Citation: 志洋 陈, 雅婷 唐, 泽 吕, 霄汉 孟, 前伟 梁, 建国 冯. Citronella Oil Nanoemulsion: Formulation, Characterization, Antibacterial Activity, and Cytotoxicity[J]. Acta Physico-Chimica Sinica, ;2022, 38(12): 220505. doi: 10.3866/PKU.WHXB202205053 shu

Citronella Oil Nanoemulsion: Formulation, Characterization, Antibacterial Activity, and Cytotoxicity

  • Corresponding author: 建国 冯, jgfeng@yzu.edu.cn
  • Received Date: 27 May 2022
    Revised Date: 21 June 2022
    Accepted Date: 21 June 2022
    Available Online: 27 June 2022

    Fund Project: the Postgraduate Research & Practice Innovation Program of Jiangsu Province SJCX21_1613

  • The excessive and unreasonable use of synthetic bactericides in the agricultural field has caused many serious problems, including toxic effects on human health and environmental pollution. Therefore, searching for low toxicity, highly efficient, and no-residue natural bactericides is urgently needed. Plant essential oil has become an emerging and hot topic in the agricultural field because of its excellent bactericidal activity, good biocompatibility, and abundant sources. Citronella oil is a natural plant essential oil with insect repellent, insecticidal, and antibacterial activities, which mainly includes citronellal, geraniol, and citronellol. At present, the major of research on citronella oil focuses on the repellency and control of sanitary pests, but there are relatively few reports on the control of agricultural pathogenic bacteria. In addition, the hydrophobicity and volatility of citronella oil lead to its low bioavailability and hinder its full biological activity. Therefore, constructing a delivery system for improving the hydrophobicity and reducing the volatility of citronella oil is urgently needed. Nanoemulsions have the advantages of fine and uniform droplets, better physical stability, efficient permeation ability, and enhanced bioavailability. Therefore, nanoemulsions are important drug delivery systems for hydrophobic pesticides. In this study, the influences of emulsifier type (hydrophilic-lipophilic balance (HLB)), dosage, and emulsifying time on the formation and stability of citronella oil nanoemulsions were investigated by observing the appearances and microstructures of samples and measuring droplet size, thereby the optimized formula of the citronella oil nanoemulsions was determined. Furthermore, the bioactivity and biosafety of citronella oil nanoemulsions were also investigated. The results showed that nanoemulsions using castor oil polyoxyethylene ethers EL-40 (hydrophilic-lipophilic balance = 13.5) as an emulsifier had the best performance, and the stability of nanoemulsions improved as the emulsifier dosage increased from 3% to 7% (w, mass fraction). In addition, the nanoemulsion prepared through high speed shearing for 3 min was the most stable. The optimal formula for citronella oil nanoemulsions was determined to contain 5% (w) citronella oil, 6% (w) emulsifier (EL-40), and 89% (w) deionized water, upon high speed shearing for 3 min. Then, the inhibitory effect of citronella oil nanoemulsions against the growth of Pantoea ananatis was studied. The concentration for 50% of maximal effect (EC50) of citronella oil nanoemulsions against Pantoea ananatis was 74.85 mg·L−1. The cell viability of L02 cells treated with the citronella oil nanoemulsions (below 100 mg·L−1) was above 83% after 24 h, and the apoptosis rate was 6.93%, indicating that the citronella oil nanoemulsions had low cytotoxicity. This research facilitated the design and fabrication of stable, efficient, and safe agricultural nanoemulsions, and it provides a practical solution for using plant essential oils as agricultural bactericides.
  • 加载中
    1. [1]

      Gierer, F.; Vaughan, S.; Slater, M.; Thompson, H. M.; Elmore, J. S.; Girling, R. D. Environ. Pollut. 2019, 249, 236. doi: 10.1016/j.envpol.2019.03.025  doi: 10.1016/j.envpol.2019.03.025

    2. [2]

      Sookhtanlou, M.; Allahyari, M. S. Environ. Sci. Pollut. R. 2021, 28 (22), 28168. doi: 10.1007/s11356-021-12502-y  doi: 10.1007/s11356-021-12502-y

