Shang, H.; Zuo, Z. Q.; Li, L.; Wang, F.; Liu, H. B.; Li, Y. J.; Li, Y. L. Angew. Chem. Int. Ed. 2018, 57, 774. doi: 10.1002/anie.201711366
doi: 10.1002/anie.201711366
Wang, F.; Zuo, Z. C.; Li, L.; He, F.; Lu, F. S.; Li, Y. L. Adv. Mater. 2019, 31, 1806272. doi: 10.1002/adma.201806272
doi: 10.1002/adma.201806272
Zuo, Z. C.; He, F.; Wang, F.; Li, L.; Li, Y. L. Adv. Mater. 2020, 32, 2004379. doi: 10.1002/adma.202004379
doi: 10.1002/adma.202004379
Li, J.; Gao, X.; Liu, B.; Feng, Q. L.; Li, X. B.; Huang, M. Y.; Liu, Z. F., Zhang, J.; Tung, C. H.; Wu, L. Z. J. Am. Chem. Soc. 2016, 138, 3954. doi: 10.1021/jacs.5b12758
doi: 10.1021/jacs.5b12758
Gao, X.; Li, J.; Du, R.; Zhou, J. Y.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z. Q.; Wu, L. Z.; Liu, Z. F.; Zhang, J. Adv. Mater. 2017, 29, 1605308. doi: 10.1002/adma.201605308
doi: 10.1002/adma.201605308
Fang, Y.; Xue, Y. R.; Li, Y. J.; Yu, H. D.; Hui, L.; Liu, Y. X.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Wang, Z. Q.; et al. Angew. Chem. Int. Ed. 2020, 59, 13021. doi: 10.1002/anie.202004213
doi: 10.1002/anie.202004213
Fang, Y.; Xue, Y. R.; Hui, L.; Yu, H. D.; Li, Y. L. Angew. Chem. Int. Ed. 2021, 133, 3207. doi: 10.1002/ange.202012357
doi: 10.1002/ange.202012357
Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Fang, Y.; Liu, Y. X.; Chen, X.; Zhang, D. Y.; Huang, B. L.; Li, Y. L. Natl. Sci. Rev. 2021, 8, nwaa213. doi: 10.1093/nsr/nwaa213
doi: 10.1093/nsr/nwaa213
Zuo, Z. C.; Wang, D.; Zhang, J.; Lu, F. S.; Li, Y. L. Adv. Mater. 2019, 31, 1803762. doi: 10.1002/adma.201803762
doi: 10.1002/adma.201803762
Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Nat. Commun. 2018, 9, 1460. doi: 10.1038/s41467-018-03896-4
doi: 10.1038/s41467-018-03896-4
Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. J. Am. Chem. Soc. 2019, 141, 10677. doi: 10.1021/jacs.9b03004
doi: 10.1021/jacs.9b03004
Hui, L.; Xue, Y. R.; Huang, B. L.; Yu, H. D.; Zhang, C.; Zhang, D. Y.; Jia, D. Z.; Zhao, Y. J.; Li, Y. J.; Liu, H. B.; et al. Nat. Commun. 2018, 9, 5309. doi: 10.1038/s41467-018-07790-x
doi: 10.1038/s41467-018-07790-x
Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Li, Y. J.; Zuo, Z. C.; Zhao, Y. J.; Li, Z. B.; Li, Y. L. Adv. Mater. 2018, 30, 1707082. doi: 10.1002/adma.201707082
doi: 10.1002/adma.201707082
Yang, Z.; Cui, W. W.; Wang, K.; Song, Y. W.; Zhao, F. H.; Wang, N.; Long, Y. Z.; Wang, H. L.; Huang, C. S. Chem. Eur. J. 2019, 25, 5643. doi: 10.1002/chem.201900477
