Citation: Yonggang Lei, Tianyu Zhao, Kim Hoong Ng, Yingzhen Zhang, Xuerui Zang, Xiao Li, Weilong Cai, Jianying Huang, Jun Hu, Yuekun Lai. Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2023, 39(4): 220600. doi: 10.3866/PKU.WHXB202206006 shu

Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production

  • Corresponding author: Yuekun Lai, yklai@fzu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 4 June 2022
    Revised Date: 28 June 2022
    Accepted Date: 29 June 2022
    Available Online: 1 July 2022

    Fund Project: the National Natural Science Foundation of China 22075046the National Natural Science Foundation of China 51972063the National Natural Science Foundation of China 21676216the National Natural Science Foundation of China 21501127the National Natural Science Foundation of China 51502185National Key Research and Development Program of China 2019YFE0111200Natural Science Funds for Distinguished Young Scholar of Fujian Province 2020J06038Natural Science Foundation of Fujian Province 2019J01256111 Project D17005China postdoctoral science foundation 前期站, 2019TQ0061Special Project of Shaanxi Provincial Education Department 20JC034Kim Hoong Ng thanks Ministry of Science and Technology (MOST), Taiwan, and Ming Chi University of Technology (MCUT) for the financial supports MOST-110-2222-E-131-004-Kim Hoong Ng thanks Ministry of Science and Technology (MOST), Taiwan, and Ming Chi University of Technology (MCUT) for the financial supports VK000-1300-111

  • Tungsten carbide (WC) is commonly used as a photocatalytic material for hydrogen production via water reduction. However, it is often combined with an effective photoabsorber to provide sufficient photoactivity. This is attributed to the narrow band gap of WC, which leads to an inadequate redox capability for water reduction. Notably, this limitation was overcome using a novel solid-liquid photocatalytic system that compliments bare WC photocatalysts with liquid-phase photosensitizing erythrosine B (ErB). The proposed concept eliminates the need to couple WC with photoabsorbing semiconductors, which often requires tedious procedures for the proper functionalization of photocatalytic composites. The experimental results indicated significant hydrogen production from the proposed solid-liquid photocatalytic system under irradiation with visible light (λ = 520 nm); however, only in the presence of triethanolamine (TEOA) as a sacrificial reagent. Evidently, a blank experiment with only WC and ErB under typical photoreaction conditions exhibited nearly zero photoactivity and the production of H2 was undetected. Similarly, nonactivity was observed for the photoreaction in the presence of ErB or WC in the irradiated TEOA solution. These blank experiments confirmed the significance of all three components, namely WC, ErB, and TEOA, which functioned as the photocatalyst, photoabsorber, and sacrificial reagent, respectively, for suitable H2 production in the proposed system. The effects of three critical parameters, such as pH, ErB concentration, and WC concentration, were systematically investigated. The optimum pH for H2 production was 8, with a slight variation to more basic or acidic conditions reducing the photoactivity of the system. At pH < 8, part of TEOA undergoes partial protonation, thereby losing its activity as a sacrificial reagent in the photocatalytic system. As the pH increased to > 8, the low proton concentration in the reaction medium perturbed the thermodynamic drive, leading to suppressed H2 production. The optimum ErB concentration was 1 mmol·L-1, and decreasing or increasing the ErB concentration from the optimal point was detrimental to H2 production. The diluted system (ErB concentration < 1 mmol·L-1) provided insufficient sensitizing agents, whereas the concentrated system (> 1 mmol·L-1 ErB) induced significant scattering effects that prevent light from penetrating into the reactive liquid phase. Conversely, the WC concentration exhibited a positive correlation with H2 production in a steady manner, and the highest H2 production measured by the system was at a WC concentration of 12 mmol·L-1. Under optimum conditions, 66 μmol∙h-1 of H2 was successfully produced, with a slightly higher apparent quantum efficiency (AQE) of 6.6% at 520 nm, which was attributed to the synergism of ErB-TEOA-WC in the proposed system. The photoelectrochemical evaluation confirmed the positive interactions between ErB, TEOA, and WC, which caused reduced impedance while improving charge utilization in the system. Consequently, an excellent H2 turnover number (TON) of 15 was achieved with negligible activity decay for at least 20 h of reaction. Density functional theory (DFT) calculations confirmed the major roles of W- and C-vacant sites in H2 production, which were attributed to their enhanced product desorption that facilitates high turnover rates during photoreactions. In conclusion, the proposed novel liquid-solid photocatalytic WC/ErB/TEOA system provides more facile photo-derived H2 energy from water, which circumvents the tedious photoabsorber coupling of metal carbide photocatalysts.
  • 加载中
    1. [1]

      Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43 (22), 7787. doi: 10.1039/C3CS60425J  doi: 10.1039/C3CS60425J

    2. [2]

      Pan, J.; Shen, S.; Zhou, W.; Tang, J.; Ding, H.; Wang, J.; Chen, L.; Au, C. T.; Yin, S. F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    3. [3]

      Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645  doi: 10.1021/cr1001645

    4. [4]

      Song, W.; Ito, A.; Binstead, R. A.; Hanson, K.; Luo, H.; Brennaman, M. K.; Concepcion, J. J.; Meyer, T. J. J. Am. Chem. Soc. 2013, 135, 11587. doi: 10.1021/ja4032538  doi: 10.1021/ja4032538

    5. [5]

      Zhao, N.; Peng, J.; Wang, J.; Zhai, M. Acta Phys. -Chim. Sin. 2022, 38, 2004046.  doi: 10.3866/PKU.WHXB202004046

    6. [6]

      Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Chem. Rev. 2014, 114, 9987. doi: 10.1021/cr500008u  doi: 10.1021/cr500008u

    7. [7]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2021, 37, 2010059.  doi: 10.3866/PKU.WHXB202010059

    8. [8]

      Zhu, Y.; Wang, T.; Xu, T.; Li, Y.; Wang, C. Appl. Surf. Sci. 2019, 464, 36. doi: 10.1016/j.apsusc.2018.09.061  doi: 10.1016/j.apsusc.2018.09.061

    9. [9]

      Zeng, L.; Dai, C.; Liu, B.; Xue, C. J. Mater. Chem. A 2019, 7, 24217. doi: 10.1039/C9TA10290F  doi: 10.1039/C9TA10290F

    10. [10]

      Do, J. Y.; Chava, R. K.; Kim, Y. Il; Cho, D. W.; Kang, M. Appl. Surf. Sci. 2019, 494, 886. doi: 10.1016/j.apsusc.2019.07.227  doi: 10.1016/j.apsusc.2019.07.227

    11. [11]

      Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2022, 38, 2110049.  doi: 10.3866/PKU.WHXB202110049

    12. [12]

      Sun, Z.; Zheng, H.; Li, J.; Du, P. Energy Environ. Sci. 2015, 8, 2668. doi: 10.1039/C5EE01310K  doi: 10.1039/C5EE01310K

    13. [13]

      Guo, Y.; Mao, L.; Tang, Y.; Shang, Q.; Cai, X.; Zhang, J.; Hu, H.; Tan, X.; Liu, L.; Wang, H.; Yu, T.; Ye, J. Nano Energy 2022, 95, 107028. doi: 10.1016/j.nanoen.2022.107028  doi: 10.1016/j.nanoen.2022.107028

    14. [14]

      Hu, Z.; Zhang, X.; Yin, Q.; Liu, X.; Jiang, X.; Chen, Z.; Yang, X.; Huang, F.; Cao, Y. Nano Energy 2019, 60, 775. doi: 10.1016/j.nanoen.2019.04.027  doi: 10.1016/j.nanoen.2019.04.027

    15. [15]

      Zubair, M.; Vanhaecke, E. M. M.; Svenum, I. -H.; Rønning, M.; Yang, J. Green Energy Environ. 2020, 5, 461. doi: 10.1016/j.gee.2020.10.017  doi: 10.1016/j.gee.2020.10.017

    16. [16]

      Zhang, P.; Wang, J.; Li, Y.; Jiang, L.; Wang, Z.; Zhang, G. Acta Phys. -Chim. Sin. 2021, 37, 2009102.  doi: 10.3866/PKU.WHXB202009102

    17. [17]

      Guo, P.; Xiong, Z.; Yuan, S.; Xie, K.; Wang, H.; Gao, Y. Chem. Eng. J. 2021, 420, 130372. doi: 10.1016/j.cej.2021.130372  doi: 10.1016/j.cej.2021.130372

    18. [18]