    3. [3]

      Ramakrishnan, B.; Venkateswarlu, K.; Sethunathan, N.; Megharaj, M. Sci. Total Environ. 2019, 654, 177. doi: 10.1016/j.scitotenv.2018.11.041  doi: 10.1016/j.scitotenv.2018.11.041

    4. [4]

      Fronza, G.; Toloza, A. C.; Picollo, M. I.; Carbajo, A. E.; Rodriguez, S.; Mougabure-Cueto, G. A. Acta Trop. 2019, 194, 53. doi: 10.1016/j.actatropica.2019.03.021  doi: 10.1016/j.actatropica.2019.03.021

    5. [5]

      Feng, J.; Ma, Y.; Chen, Z.; Liu, Q.; Yang, J.; Gao, Y.; Chen, W.; Qian, K.; Yang, W. ACS Sustainable Chem. Eng. 2021, 9 (14), 4988. doi: 10.1021/acssuschemeng.0c08105  doi: 10.1021/acssuschemeng.0c08105

    6. [6]

      Sinha, S.; Biswas, D.; Mukherjee, A. J. Ethnopharmacol. 2011, 137 (3), 1521. doi: 10.1016/j.jep.2011.08.046  doi: 10.1016/j.jep.2011.08.046

    7. [7]

      He, F.; Wang, W.; Wu, M.; Fang, Y.; Wang, S.; Yang, Y.; Ye, C.; Xiang, F. Ind. Crops Prod. 2020, 153, 112552. doi: 10.1016/j.indcrop.2020.112552  doi: 10.1016/j.indcrop.2020.112552

    8. [8]

      Bouyahya, A.; Abrini, J.; Dakka, N.; Bakri, Y. J. Pharm. Anal. 2019, 9 (5), 301. doi: 10.1016/j.jpha.2019.03.001  doi: 10.1016/j.jpha.2019.03.001

    9. [9]

      Samba, N.; Aitfella-Lahlou, R.; Nelo, M.; Silva, L.; Coca, R.; Rocha, P.; Lopez Rodilla, J. M. Molecules 2021, 26 (1), 155. doi: 10.3390/molecules26010155  doi: 10.3390/molecules26010155

    10. [10]

      Moncada, J.; Tamayo, J. A.; Cardona, C. A. Ind. Crops Prod. 2014, 54, 175. doi: 10.1016/j.indcrop.2014.01.035  doi: 10.1016/j.indcrop.2014.01.035

    11. [11]

      Iliou, K.; Kikionis, S.; Petrakis, P. V.; Ioannou, E.; Roussis, V. Pest Manage. Sci. 2019, 75 (8), 2142. doi: 10.1002/ps.5334  doi: 10.1002/ps.5334

    12. [12]

      Wan, L.; Li, H.; Huang, C.; Feng, Y.; Chu, G.; Zheng, Y.; Tan, W.; Qin, Y.; Sun, D.; Fang, Y. J. Chem. Thermodyn. 2017, 109, 109. doi: 10.1016/j.jct.2016.12.011  doi: 10.1016/j.jct.2016.12.011

    13. [13]

      Rodrigues, K. A. d. F.; Dias, C. N.; do Amaral, F. M. M.; Moraes, D. F. C.; Mouchrek Filho, V. E.; Andrade, E. H. A.; Maia, J. G. S. Pharm. Biol. 2013, 51 (10), 1293. doi: 10.3109/13880209.2013.789536  doi: 10.3109/13880209.2013.789536

    14. [14]

      Timung, R.; Barik, C. R.; Purohit, S.; Goud, V. V. Ind. Crops Prod. 2016, 94, 178. doi: 10.1016/j.indcrop.2016.08.021  doi: 10.1016/j.indcrop.2016.08.021

    15. [15]

      Motelica, L.; Ficai, D.; Ficai, A.; Trusca, R. -D.; Ilie, C. -I.; Oprea, O. -C.; Andronescu, E. Foods 2020, 9 (12), 121801. doi: 10.3390/foods9121801  doi: 10.3390/foods9121801