doi: 10.1002/chem.201900477
Du, H. P.; Zhang, Z. H., He, J. J.; Cui, Z. L.; Chai, J. C.; Ma, J.; Yang, Z.; Huang, C. S.; Cui, G. L. Small 2017, 13, 1702277. doi: 10.1002/smll.201702277
doi: 10.1002/smll.201702277
Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J.; et al. Nat. Chem. 2018, 10, 924. doi: 10.1038/s41557-018-0100-1
doi: 10.1038/s41557-018-0100-1
Shen, X. Y.; Li, X. D.; Zhao, F. H.; Wang, N.; Xie, C. P.; He, J. J.; Si, W. Y.; Yi, Y. P.; Yang, Z.; Li, X. F.; et al. 2D Mater. 2019, 6, 035020. doi: 10.1088/2053-1583/ab185d
doi: 10.1088/2053-1583/ab185d
Wang, N.; He, J. J.; Tu, Z. Y; Yang, Z.; Zhao, F. H; Li, X. D; Huang, C. S.; Wang, K.; Jiu, T. G.; Yi, Y. P.; et al. Angew. Chem. Int. Ed. 2017, 56, 10740. doi: 10.1002/anie.201704779
doi: 10.1002/anie.201704779
He, J. J.; Wang, N.; Yang, Z.; Shen, X. Y.; Wang, K.; Huang, C. S.; Yi, Y. P.; Tu, Z. Y.; Li, Y. L. Energy Environ. Sci. 2018, 11, 2893. doi: 10.1039/c8ee01642a
doi: 10.1039/c8ee01642a
Zhou, W. X.; Shen, H.; Wu. C. Y.; Tu, Z. Y.; He, F.; Gu, Y. N.; Xue, Y. R.; Zhao, Y. J.; Yi, Y. P.; Li, Y. J.; et al. J. Am. Chem. Soc. 2018, 141, 48. doi: 10.1021/jacs.8b09945
doi: 10.1021/jacs.8b09945
He, J. J.; Wang, N.; Cui, Z. L.; Du, H. P.; Fu, L.; Huang, C. S.; Yang, Z.; Shen, X. Y.; Yi, Y. P.; Tu, Z. Y.; et al. Nat. Commun. 2017, 8, 1. doi: 10.1038/s41467-017-01202-2
doi: 10.1038/s41467-017-01202-2
Yang, Z.; Liu, R. R.; Wang, N.; He, J. J.; Wang, K.; Li, X. D.; Shen, X. Y.; Wang, X.; Lv, Q.; Zhang, M. J.; et al. Carbon. 2018, 137, 442. doi: 10.1016/j.carbon.2018.05.049
doi: 10.1016/j.carbon.2018.05.049
Shang, H.; Zuo, Z. C.; Zheng, H. Y.; Li, K.; Tu, Z. Y.; Yi, Y. P.; Liu, H. B.; Li, Y. J.; Li, Y. L. Nano Energy 2018, 44, 144. doi: 10.1016/j.nanoen.2017.11.072
doi: 10.1016/j.nanoen.2017.11.072
Kan, X. N.; Ban, Y. Q.; Wu, C. Y.; Pan, Q. Y.; Liu, H.; Song, J. H.; Zuo, Z. C.; Li, Z. B.; Zhao, Y. J. ACS Appl. Mater. Interfaces 2018, 10, 53. doi: 10.1021/acsami.7b17326
doi: 10.1021/acsami.7b17326
Yang, Z.; Shen, X. Y.; Wang, N.; He, J. J.; Li, X. D.; Wang, X.; Hou, Z. F.; Wang, K.; Gao, J.; Jiu, T. G.; et al. ACS Appl. Mater. Interface 2019, 11, 2608. doi: 10.1021/acsami.8b01823
doi: 10.1021/acsami.8b01823
Zhang, Z. H.; Wu, C. Y.; Pan, Q. Y.; Shao, F.; Song, Q. Z.; Chen, S. Q.; Li, Z. B.; Zhao, Y. J. Chem. Commun. 2020, 56, 3210. doi: 10.1039/C9CC09617E
doi: 10.1039/C9CC09617E