      Lin, Z.; Du, C.; Yan, B.; Yang, G. Catal. Sci. Technol. 2019, 9, 5582. doi: 10.1039/C9CY01621J  doi: 10.1039/C9CY01621J

    19. [19]

      Zhong, W.; Li, W.; Yang, C.; Wu, J.; Zhao, R.; Idrees, M.; Xiang, H.; Zhang, Q.; Li, X. J. Energy Chem. 2021, 61, 236. doi: 10.1016/j.jechem.2021.02.013  doi: 10.1016/j.jechem.2021.02.013

    20. [20]

      Li, S.; Wang, L.; Li, Y.; Zhang, L.; Wang, A.; Xiao, N.; Gao, Y.; Li, N.; Song, W.; Ge, L.; Liu, J. Appl. Catal. B-Environ. 2019, 254, 145. doi: 10.1016/j.apcatb.2019.05.001  doi: 10.1016/j.apcatb.2019.05.001

    21. [21]

      Tian, Y.; Song, Y.; Liu, J.; Ji, J.; Wang, F. Chem. Eng. J. 2020, 398, 125554. doi: 10.1016/j.cej.2020.125554  doi: 10.1016/j.cej.2020.125554

    22. [22]

      Xu, X.; Pan, L.; Han, Q.; Wang, C.; Ding, P.; Pan, J.; Hu, J.; Zeng, H.; Zhou, Y. J. Catal. 2019, 374, 237. doi: 10.1016/j.jcat.2019.04.043  doi: 10.1016/j.jcat.2019.04.043

    23. [23]

      Liu, M. L.; Chen, B. Bin; Li, R. S.; Li, C. M.; Zou, H. Y.; Huang, C. Z. ACS Sustain. Chem. Eng. 2017, 5, 4154. doi: 10.1021/acssuschemeng.7b00126  doi: 10.1021/acssuschemeng.7b00126

    24. [24]

      Chen, S.; Vequizo, J. J. M.; Hisatomi, T.; Nakabayashi, M.; Lin, L.; Wang, Z.; Yamakata, A.; Shibata, N.; Takata, T.; Yamada, T.; et al. Chem. Sci. 2020, 11, 6436. doi: 10.1039/D0SC01167C  doi: 10.1039/D0SC01167C

    25. [25]

      Godin, R.; Wang, Y.; Zwijnenburg, M. A.; Tang, J.; Durrant, J. R. J. Am. Chem. Soc. 2017, 139, 5216. doi: 10.1021/jacs.7b01547  doi: 10.1021/jacs.7b01547

    26. [26]

      Liu, S.; Meng, X.; Adimi, S.; Guo, H.; Qi, W.; Attfield, J. P.; Yang, M. Chem. Eng. J. 2021, 408, 127307. doi: 10.1016/j.cej.2020.127307  doi: 10.1016/j.cej.2020.127307

    27. [27]

      Guo, F.; Wu, Y.; Ai, X.; Chen, H.; Li, G. -D.; Chen, W.; Zou, X. Chem. Commun. 2019, 55, 8627. doi: 10.1039/C9CC03638E  doi: 10.1039/C9CC03638E

    28. [28]

      Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H. J. Adv. Sci. 2016, 3, 1500286. doi: 10.1002/advs.201500286  doi: 10.1002/advs.201500286

    29. [29]

      Lei, Y.; Wu, X.; Li, S.; Huang, J.; Ng, K. H.; Lai, Y. J. Clean. Prod. 2021, 322, 129018. doi: 10.1016/j.jclepro.2021.129018  doi: 10.1016/j.jclepro.2021.129018

    30. [30]

      Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.; Liu, Q.; Lin, Z.; Yang, X. Appl. Catal. B-Environ. 2020, 268, 118382. doi: 10.1016/j.apcatb.2019.118382  doi: 10.1016/j.apcatb.2019.118382

    31. [31]

      He, K.; Xie, J.; Liu, Z. -Q.; Li, N.; Chen, X.; Hu, J.; Li, X. J. Mater. Chem. A 2018, 6, 13110. doi: 10.1039/C8TA03048K  doi: 10.1039/C8TA03048K

    32. [32]

      He, K.; Xie, J.; Yang, Z.; Shen, R.; Fang, Y.; Ma, S.; Chen, X.; Li, X. Catal. Sci. Technol. 2017, 7, 1193. doi: 10.1039/c7cy00029d  doi: 10.1039/c7cy00029d

    33. [33]