    16. [16]

      Meng, Y.; Yang, H.; Wang, D.; Ma, Y.; Wang, X.; Blasi, F. Processes 2021, 9 (7), 1199. doi: 10.3390/pr9071199  doi: 10.3390/pr9071199

    17. [17]

      Rezaei, A.; Fathi, M.; Jafari, S. M. Food Hydrocolloids 2019, 88, 146. doi: 10.1016/j.foodhyd.2018.10.003  doi: 10.1016/j.foodhyd.2018.10.003

    18. [18]

      Rieger, K. A.; Birch, N. P.; Schiffman, J. D. Carbohyd. Polym. 2016, 139, 131. doi: 10.1016/j.carbpol.2015.11.073  doi: 10.1016/j.carbpol.2015.11.073

    19. [19]

      Agrawal, N.; Maddikeri, G. L.; Pandit, A. B. Ultrason. Sonochem. 2017, 36, 367. doi: 10.1016/j.ultsonch.2016.11.037  doi: 10.1016/j.ultsonch.2016.11.037

    20. [20]

      Sanchez-Gonzalez, L.; Vargas, M.; Gonzalez-Martinez, C.; Chiralt, A.; Chafer, M. Food Eng. Rev. 2011, 3 (1), 1. doi: 10.1007/s12393-010-9031-3  doi: 10.1007/s12393-010-9031-3

    21. [21]

      Bouchemal, K.; Briancon, S.; Perrier, E.; Fessi, H. Int. J. Pharm. 2004, 280 (1–2), 241. doi: 10.1016/j.ijpharm.2004.05.016  doi: 10.1016/j.ijpharm.2004.05.016

    22. [22]

      Katsouli, M.; Giannou, V.; Tzia, C. Food Funct. 2020, 11 (10), 8878. doi: 10.1039/d0fo01707h  doi: 10.1039/d0fo01707h

    23. [23]

      Xu, N.; Wu, X.; Zhu, Y.; Miao, J.; Gao, Y.; Cheng, C.; Peng, S.; Zou, L.; McClements, D. J.; Liu, W. Food Chem. 2021, 355, 129508. doi: 10.1016/j.foodchem.2021.129508  doi: 10.1016/j.foodchem.2021.129508

    24. [24]

      Feng, J.; Chen, Q.; Wu, X.; Jafari, S. M.; McClements, D. J. Environ. Sci. Pollut. Res. 2018, 25 (22), 21742. doi: 10.1007/s11356-018-2183-z  doi: 10.1007/s11356-018-2183-z

    25. [25]

      McClements, D. J. Curr. Opin. Colloid Interface Sci. 2017, 28, 7. doi: 10.1016/j.cocis.2016.12.002  doi: 10.1016/j.cocis.2016.12.002

    26. [26]

      Li, L. -W.; Chen, X. -Y.; Liu, L. -C.; Yang, Y.; Wu, Y. -J.; Chen, G.; Zhang, Z. -F.; Luo, P. Lwt-Food Sci. Technol. 2021, 140, 110815. doi: 10.1016/j.lwt.2020.110815  doi: 10.1016/j.lwt.2020.110815

    27. [27]

      Thapa, R.; Sai, K.; Saha, D.; Kushwaha, D.; Aswal, V. K.; Moulick, R. G.; Bose, S.; Bhattaharya, J. J. Mol. Liq. 2021, 334, 115998. doi: 10.1016/j.molliq.2021.115998  doi: 10.1016/j.molliq.2021.115998

    28. [28]

      Zhu, Z.; Wen, Y.; Yi, J.; Cao, Y.; Liu, F.; McClements, D. J. J. Colloid Interface Sci. 2019, 536, 80. doi: 10.1016/j.jcis.2018.10.024  doi: 10.1016/j.jcis.2018.10.024

    29. [29]

      Rave, M. C.; Echeverri, J. D.; Salamanca, C. H. J. Food Eng. 2020, 273, 109801. doi: 10.1016/j.jfoodeng.2019.109801  doi: 10.1016/j.jfoodeng.2019.109801