Pan, Q. Y.; Chen, X. S.; Li, H.; Chen, S. Q.; Zheng, X. H.; Liu, H.; Li, B.; Zhao, Y. J. 2D Mater. 2022, 9, 014001. doi: 10.1088/2053-1583/ac2e50
doi: 10.1088/2053-1583/ac2e50
Zhao, Z. Q.; Das, S.; Xing, G. L.; Fayon, P.; Heasman, P.; Jay, M.; Bailey, S.; Lambert, C.; Yamada, H.; Wakihara, T.; et al. Angew. Chem. Int. Ed. 2018, 57, 11952. doi: 10.1002/anie.201805924
doi: 10.1002/anie.201805924
Yang, Z.; Song, Y. W.; Zhang, C. F.; He, J. J.; Li, X. D.; Wang, X.; Wang, N.; Li, Y. L.; Huang, C. S. Adv. Energy Mater. 2021, 11, 2101197. doi: 10.1002/aenm.202101197
doi: 10.1002/aenm.202101197
Yang, Z.; Ren, X.; Song, Y. W.; Li, X. D.; Zhang, C. F.; Hu, X. L.; He, J. J.; Li, J. Z.; Huang, C. S. Energy Environ. Mater. 2022, doi: 10.1002/eem2.12269
doi: 10.1002/eem2.12269
Wang, N.; Li, X. D.; Tu, Z. Y.; Zhao, F. H.; He, J. J.; Guan, Z. Y.; Huang, C. S.; Li, Y. P.; Li, Y. L. Angew. Chem. Int. Ed. 2018, 130, 4032. doi: 10.1002/anie.201800453
doi: 10.1002/anie.201800453
Jia, Z. Y.; Zuo, Z. C.; Yi, Y. P.; Liu, H. B.; Li, D.; Li, Y. J.; Li, Y. L. Nano Energy 2017, 33, 343. doi: 10.1016/j.nanoen.2017.01.049
doi: 10.1016/j.nanoen.2017.01.049
Liu, H.; Zhang, Z. H.; Wu, C. Y.; Pan, Q. Y.; Zhao, Y. J.; Li, Z. B. Small 2019, 15, 1804519. doi: 10.1002/smll.201804519
doi: 10.1002/smll.201804519
Liu, C.; Cheng, P. X.; Shi, R. C.; Ge, F.; Han, X.; Qi, S. M.; Li, G.; Xu, J. L. 2D Mater. 2021, 9, 014006. doi: 10.1088/2053-1583/ac3c9a
doi: 10.1088/2053-1583/ac3c9a
Pan, Q. Y.; Chen, S. Q.; Wu, C. Y.; Zhang, Z. H.; Li, Z. B.; Zhao, Y. J. ACS Appl. Mater. Interfaces 2019, 11, 46070. doi: 10.1021/acsami.9b15133
doi: 10.1021/acsami.9b15133
Lu, T. T.; Deng, X.; Sun, Q. H.; Xiao, J. C.; He, J. J.; Wang, K.; Huang, C. S. Small 2021, 18, 2106328. doi: 10.1002/smll.202106328
doi: 10.1002/smll.202106328
Gao, L.; Ge, X.; Zuo, Z. C.; Wang, F.; Liu, X. Y.; Lv, M. M.; Shi, S. Q.; Xu, L. T.; Liu, T. F.; Zhou, Q. H.; et al. Nano Lett. 2020, 20, 7333. doi: 10.1021/acs.nanolett.0c02728
doi: 10.1021/acs.nanolett.0c02728
Pan, Q. Y.; Chen, X. S.; Liu, H.; Gan, W. J.; Ding, N. X.; Zhao, Y. J. Mat. Chem. Front. 2021, 5, 4596. doi: 10.1039/d1qm00285f
doi: 10.1039/d1qm00285f
Matsuoka, R.; Toyoda, R.; Shiotsuki, R.; Fukui, N.; Wada, K.; Maeda, H.; Sakamoto, R.; Sasaki, S.; Masunaga, H.; Nagashio, K.; et al. ACS Appl. Mater. Interfaces 2018, 11, 2730. doi: 10.1021/acsami.8b00743
doi: 10.1021/acsami.8b00743