      Lei, Y.; Ng, K. H.; Zhang, Y.; Li, Z.; Xu, S.; Huang, J.; Lai, Y. Chem. Eng. J. 2022, 434, 134689. doi: 10.1016/j.cej.2022.134689  doi: 10.1016/j.cej.2022.134689

    34. [34]

      Huang, Z.; Chen, H.; He, X.; Fang, W.; Li, W.; Du, X.; Zeng, X.; Zhao, L. ACS Appl. Mater. Interfaces 2021, 13, 46598. doi: 10.1021/acsami.1c12063  doi: 10.1021/acsami.1c12063

    35. [35]

      Chen, Y.; Yang, D.; Xin, X.; Yang, Z.; Gao, Y.; Shi, Y.; Zhao, Z.; An, K.; Wang, W.; Tan, J.; Jiang, Z. J. Mater. Chem. A 2022, 10, 9717. doi: 10.1039/D1TA10270B  doi: 10.1039/D1TA10270B

    36. [36]

      Humayun, M.; Ullah, H.; Cheng, Z. -E.; Tahir, A. A.; Luo, W.; Wang, C. Appl. Catal. B-Environ. 2022, 310, 121322. doi: 10.1016/j.apcatb.2022.121322  doi: 10.1016/j.apcatb.2022.121322

    37. [37]

      Li, Y.; Yang, L.; He, H.; Sun, L.; Wang, H.; Fang, X.; Zhao, Y.; Zheng, D.; Qi, Y.; Li, Z.; Deng, W. Nat. Commun. 2022, 13, 1355. doi: 10.1038/s41467-022-29076-z  doi: 10.1038/s41467-022-29076-z

    38. [38]

      Zhang, S.; Zhang, X.; Rui, Y.; Wang, R.; Li, X. Green Energy Environ. 2021, 6, 458. doi: 10.1016/j.gee.2020.10.013  doi: 10.1016/j.gee.2020.10.013

    39. [39]

      Li, W.; Min, S.; Wang, F.; Zhang, Z. Sustain. Energy Fuels 2020, 4, 116. doi: 10.1039/C9SE00820A  doi: 10.1039/C9SE00820A

    40. [40]

      Tian, L.; Min, S.; Lei, Y.; Chen, S.; Wang, F. Chem. Commun. 2019, 55, 6870. doi: 10.1039/C9CC03230D  doi: 10.1039/C9CC03230D

    41. [41]

      Zhu, Q.; Qiu, B.; Duan, H.; Gong, Y.; Qin, Z.; Shen, B.; Xing, M.; Zhang, J. Appl. Catal. B-Environ. 2019, 259, 118078. doi: 10.1016/j.apcatb.2019.118078  doi: 10.1016/j.apcatb.2019.118078

    42. [42]

      Wang, P.; Guan, Z.; Li, Q.; Yang, J. J. Mater. Sci. 2018, 53, 774. doi: 10.1007/s10853-017-1540-5  doi: 10.1007/s10853-017-1540-5

    43. [43]

      Zhou, Y.; Hu, W.; Yang, S.; Zhang, Y.; Nyakuchena, J.; Duisenova, K.; Lee, S.; Fan, D.; Huang, J. J. Phys. Chem. C 2020, 124, 1405. doi: 10.1021/acs.jpcc.9b09634  doi: 10.1021/acs.jpcc.9b09634

    44. [44]

      Kaphan, D. M.; Brereton, K. R.; Klet, R. C.; Witzke, R. J.; Miller, A. J. M.; Mulfort, K. L.; Delferro, M.; Tiede, D. M. Organometallics 2021, 40, 1482. doi: 10.1021/acs.organomet.1c00133  doi: 10.1021/acs.organomet.1c00133

    45. [45]

      Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. J. Mater. Chem. A 2017, 5, 10591. doi: 10.1039/C7TA02655B  doi: 10.1039/C7TA02655B

  • 加载中
    1. [1]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    2. [2]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    3. [3]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    4. [4]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    5. [5]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    6. [6]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    7. [7]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    8. [8]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    9. [9]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    10. [10]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    11. [11]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    12. [12]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    13. [13]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    14. [14]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    15. [15]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    16. [16]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    17. [17]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    18. [18]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    19. [19]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    20. [20]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

Metrics
  • PDF Downloads(6)
  • Abstract views(325)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return