    30. [30]

      Liu, Q.; Gao, Y.; Fu, X.; Chen, W.; Yang, J. H.; Chen, Z. Y.; Wang, Z. X.; Zhuansun, X. X.; Feng, J. G.; Chen, Y. Colloids Surf. B 2021, 201, 111626. doi: 10.1016/j.colsurfb.2021.111626  doi: 10.1016/j.colsurfb.2021.111626

    31. [31]

      Feng, J.; Chen, W.; Liu, Q.; Chen, Z.; Yang, J.; Yang, W. Pest Manage. Sci. 2020, 76 (12), 4192. doi: 10.1002/ps.5976  doi: 10.1002/ps.5976

    32. [32]

      Guan, W. X.; Tang, L. M.; Wang, Y.; Cui, H. J. Agric. Food Chem. 2018, 66 (29), 7568. doi: 10.1021/acs.jafc.8b01388  doi: 10.1021/acs.jafc.8b01388

    33. [33]

      Li, J. M.; Chang, J. W.; Saenger, M.; Deering, A. Food Chem. 2017, 232, 191. doi: 10.1016/j.foodchem.2017.03.147  doi: 10.1016/j.foodchem.2017.03.147

    34. [34]

      Hong, I. K.; Kim, S. I.; Lee, S. B. J. Ind. Eng. Chem. 2018, 67, 123. doi: 10.1016/j.jiec.2018.06.022  doi: 10.1016/j.jiec.2018.06.022

    35. [35]

      Feng, J.; Wang, R.; Chen, Z.; Zhang, S.; Yuan, S.; Cao, H.; Jafari, S. M.; Yang, W. Colloids Surf., A 2020, 596, 124746. doi: 10.1016/j.colsurfa.2020.124746  doi: 10.1016/j.colsurfa.2020.124746

    36. [36]

      Rai, V. K.; Mishra, N.; Yadav, K. S.; Yadav, N. P. J. Controlled Release 2018, 270, 203. doi: 10.1016/j.jconrel.2017.11.049  doi: 10.1016/j.jconrel.2017.11.049

    37. [37]

      Du, Z.; Wang, C.; Tai, X.; Wang, G.; Liu, X. ACS Sustainable Chem. Eng. 2016, 4 (3), 983. doi: 10.1021/acssuschemeng.5b01058  doi: 10.1021/acssuschemeng.5b01058

    38. [38]

      Liang, X.; Wu, J.; Yang, X.; Tu, Z.; Wang, Y. Colloids Surf. Physicochem. Eng. Aspects 2018, 546, 107. doi: 10.1016/j.colsurfa.2018.02.063  doi: 10.1016/j.colsurfa.2018.02.063

    39. [39]

      Abbas, S.; Bashari, M.; Akhtar, W.; Li, W. W.; Zhang, X. Ultrason. Sonochem. 2014, 21 (4), 1265. doi: 10.1016/j.ultsonch.2013.12.017  doi: 10.1016/j.ultsonch.2013.12.017

    40. [40]

      Fryd, M. M.; Mason, T. G. J. Phys. Chem. Lett. 2010, 1 (23), 3349. doi: 10.1021/jz101365h  doi: 10.1021/jz101365h

    41. [41]

      Tong, K.; Zhao, C.; Sun, Z.; Sun, D. ACS Sustainable Chem. Eng. 2015, 3 (12), 3299. doi: 10.1021/acssuschemeng.5b00903  doi: 10.1021/acssuschemeng.5b00903

  • 加载中
    1. [1]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    2. [2]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    3. [3]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    4. [4]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    5. [5]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    6. [6]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    7. [7]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

    8. [8]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    9. [9]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    10. [10]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    11. [11]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    12. [12]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    13. [13]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    14. [14]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    15. [15]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    16. [16]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    17. [17]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    18. [18]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    19. [19]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    20. [20]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

Metrics
  • PDF Downloads(19)
  • Abstract views(738)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return