Kulkarni, R.; Huang, J. Y.; Trunk, M.; Burmeister, D.; Amsalem, P.; Müller, J.; Martin, A.; Koch, N.; Kass, D.; Bojdys, M. J. Chem. Sci. 2021, 12, 12661. doi: 10.1039/d1sc03390e
doi: 10.1039/d1sc03390e
Al-Busaidi, I. J.; Haque, A.; Al-Balushi, R. A.; Rather, J. A.; Munam, A.; Ilmi, R.; Raithby, P. R.; Zhang, Y. M.; Fu, Y. Y.; Xie, Z. Y.; et al. New J. Chem. 2021, 45, 15082. doi: 10.1039/D1NJ00925G
doi: 10.1039/D1NJ00925G
Xu, L. L.; Sun, J. B.; Tang, T. H.; Zhang, H. Y.; Sun, M. Z.; Zhang, J. Q.; Li, J. H.; Huang, B. L.; Wang, Z. P.; Xie, Z.; et al. Angew. Chem. Int. Ed. 2021, 60, 11326. doi: 10.1002/anie.202014835
doi: 10.1002/anie.202014835
Sun, Q.; Cai, L. L.; Ma, H. H.; Yuan, C. X.; Xu, W. ACS Nano 2016, 10, 7023. doi: 10.1021/acsnano.6b03048
doi: 10.1021/acsnano.6b03048
Yang, Z. C.; Gebhardt, J. L.; Schaub, T. A.; Sander, T.; Schönamsgruber, J.; Soni, H.; Görling, A.; Kivala, M.; Maier, S. Nanoscale 2018, 10, 3769. doi: 10.1039/c7nr08238j
doi: 10.1039/c7nr08238j
Zhang, Y. Q.; Paintner, T.; Hellwig, R.; Haag, F.; Allegretti, F.; Feulner, P.; Klyatskaya, S.; Ruben, M.; Seitsonen, A. P.; Barth, J. V.; et al. J. Am. Chem. Soc. 2019, 141, 5087. doi: 10.1021/jacs.8b13547
doi: 10.1021/jacs.8b13547
Arya, J. S.; Mahato, M. K.; Sankaraman, S.; Prasad, E. J. Mater. Chem. C 2021, 9, 10324. doi: 10.1039/D1TC02334A
doi: 10.1039/D1TC02334A
Kong, Y.; Li, J. Q.; Zeng, S.; Yon, C.; Tong, L. M.; Zhang, J. Chem 2020, 6, 1933. doi: 10.1016/j.chempr.2020.06.011
doi: 10.1016/j.chempr.2020.06.011
Tang, J. Y.; Jiang, H. F.; Deng, G. H.; Zhou, L. Chin. J. Org. Chem. 2005, 25, 1503.
Bai, D. H.; Li, C. J.; Li, J.; Jia, X. S. Chin. J. Org. Chem. 2012, 32, 994.
doi: 10.6023/cjoc1202073
Zhou, J. Y.; Li, J. Q.; Liu, Z. F.; Zhang, J. Adv. Mater. 2019, 31, 1803758. doi: 10.1002/adma.201803758
doi: 10.1002/adma.201803758
Diederich, F.; Rubin, Y. Angew. Chem. Int. Ed. 1992, 31, 1101. doi: 10.1002/anie.199211013
doi: 10.1002/anie.199211013
Li, G. X.; Li, Y. L.; Qian, X. M.; Liu, H. B.; Lin, H. W.; Chen, N.; Li, Y. J. J. Phys. Chem. C 2011, 115, 2611. doi: 10.1021/jp107996f
doi: 10.1021/jp107996f
Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. J. Am. Chem. Soc. 2017, 139, 3145. doi: 10.1021/jacs.6b12776
doi: 10.1021/jacs.6b12776
Liu, R.; Gao, X.; Zhou, J. Y.; Xu, H.; Li, Z. Z.; Zhang, S. Q.; Xie, Z. Q.; Zhang, J.; Liu, Z. F. Adv. Mater. 2017, 29, 1604665. doi: 10.1002/adma.201604665
doi: 10.1002/adma.201604665
Zhou, J. Y.; Zhang, J.; Liu, Z. F. Acta Phys. -Chim. Sin. 2018, 34, 977.
doi: 10.3866/PKU.WHXB201801243
Klappenberger, F.; Zhang, Y. Q.; Björk, J.; Klyatskaya, S.; Ruben, M.; Barth, J. V. Acc. Chem. Res. 2015, 48, 2140. doi: 10.1021/acs.accounts.5b00174
doi: 10.1021/acs.accounts.5b00174
Gao, H. Y.; Held, P. A.; Amirjalayer, S.; Liu, L. C.; Timmer, A.; Schirmer, B.; Arado, O. D.; Mönig, H.; Mück-Lichtenfeld, C.; Neugebauer, J.; et al. J. Am. Chem. Soc. 2017, 139, 7012. doi: 10.1021/jacs.7b02430
doi: 10.1021/jacs.7b02430
Gao, X.; Zhu, Y. H.; Yi, D.; Zhou, J. Y.; Zhang, S. S.; Yin, C.; Ding, F.; Zhang, S. Q.; Yi, X. H.; Wang, J. Z.; et al. Sci. Adv. 2018, 4, eaat6378. doi: 10.1126/sciadv.aat6378
doi: 10.1126/sciadv.aat6378
Miao, S. B.; Smith, M. D.; Bunz, U. H. F. Org. Lett. 2006, 8, 757. doi: 10.1021/ol0529851
doi: 10.1021/ol0529851
Zhang, S. D.; Liu, Y.; Qi, M. Y.; Cao, A. M. Acta Phys. -Chim. Sin. 2021, 37, 2011007.
doi: 10.3866/PKU.WHXB202011007
Mortazavi, B.; Shahrokhi, M.; Madjet, M. E.; Hussain, T.; Zhuang, X. Y.; Rabczuk, T. J. Mater. Chem. C 2019, 7, 3025. doi: 10.1039/C9TC00082H
doi: 10.1039/C9TC00082H
Geyer, F. L.; Rominger, F.; Bunz, U. H. F. Chem. Eur. J. 2014, 20, 3600. doi: 10.1002/chem.201400105
doi: 10.1002/chem.201400105
Liu, M. H.; Li, Y. L. Acta Phys. -Chim. Sin. 2018, 34, 959.
doi: 10.3866/PKU.WHXB201803232
Que, H. F.; Jiang, H. N.; Wang, X. G.; Zhai, P. B.; Meng, L. J.; Zhang, P.; Gong, Y. J. Acta Phys. -Chim. Sin. 2021, 37, 2010051.
doi: 10.3866/PKU.WHXB202010051
Ye, Y. K.; Hu, Z. X.; Liu, J. H.; Lin, W. C.; Chen, T. W.; Zheng, J. X.; Pan, F. Acta Phys. -Chim. Sin. 2021, 37, 2011003.
doi: 10.3866/PKU.WHXB202011003
van Miert, G.; Juričić, V.; Morais, Smith, C. Phys. Rev. B 2014, 90, 195414. doi: 10.1103/PhysRevB.90.195414.
doi: 10.1103/PhysRevB.90.195414
Searles, D. J.; Sun, C. H. J. Phys. Chem. C 2012, 116, 26222. doi: 10.1021/jp309638z
doi: 10.1021/jp309638z
Wang, S. L.; Yang, G. Y.; Nasir, M. S.; Wang, X.; Wang, X. J.; Wang, J. N.; Yan, W. Acta Phys. -Chim. Sin. 2021, 37, 2001003.
Chen, Y.; Dong, H. Y.; Li, Y. Y.; Liu, J. P. Acta Phys. -Chim. Sin. 2021, 37, 2007075.
doi: 10.3866/PKU.WHXB202007075
Wu, B.; Li, M. R.; Xiao, S. N.; Qu, Y. K.; Qiu, X. Y.; Liu, T. F.; Tian, F. H.; Li, H. X.; Xiao, S. X. Nanoscale 2017, 9, 11939. doi: 10.1039/c7nr02247f
doi: 10.1039/c7nr02247f
Li, Y. L. Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics, 1st ed.; Wiley: Weinheim, Germany, 2021; pp. 367–368.
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081